
3 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

useful.) However, they’re frustrated with the
difficulty of scaling up and integrating them
into traditional, top-down systems develop-
ment organizations. When pressed for rea-
sons, the usual response is a daunting litany of
barriers.

In March 2004, the University of Southern
California Center for Software Engineering
(USC-CSE) Affiliates Annual Research Review
held the fourth in a series of annual work-
shops to identify as many of these barriers as
possible and to discuss whether or not they
represented real conflicts with traditional en-
gineering (http://sunset.usc.edu). Participants
included agile developers, traditional aero-
space and telecommunications developers, ag-
ile method creators, and academics. The re-
sults were a collection of change-related
challenges and a list of nearly 40 perceived
barriers to agile implementation (see the “Cat-

egories of Barriers to Agile Processes” side-
bar). Workshop participants arrived at a con-
sensus that some of these perceived barriers
were nonproblems (for more on these, see the
“Nonproblems” sidebar).

They categorized the other barriers either
as problems only in terms of scope or scale, or
as significant general issues needing resolu-
tion. From these two categories, we’ve identi-
fied three areas—development process con-
flicts, business process conflicts, and people
conflicts—that we believe are the critical chal-
lenges to software managers of large organiza-
tions in bringing agile approaches to bear in
their projects.

Development process conflicts
This is the first and perhaps most obvious

area of difficulty. How do you merge agile,
lightweight processes with standard industrial

focus
Management Challenges
to Implementing Agile
Processes in Traditional
Development Organizations

O
ur discussions with traditional developers and managers concern-
ing agile software development practices nearly always contain
two somewhat contradictory ideas. They find that on small,
stand-alone projects, agile practices are less burdensome and

more in tune with the software industry’s increasing needs for rapid devel-
opment and coping with continuous change. (The “Agile Processes” sidebar
explains more about their characteristics and why you might find them

project management

Barry Boehm, University of Southern California

Richard Turner, Systems and Software Consortium

Managers face
several barriers,
real and perceived,
when they try
to bring agile
approaches into
traditional
organizations. These
strategies can help
address them.

processes without either killing agility or un-
dermining the years you’ve spent defining and
refining your systems and software engineer-
ing process assets? Forging alloys of such dis-
parate materials is technically and manageri-
ally challenging, and managers must be
creative to succeed.

The annual workshops have indicated that
several large aerospace, manufacturing, and IT
companies have begun experimenting with ag-
ile methods. Most have used enthusiastic agile
early-adopters on small pilot programs consist-
ing either of pure agile methods applied to iso-
lated (or possibly failing) projects or a hybrid
of agile and traditional methods in a generally
low-risk application. While almost all these pi-
lots have been successful, the companies have
been only minimally able to extend, evolve, or
interoperate the agile processes or products.

Variability
Managing variability in subsystems and

teams has proven difficult. If both agile and tra-
ditional teams are developing software for the
same product, they can develop radically differ-
ent artifacts that might not integrate easily.
Without some means of coordination, an agile
team’s domain assumptions, GUIs, or commer-
cial off-the-shelf choices could vary signifi-
cantly from other developers’ counterpart as-
sumptions. Product functionality might change
in order of delivery, or the agile team might
change its design specifics as properties emerge
and the team incorporates customer feedback.

Consider interface definitions. If the agile
team evolves its own interfaces, it might leave
other parts of the team at risk for developing
against a changing standard. However, the tra-
ditional approach of locking the interface spec-
ification early could encumber the agile team’s
need to refactor some part of their design.

Larger organizations must pay specific atten-
tion to identifying how to synchronize teams.
Some organizations have experienced success
with medium-sized teams-of-teams, but multiple
15-minute daily meetings can become unten-
able. Finding enough competent team leaders
who possess the necessary mix of technical, peo-
ple, and agility skills can also prove difficult.

Different life cycles
Working with different life cycles is also

difficult. Agile processes focus on immediately
delivering functionality, while traditional

methods focus on optimizing development over
a longer period. The traditional longer life cy-
cles require adjustments to the agile processes.
For example, the documentation traditional
methods require for training and support isn’t a
natural output of agile methods.

