
4 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

■ Most software professionals have no laws
of physics or properties of materials to
constrain their problems or solutions.
They are bound only by human imagina-
tion, economic constraints, and platform
performance. (Some embedded-software
developers are an occasional exception.)

■ In a software project, you can change al-
most anything at any time: plans, people,
funding, milestones, requirements, de-
signs, and tests. Requirements—probably
the most misused word in our industry—
rarely describe anything that is truly re-
quired. Nearly everything is negotiable.

■ Metrics and measures for software prod-
ucts have no atomic units and are highly
subjective. Economic performance more
typical in service industries (measured by
a user’s perceived value rather than the
cost of production) has proven to be the
best measure of success for software.

These observations probably sound counter-
cultural to project managers who use engineer-
ing mindsets to produce airplanes, bridges,
heart transplant valves, nuclear reactors, sky-
scrapers, and satellites (unless these projects in-
clude significant software content or are first-
of-a-kind systems). However, they do apply to
movie producers—professionals who regularly
create a unique and complex web of intellectual
property limited only by vision and creativity.

I prefer to describe software management as
a discipline of software economics rather than
software engineering. Software projects are
rarely concerned with established and mature
engineering tenets. Rather, a software manager’s
day-to-day decisions (like those of movie pro-
ducers) are dominated by value judgments, cost
trade-offs, human factors, macro-economic
trends, technology trends, market strength, and
timing. To deal with these more subjective deci-
sions, I recommend using a steering leadership

focus
Successful Software
Management Style:
Steering and Balance

S
oftware project managers are more likely to succeed if they use
techniques that are more like managing a movie production than an
engineering production. “Heresy!” some might shout. “Software
projects need more disciplined engineering management, not less.”

Before you dismiss my claim as an insult to the profession, consider these
observations (a related discussion appears elsewhere1):

project management

Walker Royce, IBM Software Group

Project management
style is a significant
determinant
separating
successful projects
from failures.
Contrary to
conventional
wisdom, steering
leadership is better
than detailed
plan-and-track
leadership.

style that comprises active management involve-
ment and frequent course correction.

An iterative approach
The economic performance of software

projects is difficult to capture in one simple
metric, but in the last five years, approxi-
mately one in three has delivered on budget
and on schedule with any sort of predictabil-
ity.2 I suspect the economic performance of
movie productions looks pretty similar.

Traditional project management approaches
in software-intensive projects don’t encourage
the steering and adjustment needed to reconcile
significant levels of uncertainty in the

■ problem space (what the user really wants
or needs),

■ solution space (what architecture and
technology mix is most appropriate), and

■ planning space (including cost and time
constraints, team composition and pro-
ductivity, stakeholder communication,
and incremental result sequences).

We need a more dynamic and adaptive way of
thinking about software progress and quality
management, one that accommodates patterns
of successful projects.

Today’s modern software management ap-
proaches are generally known as iterative de-
velopment methods.3–5 Rather than tracking
against a precise, long-term plan, the iterative
method steers software projects through the
minefield of uncertainties inherent in develop-
ing today’s software applications, products,
and services. Successfully delivering software
products on schedule and within budget re-
quires an evolving mixture of discovery, pro-
duction, assessment, and a steering leadership
style. This implies active management involve-
ment, frequent course correction to produce
better results, and having all stakeholders col-
laborate to converge on moving targets.

The IBM Rational Unified Process, an ac-
cepted benchmark of a modern iterative devel-
opment process, provides a framework for a
more balanced evolution that encourages the
management of uncertainty and risk.6 Its life
cycle comprises four phases, each with a
demonstrable result:

■ Inception. Define and prototype the vision
and business case.

■ Elaboration. Synthesize, demonstrate, and
assess an architecture baseline.

■ Construction. Develop, demonstrate, and
assess useful increments.

■ Transition. Assess usability and produce
and deploy product.

Each phase represents a project state rather than
a sequential-activity-based progression from re-
quirements to design to code to test to delivery.

This iterative management style is results-
rather than activity-based. In the world of
software, real results are executable programs.
Everything else (requirements documents, use-
case models, design models, test cases, plans,
processes, documentation, and inspections) is
secondary—simply part of the means to the
end. Just as the movie industry gets action on
film, we too must get increments of software
into executable form to make things tangible
enough to assess progress and quality. A lot of
scrap and rework exists in this process as we
discover what works and synthesize the con-
tributions of many people into one cohesive
piece of integrated intellectual property.

Think back to your programmer days:
When building a model, sketching a flowchart,
reasoning through a state machine’s logic, or
composing source code, you knew you were
speculating about and synthesizing an abstract
solution. The solution wasn’t tangible until
you got it to compile, link, and execute; then
you could reason about its quality, perform-
ance, usefulness, and completeness. Project
managers should feel the same way. As long as
you’re assessing the merits of a plan, model,
document, or some other nonexecutable repre-
sentation, you’re only speculating about qual-
ity and progress. Movie producers view scripts,
storyboards, set mockups, and costume de-
signs in the same way. They commit scenes to
film to make the presentation tangible enough
to judge its overall integrated effect.

Precision vs. accuracy
In a successful software project, each phase

increases the stakeholders’ understanding of the
evolving plans, specifications, and completed
solution, because each furthers a sequence of
executable capabilities as well as the team’s
knowledge of competing objectives. At any
point in the life cycle, the subordinate artifacts’
precision should reflect this understanding, so it
should evolve as the understanding evolves.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 4 1

We need a
more dynamic
and adaptive

way of thinking
about software

progress
and quality

management.

The difference between precision and accu-
racy in the context of software management isn’t
as trivial as it may seem. Software management
is full of gray areas, situation dependencies, and
ambiguous trade-offs, and software managers
must accurately forecast estimates, risks, and
the effects of change. Unjustified precision—in
requirements or plans—is a substantial yet sub-
tle recurring obstacle. Most of the time, early
precision is dishonest, providing a facade for
more progress or quality than actually exists.
Unfortunately, many sponsors and stakeholders
demand this early precision and detail because
it gives them (false) comfort regarding the
progress achieved.

A common failure pattern is developing a
five-digits-of-precision specification when the
stakeholders have only a one-digit-of-precision
understanding of the problem, solution, or
plan. A prolonged effort to build a precise re-
quirements understanding or a detailed plan
only delays a more thorough understanding of
the architecturally significant issues. How
many frighteningly thick requirements docu-
ments or micromanaged inch-stone plans have
you worked on, perfected, and painstakingly
reviewed, only to overhaul them months later
after the project achieved a meaningful mile-
stone of demonstrable capability that accelerated
stakeholder understanding of the real trade-offs?
This common practice is aptly known in our
trade as “turd polishing.”

Four patterns for successful
steering

Iterative processes have evolved mostly
from the need to better navigate through un-
certainty and to better manage software risks.
This steering requires dynamic controls and
intermediate checkpoints where the stakehold-
ers can assess achievements, identify perturba-
tions that should become target objectives,
and refactor what they’ve achieved to obtain
those objectives in the most economical way.

Following are four patterns (and antipat-
terns) characteristic of successful (and unsuc-
cessful) software-intensive projects, which
help create such checkpoints:

■ Scope management. Solutions evolve from
user specifications, and user specifications
evolve from candidate solutions (antipat-
tern: the requirements are precisely and
thoroughly defined up front).

■ Process rigor. Process and instrumentation
rigor evolves from light to heavy (anti-
pattern: the entire project’s lifecycle
process is defined as light or heavy).

■ Progress honesty. Healthy projects display
a sequence of progressions and digressions
(antipattern: without any noticeable di-
gression, projects progress to 90 percent
earned value as the predicted plan is
blindly executed.)

■ Quality control. Testing demonstrable re-
leases is a first-class, full lifecycle activity
(antipattern: testing is a subordinate, later
lifecycle activity.)

My hunch is that most conventionally certi-
fied project managers will react negatively to
these notions, because they run somewhat
counter to conventional wisdom. I admit that
they’re easier said than done on a software
project of substance, and certainly we must ap-
ply each differently across domains. Web-appli-
cation development teams will implement these
patterns differently from embedded-application
development teams, but the pattern still applies.
Writing books and papers about methods and
patterns and techniques, which the industry
calls thought leadership, is relatively easy. How-
ever, most of us aren’t looking for best thoughts;
we’re looking for best practices. Managing real
projects requires practice leadership, where ap-
plying and executing these ideas under game
conditions is relatively difficult.

We need to cherish proven project managers
who understand practice leadership; they’re
probably the scarcest resource in every com-
pany. Like the movie industry, we need qualified
architects (directors), analysts (scriptwriters and
designers), software engineers (production
crews, editors, special effects producers, actors,
and stunt doubles), and, in particular, project
managers (producers). Good project managers,
like good movie producers, not only create good
products but also serve as mentors for less ex-
perienced team members. They teach effective
techniques for multidimensional trade-offs, con-
tinuous negotiation, risk management, pattern
recognition, and steering leadership. Project
management training courses are good catalysts
for learning, but apprenticeship is a necessity.