On the other hand, test-driven design is an
example of an agile process that readily sup-
ports work in the maintenance phase by auto-
matically providing regression tests. In fact,
agile development makes the entire develop-
ment cycle much more like a maintenance
phase by providing short, focused iterations.

Legacy systems
Applying agile processes to legacy systems,

whether within maintenance or as new develop-
ment, raises numerous issues. Legacy systems
generally aren’t easy to refactor or disassemble
to accommodate agile replacements that need to
build capability in increments. Legacy systems
might also institutionalize awkward and often
sclerotic business processes that are embedded
in the culture and aren’t easy to refactor away.

Requirements
Differences between how agile and tradi-

tional approaches perform the requirements
process can also cause problems. Agile require-
ments tend to be primarily functional and rea-
sonably informal. This might or might not
work in your systems engineering verification
and validation approach. Strengthening the ag-
ile requirements approach to provide addi-
tional information might be necessary. For ex-
ample, you might need to add information to
stories or other requirements statements to
more specifically address nonfunctional re-
quirements such as reliability or security.

Suggestions
The following approaches can help organi-

zations integrate agile practices into their tra-
ditional processes.

Do some serious preparation up front. Con-
duct a significant analysis of existing and pro-
posed processes to identify mismatches in
process requirements and expectations.

Build up processes rather than tailoring them
down. Look at the project’s needs and select
only those process assets that seem indispen-
sable. Of course, watch for instances in which

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 3 1

How do you
merge agile,
lightweight

processes with
standard
industrial
processes

without killing
agility?

you might need more rigor and add necessary
process components.

Define specific functionality or responsibilities
that you’re going to address with agile ap-
proaches. Small, GUI-intensive applications
with short life cycles are an example. As we
mentioned earlier, maintenance can also be a
good place to experiment with agile approaches.

Develop architectures that support compart-
mentalization of agile and traditional teams.
Identify an “agility level” characteristic for
your architectural evaluations. Look for areas

where requirements will likely change rapidly
or where the design approach is unclear and
designate these as agile opportunities.

Realign or redefine traditional milestone re-
views to better fit an iterative approach. Fash-
ion the standard reviews to be more like the
Life Cycle Anchor Point milestones in the
Win-Win Spiral1 or Rational2 processes. Move
the preliminary design review out to where it
makes sense to talk about the design based on
developed code and prototypes.

Implement agile practices that support exist-

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

In general, agile methods are lightweight processes that
employ short iterative cycles, actively involve users to establish,
prioritize, and verify requirements, and rely on a team’s tacit
knowledge as opposed to documentation. A truly agile method
must be iterative (take several cycles to complete), incremental
(not deliver the entire product at once), self-organizing (teams
determine the best way to handle work), and emergent (processes,
principles, and work structures are recognized during the proj-
ect rather than predetermined). Figure A shows an example of
an agile process flow.

Key concepts and practices
The practices espoused to support these values vary with

the method. They belong to three general areas:

■ communication (for example, metaphor and pair programming),
■ management (for example, planning game and fast cycle/

frequent delivery), and
■ technical (for example, simple design, refactoring, and

test-driven design).

Examples of these agile concepts and practices include the
following:

■ Embracing change: Seeing change as an ally rather than
an enemy. Change allows for more creativity and quicker
value to the customer.

■ Fast cycles, frequent delivery: Scheduling many releases
with short time spans between them forces implementation
of only the highest priority functions, delivers value to the
customer quickly, and speeds requirements emergence.
Timeboxing, for example, establishes specific time frames
that are then filled with as much prioritized functionality
as can be developed.

■ Simple design: Designing for the battle, not the war. The
motto is YAGNI (You Aren’t Going to Need It). The anti-
motto is BDUF (Big Design Up Front). Strip designs down
to cover just what you’re developing. Since change is in-
evitable, planning for future functions is a waste of effort.

■ Refactoring: Restructuring software to remove duplication,
improve communication, simplify, or add flexibility with-
out changing its behavior; just-in-time redesign.

■ Pair programming: A style of programming in which two
programmers work side by side at one computer, contin-
ually collaborating on the same design, algorithm, code,
or test.