Scope management
One of the more subtle challenges in the

conventional software process has been in pre-

4 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The difference
between

precision and
accuracy

in the context
of software
management

isn’t as trivial
as it may seem.

senting the life cycle as a sequential thread of
activities: from requirements analysis to de-
sign, to code, to test, and, finally, to delivery.
In an abstract way, successful projects imple-
ment this progression, but the boundaries be-
tween the activities are fuzzy, and collaborative
stakeholders accept them as such. Unsuccessful
projects, on the other hand, typically strive for
crisp boundaries between activities. For exam-
ple, pursuing a completely frozen require-
ments baseline before transitioning to design
or fully detailed design documentation before
transitioning to coding results in wasteful at-
tention to minutia, while progress on the im-
portant engineering decisions slows or even
stops.

When we build software solutions compris-
ing entirely new stuff, the flow of specifications
from requirements to design in successive lev-
els of detail makes some sense. But we’re usu-
ally upgrading an existing system or building
new systems out of existing components (oper-
ating systems, Web services, networks, GUIs,
data management, packaged applications, mid-
dleware, computing platforms, legacy systems,
and so on). The economic benefits of adapting
or reusing existing assets force us to consider
specifying the user need within the context and
constraints of these existing assets.

Earlier, I said that “requirements” is probably
the most misused word in our industry. Required
means nonnegotiable, yet in almost every suc-
cessful project we see changed, bartered, and ne-
gotiated requirements. A changed requirement
receives tremendous scrutiny because it usually
affects the contract between stakeholders. I pro-
pose using the word “specification” instead.
Specifications are changeable and are under-
stood as the current state of our understanding.

Two important forms of user specifications
exist. The first is the vision statement (or user
need), which captures the contract between the
development group and the buyer or user. De-
velopers should represent this information in a
format that the user can understand (an ad hoc
format that might include text, mockups, use
cases, or spreadsheets). A use-case model that
supports the vision statement captures the op-
erational concept and expected behaviors in
terms the user or buyer will understand.

The second form of specification is very dif-
ferent from requirements. I prefer the phrase
evaluation criteria, which are inherently under-
stood as transient snapshots of objectives for a

given intermediate lifecycle checkpoint such as
a demonstrable release. Evaluation criteria are
interim steering targets derived from the vision
statement as well as from many other sources
(make, buy, or reuse analyses; risk manage-
ment concerns; architectural considerations;
shots in the dark; implementation constraints;
quality thresholds; and so on). They, along
with use-case models, provide a better frame-
work for early testing than do conventional re-
quirements representations. An initial proposal
for the sequence of planned release content and
planned evaluation criteria serves as a great
format for a risk management plan.

Process rigor
For years, I’ve tried to reconcile the zealous

arguments of the agile camps (the liberal left
of software process opinions) and the process-
maturity camps (the conservative right of soft-
ware process opinions). Both have useful per-
spectives and appropriate techniques, but a
clear prescription for the range of solutions
needed doesn’t exist. Context is extremely im-
portant, and almost any nontrivial project or
organization must combine technique, com-
mon sense, and domain experience.

Most project managers would agree that
more rigorous processes are appropriate when

■ the teams are distributed,
■ the project is large (comprising teams of

teams),
■ many stakeholders are involved,
■ the quality specifications are extreme,
■ the constraints are externally imposed (stan-

dards, liability, contracts, and so forth), and
■ the project is later in the lifecycle phases.

This last perspective describes the most critical
determinant for deciding between the speed and
freedom of agile methods and the quality and
prescriptive guidance of rigorous methods.
Process rigor should act like gravity: the closer
you are to a product release, the stronger the in-
fluence of process, tools, and instrumentation on
day-to-day activities. The farther you are from a
release date, the weaker the influence. The liter-
ature and most process evangelists grossly un-
deremphasize this axiom—or miss it entirely.

Successful software development processes
exhibit a well-defined transition from creative
to production phases. Earlier phases focus on
achieving demonstrable functionality; later

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 4 3

Required means
nonnegotiable,

yet almost every
successful

project includes
changed,

bartered, and
negotiated

requirements.

phases realize the product and thus focus on
robustness and performance. When software
projects fail, a primary reason (for both con-
ventional and iterative processes) is an inap-
propriate emphasis on process rigor.