■ Retrospective or reflection: A post-iteration review of the
effectiveness of the work performed, methods used, and
estimates. The review supports team learning and estima-
tion for future iterations.

■ Tacit knowledge: Establishing and updating project knowl-
edge in the participants’ heads rather than in documents
(explicit knowledge).

■ Test-driven development: Developers and customers incre-
mentally write module or method tests before and during
coding. Supports and encourages very short iteration cycles.

Why implement agile approaches?
Obviously, integrating agile approaches and philosophies

into traditional environments is difficult. Otherwise we wouldn’t
be discussing the challenges. If it’s so difficult, then why should
companies go to all this trouble? Here are a few reasons we’ve
come upon in our research:

■ Working software is often a better measure of progress
than a force-fit earned-value ratio.

■ You can often identify unnecessary or low-value functions
early and therefore not spend time implementing them.

Agile Processes

ing processes or new organizational priorities.
Practices that support existing processes might
include prioritizing requirements (helpful in
keeping on schedule when new requirements
emerge) or test-first and continuous integration
(helpful in finding problems earlier rather than
later). An example of a new organizational pri-
ority that could benefit from agile methods is
rapid application development. It can be aided
by such practices as continuous integration,
pair programming (pairs typically spend 20
percent more effort but 40 percent less calen-
dar time), and timeboxing or its large-system
counterpart, Schedule as Independent Variable.

Evaluating risks is the best overall approach to
determining how much agility (or any attribute,
for that matter) is enough. For each project de-
cision, consider the risks of too much versus too
little agility and the counterpart risks of doing
too much planning and architecting. For exam-
ple, our COCOMO II-based analysis3 of how
much architecting is enough indicates that for a
10 million source line of code project, devoting
30 to 40 percent of the project schedule to
planning and architecting is best. On the
other hand, a five percent investment is usu-
ally enough for a 10,000 SLOC product. The
percentage is closer to zero if the product is

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 3 3

■ Short cycles force you to focus on specific capabilities,
can require more specific descriptions of functionality,
and can identify misconceptions between the customer
and developer earlier.

■ Agile is more suited to emerging requirements and ca-
pability-based specifications than traditional top-down
approaches.

■ Agile provides rapid value to the customer, often delivering
capability while traditional methods are still sorting out plans.

■ Agile methods empower developers who might be suffer-
ing from the over-constraint of heavy processes.

■ Agile practices aren’t new, have been proven over time,
and generally work as well as or better than some cur-
rently accepted practices.

Product backlog:
Prioritized product features desired by the customers

New funtionality is demonstrated
at end of sprint

Sprint backlog:
Features

assigned to print

Backlog items
expanded
by team

Every 24 hours

30 days

Scrum: 15-minute daily meeting
Team members respond to basics.
1) What did you do since last Scrum meeting?
2) Do you have any obstacles?
3) What will you do before next Scrum meeting?

Figure A. The Scrum process: An example of an agile process flow. (Source: Advanced Development
Methods, Inc., www.ControlChaos.com).

being developed on top of a mature architec-
tural framework and middleware package.

As a final comment on this challenge, we

believe that it represents a part of the larger is-
sue of integrating advances in software devel-
opment approaches into the traditional sys-
tems engineering approach. We address this
larger issue in the “Opinion: Managing the In-
tegration of Software Engineering and Systems
Engineering” sidebar.

Business process conflicts
An often-overlooked difference between ag-

ile and traditional engineering processes is the
way everyday business is conducted. Estima-
tion, resource loading, and slack calculations
can vary significantly. The level of uncertainty
and ambiguity that exists in any evolutionary
or iterative process, particularly in long-term
estimates, is most likely higher with agile ap-
proaches. We’re still caught in the certainty/am-
biguity conundrum; our business processes and
infrastructure require near-perfect predictions
of difficult-to-estimate tasks rather than en-
couraging experimentation and evolution with
knowable short-term results but accepting of
long-term haziness.