Over-engineering often occurs early in a soft-
ware project’s life cycle. However, you need ma-
neuverable processes that can easily adapt to de-
velopers’ discoveries and can accommodate a
degree of uncertainty when developers attack
risk items, create prototypes of solutions, and
build early and coarse artifacts. Can you think of
a creative discipline in which more process rigor
is considered beneficial in helping humans think?
Under-engineering, on the other hand, is usually
a problem during the production phase. Exten-
sive change-managed baselines of detailed and
elaborate artifacts need engineering processes
with insightful instrumentation and attention to
detailed consistency and completeness to con-
verge on a quality product.

Another important aspect of a successful
transition is its effect on the team. Process
rigor, details, and premature precision usually
repel good design teams, and loose, fluid, and
coarse results usually offend good production
teams. Project managers must balance the var-
ious teams so that the center of gravity for
technical leadership evolves throughout the life
cycle from the management team in inception,
to the architecture team in elaboration, to the
development team in construction, to the test
and assessment team in transition. The human
aspects of software project management are
underappreciated, and the topic of team dy-
namics deserves more thorough treatment than
most project management courses offer today.

Progress honesty
Many aspects of the classic development

process cause stakeholder relationships to de-
generate into mutual distrust. Trust is essential
to steering and to negotiating a balance among
user needs, product features, and plans. A more
iterative model, with effective communication
between stakeholders (enabled by a sequence of
demonstrable releases), lets developers base
trade-offs on an objective understanding by all
stakeholders. So, customers, users, and contract
monitors can focus on delivering a usable sys-
tem rather than religiously enforcing standards
and contract terms. Also, the development or-
ganization must focus on delivering value in a
profitable manner.

An iterative process requires sequentially
constructing a progressively more complete
system that demonstrates the architecture, en-
ables objective requirements negotiations, val-
idates the technical approach, and resolves key
risks. Ideally, all stakeholders focus on these
milestones as incremental deliveries of useful
functionality, as opposed to speculative paper
descriptions of a final vision. The transition to
a demonstration-driven life cycle results in a
very different project profile. Rather than a
linear progression (often dishonest) of earned
value, a healthy project will exhibit an honest
sequence of progressions and digressions.

Two related observations I’ve made are that,
first of all, a software project that has a consis-
tently increasing earned value profile is certain
to have a pending cataclysmic regression. Sec-
ond, healthy software projects demonstrate a se-
quence of increasing progressions and decreas-
ing digressions as they resolve uncertainties and
converge on an acceptable solution. Ambitious
demonstrations are excellent milestones on a
healthy project’s path. The purpose of early life-
cycle demonstrations is to expose design flaws,
not to put up a facade. Stakeholders shouldn’t
overreact to early mistakes, digressions, or im-
mature designs. If early engineering phases are
overconstrained, development organizations
will set up intermediate checkpoints that are less
ambitious. Early increments will be immature.
External stakeholders such as customers and
users can’t expect initial deliveries to perform up
to final delivery specifications—that is, to be
complete, fully reliable, or have end-target levels
of quality or performance.

Yet development organizations must be held
accountable for, and demonstrate, tangible im-
provements over successive increments. Objec-
tively quantifying changes, fixes, and upgrades
provides honest indicators of progress and qual-
ity. Open and attentive follow-through is neces-
sary to resolve issues. Project performance is
more obvious earlier in the life cycle. With a
steering leadership style, success breeds success.
After posting a sequence of demonstrable re-
sults, you can usually predict the outcome more
accurately. A persistent lack of progress or a
stagnant sequence of results is a sign that a proj-
ect needs to reconsider its resources, scope, or
worthiness. Because the early phases can make
or break a project, a small, highly competent
start-up team should handle the planning and
architecture phases. If these early phases are

4 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Successful
software

development
processes
exhibit a

well-defined
transition from

creative to
production

phases.

done right, projects are successful, with teams of
average competency evolving the applications
into the final product. If the planning and archi-
tecture phases aren’t performed adequately, all
the expert programmers and testers in the world
probably won’t succeed over the course of the
later phases.

Quality control
If you’re successfully managing a project in

the spirit of iterative development, most integra-
tion testing will precede component testing. Al-
though a mixture of both activities occurs
throughout the life cycle, consider initial compo-
nent development and testing to be primarily a
means of exercising a component’s interface and
function in an integrated, system-level thread or
behavior. Once you’ve successfully tested the in-
terface and integrated behaviors, you can test
component completeness. Early integration test-
ing helps resolve architecturally significant issues
early in the life cycle. It also provides an evolving
test bed for continuous assessment of system-
and component-level progress and performance.