Human resources
Organizations must learn to accommodate

human-resource issues such as timekeeping,
position descriptions, team-oriented versus
individual rewards, and required skills. Agile
development team members often cross the
boundaries between standard development
position descriptions and might require signif-
icantly more skills and experience to ade-
quately perform. Paradoxically, HR depart-
ments and procedures frequently get in the
way of empowering people to pursue nontra-
ditional approaches that require organizations
to revisit legally vetted and audited policies
and procedures.

Progress measurement
Traditional contracts, milestones, and

progress measurement techniques might be in-
adequate to support agile processes’ rapid pace.
Contracts and payments tend to be based on
MIL-STD-1521 milestones like preliminary
and critical design reviews, which have almost
no meaning in an agile environment. Tradi-
tional earned-value processes are difficult if not
impossible to apply to agile work because of
work breakdown structure inadequacies and
the flexibility timeboxing requires. In some
cases, agile measurements, such as require-

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Participants at the 2004 USC-CSE Annual Research Review identified three
categories of real and perceived barriers to implementing agile processes.

Nonproblems
■ Quality assurance systems
■ Agile inadequate for managing defects
■ Refactoring is rework
■ Agile is monolithic
■ Quantitative management
■ Extension/effectiveness of automatic testing to acceptance/system integration
■ Perception that agile is extreme or a fad; not responsible
■ Agile projects are unmanaged

Problems only in terms of size or scope
■ Configuration management
■ Earned value tools: Agile focuses on features and business value, tradi-

tional focuses on activities
■ Stakeholder sign-off requirements
■ Planning documentation
■ Deployment, life cycle support (training): Long-term life cycle sustain-

ment, decay rate of tacit knowledge
■ Risk management
■ Contracted/planned inch-pebble milestones
■ Process QA/standard processes
■ Process standards (IEEE, DoD, EIA)
■ Designing for the battle, not the war

Significant issues
■ Resource loading, slack, timekeeping, capital evaluation
■ Required colocation, customer access
■ Nonfunctional requirements
■ Documentation
■ Critical design reviews (milestones)
■ Contractual and source selection issues
■ Interfacing/integration with other methodologies/disciplines
■ Predictability, perfect knowledge
■ Statutory/regulatory constraints
■ HR policies and processes
■ System interface control
■ Roles, responsibilities, and skills
■ Agile work on legacy systems
■ Formal requirements
■ System engineering V-process model
■ Maturity assessments
■ Traditional engineering measurements
■ Cost estimation

Categories of Barriers to Agile Processes

ments burndown (the number of requirements
or functions in the backlog list that have been
accomplished) or story completion, have been
successfully used as reasonable substitutes for
more traditional measures.

Process standard ratings
One area of conflict for mature organiza-

tions will be in how agile processes will affect
their ratings with respect to CMMI, ISO, or
other process standards. We feel that agile is in
line with much of the Level 5 concept of con-
stantly adapting to improve performance. Un-
fortunately, most agile methods don’t sup-
port the degree of documentation and infra-
structure required for lower-level certification;
it might, in fact, make agile methods less ef-
fective. It’s possible that enlightened apprais-
ers can find ways to include agile methods as
alternative practices in many instances,
although safety-critical areas or components
requiring some form of certification call for
rigorous appraisals.

Suggestions
You can address business process issues in

numerous ways. Also, several research topics
promise possibilities for solutions.

Address HR issues when you begin your pilot
project so that you can test their impact on
traditional processes. This might cause initial
delays, but it can save considerable confusion
and hard feelings if issues arise mid-project.

Apply throughput accounting rather than cost
accounting in software development projects.
David Anderson discusses this extensively in
Agile Management for Software Engineering.4

Develop management and architectural prac-
tices for hybrid agile and plan-driven meth-
ods. Establish some standard characteristics
and patterns that support separating stable
components from those with evolving require-
ments or environments.

Investigate and update contracting practices to
support agile concepts. Disburse payments
upon delivery of running software or demon-
stration of progress rather than completion of
artifacts or reviews. Develop contracting pro-
visions and incentives for client satisfaction
that support agile development.

Identify incompatible assumptions (model
clashes) and compatible assumptions (syner-
gies) between agile and traditional methods
within your organizational processes. Work to
eliminate as many clashes as possible while en-
couraging synergies.