A key byproduct of the integration-first ap-
proach is that testing and testers become first-
class citizens in the process. In conventional
approaches, testers create speculative plans,
procedures, and papers that are subordinate to
the analysis and design artifacts. Their jobs
and early lifecycle artifacts are insignificant in-
dicators of project success and tend to attract
the B-players in most organizations (namely,
the folks who didn’t cut it as first-rate analysts
and designers). In healthy iterative projects,
the early-lifecycle demonstrations require sig-
nificant test perspectives and products. Many
test teams are responsible for some of the most
effective “analysis” activities and results. Too
many analysts work solely in abstract model
land with limited constraints to drive their
analysis. But testers must build test cases—
real-world representations of use cases, evalu-
ation criteria, or expected behaviors. They ask
different questions and view the world from a
different perspective because they’re translat-
ing abstract things into testable things.

For example, many projects today are con-
fronted with the make-or-buy decision associ-
ated with commercially available components
and applications. If a project’s first result-ori-
ented milestone is to decide through demon-
stration whether to make or buy, you would
task your teams as follows:

■ The analysis team would work with users to
capture key use cases driving the worst-case
performance conditions, such as the peak
data load or most critical control scenario.

■ The design team would configure a proto-
type capable of exercising the candidate
commercial components.

■ The test team would construct test cases
(for example, a message set, test driver,
smart stub, populated database, and se-
quence of GUI actions) that reflect the key
use cases and can drive the prototype and
capture its response.

In achieving this first milestone, your teams
might concern themselves only with two of the
critical use cases (perhaps 10 percent of the
user need), a few of the key components, and
a few of the critical test cases, but they and the
users will have resolved perhaps 30 percent of
the risk early in the life cycle. By including the
testing perspective as an equal partner early in
the process, you can attract better testers and
thus produce a better analysis, because the
work is more interesting and directly relates to
the project’s success.

Conventional software testing approaches
follow the same document-driven approach
applied to software development. Develop-
ment teams build requirements documents,
top-level design documents, and detailed de-
sign documents before constructing any source
files or executables. Similarly, test teams build
system-test-plan documents, system-test-proce-
dure documents, integration-test-plan docu-
ments, unit-test-plan documents, and unit-test-
procedure documents before building any test
drivers, stubs, or instrumentation. This docu-
ment-driven approach causes the same prob-
lems for the test activities that it does for the
development activities: lots of turd polishing
that ends up as future scrap and rework.

To encourage integration testing earlier in
the life cycle, organize the testing sequence by
iteration rather than by component. Capture it
using a set of use cases and other textually rep-
resented objectives that can be meaningfully
demonstrated to a user, including

■ inception iterations—five to 10 evaluation
criteria capturing the driving issues associ-
ated with the primary use cases that affect
architecture alternatives and the overall
business case.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 4 5

A key
byproduct of

the integration-
first approach
is that testing
and testers

become
first-class
citizens in

the process.

■ elaboration iterations—dozens of evalua-
tion criteria that, when demonstrated
against the candidate architecture, verify a
solid framework for the primary use cases
and show that the critical risks have been
resolved.

■ construction iterations—hundreds of eval-
uation criteria associated with some
meaningful set of use cases that, when
passed, constitute useful subsets of the
product that can be transitioned to alpha
or beta releases.

■ transition iterations—the complete set of
use cases and associated evaluation crite-
ria (perhaps thousands) that constitute the
acceptance test criteria associated with de-
ployment.

An iterative process also uses the same basic
tools, languages, notations, and artifacts for
the products of test activities used for product
development. Testing refers to the explicit eval-
uation by executing some set of components
under a controlled scenario with an expected
and objective outcome. You determine a test’s
success by comparing the expected outcome to
the actual outcome using generally well-
defined metrics of success. Furthermore, tests
can be largely automated and instrumented.

The economic benefits of a
leadership style

Figure 1 provides a project manager’s view
of the improving time-to-value transition
we’re all trying to achieve. This view helps
summarize the results of effectively imple-
menting the steering leadership style. It pres-

ents three project profiles plotted according to
development progress versus time, where
progress is a percentage of executed code. Ex-
ecutable doesn’t imply complete, compliant,
or up to specifications; it implies that the soft-
ware is testable.