Conduct empirical studies of which classes of
change are more unpredictable and therefore
suited for agile methods and which are more
predictable and suitable for traditional plan-
driven methods.

Research how to modify or reconceive legacy
systems to enable and help agility-compatible
re-engineering and maintenance, replacement,
or extension.

Establish guidelines for safe and agility-compatible
process maturity assessments. The SEI and
other process improvement centers need to
quickly address this. They have acknowl-
edged agile methods, but haven’t established
a standard for lead assessors to handle them.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 3 5

A number of the barriers participants identified and considered during
the USC workshop were deemed to be nonproblems. This indicated that ei-
ther the perception was false (a myth) or that organizations could easily
eliminate the issue without significant changes to either the agile or tradi-
tional ways of doing business.

Most of the myths stem from misunderstanding. One reason for this is a
lack of clarity about the intent and actual operation of agile practices such
as refactoring or pair programming. Often, engineers in particular react
viscerally rather than cerebrally to ideas that are self-proclaimed as “ex-
treme.” These myths also often arise from encounters with counterfeit agile
methods—for example, poor software developers claiming to use agile
methods when in reality they’re simply hacking.

Nonproblems that are easy to eliminate include those having to do with
quality and management. Generally, organizations can deal with these by
adopting broader definitions of traditional terms. Measurement is critical in
agile methods, particularly in establishing development velocity values criti-
cal to timeboxing. However, organizations might need to reinterpret these
measures to fit easily into existing processes. Quality and defect manage-
ment are also intrinsic to most agile methods, but the activities don’t neces-
sarily match one to one with some of the traditional approaches. With a bit
of imagination and good will, pair programming, test-driven development,
and daily builds can be part of most traditional quality and acceptance
programs. Management in agile methods is often defined as protecting the
developers from the remainder of the organization or as coaching—cer-
tainly aspects of good management in any discipline.

The Nonproblems

People conflicts
People issues are by far the most critical in

improving management of engineering and de-
velopment personnel. Addressing them is vital
to the adoption and integration of agile meth-
ods and practices into your processes. People
issues are at the heart of the agile movement,
and much of the paradigm change is aimed at
empowering individuals by supporting reason-
able goals, shorter feedback cycles, ownership,
and flexibility.

Management attitudes
Migrating from traditional to agile manage-

ment attitudes can be difficult. Large-scale
management processes such as earned value
and statistical process control evolved from a
manufacturing paradigm and tend to cast em-

ployees as interchangeable parts. Managers
also tend to associate employees with specific
roles that might cause difficulty in the multi-
tasking characteristics of agile team members.
Project managers in most agile methods play
two primary roles: protector and coach. They
act as a barrier between the organization and
the team to minimize unnecessary perturbation
during a sprint or development cycle and pro-
vide experienced technical help when neces-
sary. Many traditional managers also fill these
functions, but agile methods focus on them.

Logistical issues
Some logistical issues directly affect people

in agile environments. Agile teams must nearly
always be colocated. The typical agile work-
space requires pair-programming stations,

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

In the March 2000 issue of Computer, one of us (Barry
Boehm) described the need to “change from slow, reactive,
adversarial, separated software and system engineering pro-
cesses to unified concurrent processes” to address “rapid de-
velopment of dynamically changing software-intensive sys-
tems.”1 In the five years since that column, the software world
has moved considerably toward more agile, concurrent pro-
cesses, but the hardware-intensive systems engineering disci-
pline has largely continued to use sequential document-driven
processes.

Sequential approaches (based on the waterfall concepts of
relatively complete system requirements allocated down to the
hardware and software developers, who then provided com-
plete configuration items back to integration and validation
teams in a MIL-STD-1521 review-based development cycle)
worked well in a stable environment where software was a
small part of the system and software development was some-
what slower paced. In today’s environment, where software
and user interaction drives the majority of system functionality,
requirements tend to emerge with system use and to evolve
rapidly, and hardware is less expensive and also evolving, the
idea of establishing system requirements and specifications
without close interactivity with software is risky.

We’re in a transition period where software engineering
has aggressively embraced more iterative and concurrent
methods. Unfortunately, these methods are causing significant
issues for systems engineering, and only recently has the hard-
ware-intensive mainstream of systems engineering recognized

that although waterfall-type approaches are required for hard-
ware production, planning, and preparation, they need to be
synchronized with the software spirals. The disconnects are
most visible in large network-centric systems-of-systems, where
software is responsible for large percentages of functionality
and infrastructure.

Various organizations and standards groups (including the
Capability Maturity Model Integration) have made some ef-
forts to modernize and integrate the two disciplines. However,
they do not fully consider or mitigate software risks. For exam-
ple, the attempt to develop systems-of-systems by integrating
best-of-breed systems developed under total systems perform-
ance responsibility guidelines usually results in belated discov-
ery of incompatible commercial off-the-shelf, GUI, and archi-
tectural decisions. Integrated product teams that produce
unvalidated and poorly coordinated PowerPoint or UML archi-
tectural or high-level design solutions leave major risks to dis-
cover late in the development cycle. Or, consider the case of
iterative development in large systems. The traditional disci-
plines generally establish increments based on functionality
and focus on one build at a time, often without an overarching
architecture. This runs a risk of suboptimized early builds that
result in large amounts of breakage and rework in later incre-
ments where more stringent requirements are expected from
crosscutting attributes such as safety, security, and scalability.

Essential critical success factors are beginning to emerge.
First, expectations management is a key component of any
evolving system. Agreeing to unrealistic schedules or budgets

Opinion: Managing the Integration of Software Engineering
and Systems Engineering

walls for status charts and assignments, a lay-
out that allows team members to easily con-
verse to share information, and sufficient equip-
ment to support continuous integration and
regression testing. (To those of us of a certain
age, this may be reminiscent of engineering
bullpens similar to those in the HBO series
From the Earth to the Moon—only with bet-
ter tools.)

Handling successful pilots
The negative impacts of how organizations

handle the success of pilot projects are often
overlooked in reporting outcomes. During the
USC workshop, Alistair Cockburn described
his experience with an all too frequently ob-
served response to a successful agile pilot: fire
or promote the manager and/or split up the

team. Of course, this does three things: it de-
stroys team relationships, both technical and
personal, it dilutes the knowledge gained and
lessons learned, and it sends the message that
trying new things might be hazardous to your
career.

Change management
Change management experts often describe

the organizational antibodies that begin to
gather as soon as something new appears in
the existing culture. Concerns of inadequacy
or obsolescence surface, jealousy about assign-
ments and business accoutrements is aroused,
and defense mechanisms rapidly deploy. This
can result in several destructive behaviors, in-
cluding the cultural crucifixion of change agents
or early adopters and the deliberate sabotage of

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 3 7

only to continuously revise them upward is a lose-lose position
in the long run.

Second, systems and software engineering must proceed
concurrently but in a controlled, coordinated manner. This co-
ordination has been likened to an asynchronous machine of
engineering activities that requires periodic synchronization.
This synchronization can be formal or informal, but a mecha-
nism must exist for defining reasonable outcomes for relatively
short periods of time. It’s critical to establish ways to adjust
activities for risks and issues, analyzing downstream impacts
and using the results to replan for the next set of outcomes.

Third, the development of systems that will evolve must be
architecture driven. Prototypes and experimentation are cru-
cial to defining and characterizing an architecture that pro-
vides multiple development teams sufficient guidance to sup-
port the concurrency and coordination we mentioned earlier.
This is particularly true for systems whose components are out-
sourced, legacy, independently evolving, or built by subcon-
tractors. The architecture should be solidly in hand before any
contractual agreements are established to avoid unaffordable
rework and incompatible components.

Compatibility of organizational structures and business
processes is the fourth factor. The lines of communication
among component developers, systems engineers, and archi-
tects must be conceptually high bandwidth and readily acces-
sible. Integrated product teams must not be allowed to evolve
into independent product teams. Management must not lose
sight of the importance of teamwork, flexibility, agility, and

broad vision in preventing stovepiping and local optimization.
Contracts and incentive structures must reflect this understand-
ing as well.