The typical sequence for the conventional
engineering project management style is

■ early success via paper designs and thor-
ough (often too thorough) artifacts;

■ commitment to executable code late in the
life cycle;

■ integration nightmares due to unforeseen
implementation issues and interface ambi-
guities;

■ heavy budget and schedule pressure to get
the system working;

■ late shoe-horning of suboptimal fixes,
with no time for redesign; and

■ a fragile, unmaintainable product, deliv-
ered late.

Modern management pushes integration
into the design phase through a progression of
demonstrable releases, which forces the archi-
tecturally significant breakage to happen ear-
lier, so developers can resolve it in the context
of lifecycle goals. This avoids the downstream
integration nightmare, late patches, and malig-
nant software fixes. The result is a more robust
and maintainable product delivered predictably
with a higher probability of economic success.

Conventionally managed projects expend
roughly 40 percent of their total resources in
integration and test activities, with much of
this effort consumed in excessive scrap and re-

4 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Right-sized processes, enterprise
architectures, and integrated environments

Conventional processes, stovepipe architectures,
and proprietary tools and methods

Iterative processes, middleware components,
and mature commercial tools

100%

Project schedule

De
ve

lo
pm

en
t p

ro
gr

es
s

(p
er

ce
nt

 c
od

ed
)

Conventional project profile
Modern project profile
Future project profile

Figure 1. Three project
profiles transitioning
from a plan-and-track
management style
(right) to a steering
leadership style (left).
(A conventional profile
includes conventional
processes, stovepipe
architectures, and
proprietary tools and
methods; a modern
profile includes iterative
processes, middleware
components, and
mature commercial
tools; and a future
profile includes right-
sized processes,
enterprise architectures,
and integrated
environments.)

work. Modern projects with an iterative
process and steering leadership style can de-
liver a product with these activities consuming
about 25 percent of the budget.

From my experience, the conventional pro-
file in figure 1 is still the norm and is charac-
teristic of more than half of today’s projects.
Although most of these projects use the tradi-
tional engineering management approach,
some claim to be using modern iterative devel-
opment. However, without practicing steering
leadership, they fail to deliver the business re-
sults expected. Perhaps one of four projects
delivers the modern profile, while one of eight
manages to operate on the target profile. It’s
from these more fluid profiles and successful
outcomes that I’ve observed consistent usage
of the styles I’ve discussed here.

I s software project management really
more like managing a movie production
than like managing the construction of a

bridge? Probably not, especially in the later
phases of production. But I hope the analogy
provokes you to look at software project
management techniques from a different
frame of reference. These patterns aren’t new.
Developers have practiced them (although in-
frequently) in many organizations and to
varying degrees across a broad set of do-
mains. If you look deeply into the subtle di-
mensions of making the patterns work in
practice, you’ll see that they all deal with the
human and teamwork aspects of manage-
ment, with little science, engineering, or man-
ufacturing bias. Organizations that adopt a
steering style of management are more likely
to achieve economic success—perhaps even a
blockbuster.

References
1. P. Graham, Hackers and Painters: Big Ideas from the

Computer Age, O’Reilly, 2004.
2. Standish Group International, CHAOS Chronicles, 2004.
3. W.E. Royce, Software Project Management: A Unified

Framework, Addison-Wesley Longman, 1998.
4. M. Cantor, Software Leadership, Addison-Wesley, 2002.
5. J. Marasco, The Software Development Edge: Essays

on Managing Successful Projects, Addison-Wesley,
2005.

6. P. Kroll and P. Kruchten, The Rational Unified Process
Made Easy: A Practitioner’s Guide, Addison-Wesley
Longman, 2003.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 5 I E E E S O F T W A R E 4 7

About the Author

Walker Royce is the vice president of IBM’s Worldwide Rational Services Organization.
He has managed large software engineering projects and consulted with a broad spectrum of
software development organizations. He received his BA in physics from the University of Cali-
fornia, Berkeley. He’s the author of Software Project Management: A Unified Framework (Ad-
dison-Wesley Longman, 1998) and a principal contributor to the management philosophy in-
herent in Rational’s Unified Process. Contact him at weroyce@us.ibm.com.

IEEE Distributed Systems Online
brings you peer-reviewed articles, detailed

tutorials, expert-managed topic areas, and diverse
departments covering the latest news and
developments in this fast-growing field.

Log on for free access to such topic areas as

Grid Computing • Middleware
Cluster Computing • Security

Peer-to-Peer • Operating Systems
Web Systems • Parallel Processing

Mobile & Pervasive
and More!

To receive monthly
updates, email

dsonline@computer.org

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE

http://dsonline.computer.org