Finally, as always, managing by risks is more critical than
the managing of risks. Risks exist at every level of the system
hierarchy. Many of those risks surface rapidly and, if man-
agement doesn’t identify and respond to them, they can
quickly become serious program-threatening problems. Pro-
grams must actively seek out risks and discuss them across the
development hierarchy. They must intentionally watch for cross-
cutting risks. Mitigation plans and activities must undergo con-
stant evaluation for effectiveness and be quickly changed if
they’re not performing as expected.

The time is ripe for software and systems engineers to com-
pare notes and learn from each other. Software is further
along in dealing with unpredictable requirements changes,
while systems engineering has a long history of successfully
integrating existing components. We believe we should move
intentionally toward a common set of lifecycle definitions and
processes that incorporate both disciplines’ needs and capital-
ize on their strengths.

Reference
1. B. Boehm, “Unifying Software Engineering and Systems Engineering,”

Computer, vol. 33, no. 3, 2000, pp. 114–116.

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Clearly, agile
concepts will
continue to
migrate into
traditional

organizations
(and vice versa)
through planned
or clandestine

vectors.

projects through direct or indirect methods.
Then there’s the problem of dealing with

employees who simply refuse to use new meth-
ods (we’ve identified them as Cockburn level-
ones3). Having a nonplayer (or someone play-
ing for the opposing side) can disable any
team but is particularly damaging in an agile
context. Agile teams rely heavily on trust and
shared tacit knowledge to support pair pro-
gramming and shared ownership. This also
makes moot any efforts to measure the results.

People within the organization aren’t the
only ones affected by the introduction of agile
methods. Stakeholders, particularly customers,
might need to play significantly different roles.
Many agile methods require (or at least
strongly suggest) onsite customers, significant
customer interaction and feedback, and cus-
tomer input for acceptance testing. Attention
to process matching and customer education is
necessary to smooth the transition.

Suggestions
The following practices can help in ad-

dressing people issues.

Understand how communication occurs within
development teams. This is key to incorporat-
ing agile practices and teams. You can find a
good discussion in Alistair Cockburn’s Agile
Software Development.5

Educate stakeholders. Countering mythology
through education is an ancient, honored tra-
dition. Learn as much as you can and share it
with customers, managers, and practitioners.
Engaging speakers to discuss experiences or
specific methodologies can help, but beware
the possibly negative impact of true believers.

Translate agile and software issues into man-
agement and customer language. Engaging up-
per management and customers in fruitful dis-
cussion of software issues is often difficult
because of the “eyes glaze over” response.
When you discuss technical issues with not-as-
technical-as-you people, remember to describe
issues in terms that the audience can easily
connect with.

Emphasize value. Software engineering has tra-
ditionally been value-neutral—every require-
ment, test case, object, or defect has been es-
sentially equally important. Agile methods

emphasize value in two ways. First, they nego-
tiate and prioritize requirements so that ex-
pectations are managed and timeboxing can
work. Second, they acknowledge the value of
each team member, the team as an entity, and
the products the team produces to the organi-
zation and the customer.

Pick good people and reward the results of pi-
lot projects. You don’t need to create a dream
team, but definitely eliminate the level-ones in
your pilots. Show your appreciation for the
team’s work, regardless of the outcome. The
team members put their reputations on the
line for the organization, leaving themselves
vulnerable to the organizational antibodies.
Don’t minimize that effort.

Reorient reward systems to recognize both in-
dividual and team contributions.

W e’ve identified some barriers to in-
tegrating agile and traditional
methods as perceptual, not techni-

cal. However, we’ve also seen that many tech-
nical barriers do exist. We don’t believe that
these are insurmountable and are confident
that organizations can overcome them with
diligence, patience, and work. Clearly, agile
concepts will continue to migrate into tradi-
tional organizations (and vice versa) through
planned or clandestine vectors. Research is
needed in several areas to provide new ap-
proaches and to harmonize the methods. For
example, the Systems and Software Consor-
tium is finalizing a document called Disci-
plined Agility, which describes an approach to
implementing agile methods in high-maturity
and process-compliant environments Most
importantly, though, is the need to capture
metrics data and lessons learned from your ex-
periences. Data is critical to validate the inte-
gration activity’s value and the return on in-
vestment. Lessons learned can support more
rapid integration, eliminate the repetition of
ineffective approaches and practices, and dis-
seminate experience across the organization
and throughout the community.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 3 9

References
1. B.Boehm, “Anchoring the Software Process,” IEEE

Software, vol. 13, no. 4, 1996, pp. 73–82.
2. I. Jacobson, G. Booch, and J. Rumbaugh, The Unified

Software Development Process, Addison-Wesley, 1999.
3. B. Boehm and R. Turner, Balancing Agility and Disci-

pline: A Guide for the Perplexed, Addison-Wesley,
2004.

4. D. Anderson, Agile Management for Software Engineer-
ing: Applying the Theory of Constraints for Business
Results, Prentice Hall, 2003.

5. A. Cockburn, Agile Software Development, Addison-
Wesley, 2001.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

About the Authors

Barry Boehm is the TRW Professor of Software Engineering and director of the Center
for Software Engineering at the University of Southern California. His research interests include
software process modeling, software requirements engineering, software architectures, soft-
ware metrics and cost models, software engineering environments, and value-based software
engineering. His contributions to the field include the Constructive Cost Model (COCOMO), the
Spiral Model, and the Theory W (win-win) approach to software management and require-
ments determination. He is a fellow of the ACM, AIAA, the IEEE, and INCOSE and is a member of
the US National Academy of Engineering. He received his PhD from UCLA in mathematics. Con-
tact him at the Center for Software Eng., Univ. of Southern California, 941 W. 37th Place, SAL

Room 337, Los Angeles, CA 90089-0781; boehm@cse.usc.edu.

Richard Turner is a director at the Systems and Software Consortium. His research in-
terests include establishing empirical profiles for software development and acquisition best
practices; employing spiral, risk-driven methods in large system-of-systems acquisitions; harmo-
nizing software engineering, systems engineering, and acquisition life-cycle models; and devel-
oping ways to measure return on investment for software and systems engineering processes
and process improvement. He was on the original author team for Capability Maturity Model
Integration. He coauthored Balancing Agility and Discipline: A Guide for the Perplexed (Addi-
son-Wesley, 2004), cowritten with Barry Boehm, and CMMI Distilled (Addison-Wesley, 2000,
2004). He received his DSc in engineering management from George Washington University.
He’s a member of the IEEE and INCOSE. Contact him at the Systems and Software Consortium, 2214 Rock Hill Rd., Herndon,
VA 20170-4227; turner@systemsandsoftware.org.

Global software develop-
ment has intensified over
the last decade, resulting
in an increased dispersion
of software development
lifecycle activities across
geographies. In spite of
the challenges and com-
plexities involved, many
software projects find that
organizing development in
geographically distributed
settings is a business ne-
cessity. Although some
theories and practices have
been researched and de-
veloped, the art and sci-
ence of global software de-
velopment is still evolving.

C A L L

F O R

A R T I C L E S
Global Software Development

This issue seeks to provide a state-of-the-art account of
approaches and practices involved in effectively managing
global software development.
WE SEEK SUBMISSIONS THAT
• Articulate success strategies and lessons learned
• Present proven techniques, models, and tools
• Describe the problems and issues unique to global

software development
• Report failure stories and distill learning on what

doesn’t work
• Advance the body of knowledge on global software

development and have a substantial potential to
influence practice

Guest editors:
Daniela Damian, Univ. of Victoria, B.C., Canada; danielad@cs.uvic.ca
Deependra Moitra, Infosys Technologies, Bangalore, India;
deependra@moitra.com

For author guidelines and submission details, write to software@computer.org or go
to www.computer.org/software/author.htm. For information about the issue’s focus or
an article proposal, contact the guest editors.

For the complete call, go to www.computer.org/
software/edcal.htm.

PUBLICATION DATE: September/October 2006
SUBMISSION DEADLINE: 10 Jan. 2006

