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from using models and modeling techniques.
However, for historical reasons, models in
software engineering are infrequent and, even
when used, they often play a secondary role.
Yet, as we shall see, the potential benefits of
using models are significantly greater in soft-
ware than in any other engineering discipline.

Model-driven development methods were
devised to take advantage of this opportunity,
and the accompanying technologies have ma-
tured to the point where they are generally
useful.  A key characteristic of these methods
is their fundamental reliance on automation
and the benefits that it brings. However, as

with all new technologies, MDD’s success re-
lies on carefully introducing it into the existing
technological and social mix. To that end, I
cite several pragmatic criteria—all drawn
from industrial experience with MDD.

The challenge
Software engineering is in the unfortunate

position of being a new and relatively imma-
ture branch of engineering of which much is
expected. Seduced by the relative ease of writ-
ing code—there is no metal to bend or heavy
material to move—and compelled by relentless
market pressures, software users and develop-
ers are demanding systems whose complexities
often exceed our abilities to construct them.

This situation is not without precedent in
the history of technology; similar situations
occurred when the Industrial Revolution in-
troduced new technologies such as steam and
electrical power.1 What seems to be unique,
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however, is how slowly software technologies
have evolved to meet the obvious need for im-
proving product reliability and productivity. 

In particular, since the introduction of third-
generation languages in the late 1950s, the
essence of programming technology has hardly
changed. Although we’ve introduced several
new programming paradigms since then—such
as structured and object-oriented program-
ming—and much work has been done to polish
the details, the level of abstraction of market-
dominant programming languages has re-
mained almost constant. An If or Loop state-
ment in a modern programming language such
as Java or C++ is not that much more potent
than an If or Loop statement in early Fortran.
Even promising mechanisms such as classes and
inheritance, which have potential for producing
higher forms of abstraction, remain underused.
Objects, for example, are relegated to relatively
fine-grained abstractions confined to a single
address space (such as stacks, data structures,
or graphic primitives) consistent with the gran-
ularity and abstraction level of the languages in
which they appear. 

In an industry that prides itself on its rapid
advances, this apparent reluctance to move
forward despite an obvious need might seem
surprising. However, consider the sheer scale
of investment—fiscal and intellectual—in
those early-generation technologies. There are
countless lines of code written in traditional
programming languages that programmers
must maintain and upgrade. This, in turn, cre-
ates a continuous demand for professionals
who are trained in and culturally attuned to
these technologies. Because of their intricate
nature, attaining competency in such pro-
gramming technologies requires significant in-
vestments in time and effort. This, quite un-
derstandably, fosters a conservative mindset in
both individuals and corporations. Unless we
properly account for such factors, no technical
breakthrough is likely to succeed, regardless of
how advanced and promising it might be.

Many practitioners have given up all hope
that significant progress will result from fun-
damental advances in programming technolo-
gies; instead, they are placing their hopes on
process improvements. This partly explains
the current surge of interest in methods such
as Extreme Programming and the Rational
Unified Process.2

Although following a proper process is criti-

cal to any engineering endeavor’s success, it’s
too soon to discount the possibilities that new
programming technologies can achieve. After
all, software development consists primarily of
expressing ideas, which means that our ability
to devise suitable facilities is mostly limited by
our imagination rather than by unyielding phys-
ical laws. Taking advantage of this opportunity
is one of the central ideas behind MDD and one
of the reasons why it represents the first true
generational shift in basic programming tech-
nology since the introduction of compilers. 

I recognize that similar software “revolu-
tions” have been proclaimed many times in
the past but have had little or no fundamental
impact in the end. Is there any reason to ex-
pect otherwise in this case? After all, MDD is
based on the old idea of modeling software—
a technique that has produced more than its
share of skeptics.

The essentials
MDD’s defining characteristic is that soft-

ware development’s primary focus and prod-
ucts are models rather than computer pro-
grams. The major advantage of this is that we
express models using concepts that are much
less bound to the underlying implementation
technology and are much closer to the problem
domain relative to most popular programming
languages. This makes the models easier to
specify, understand, and maintain; in some
cases, it might even be possible for domain ex-
perts rather than computing technology special-
ists to produce systems. It also makes models
less sensitive to the chosen computing technol-
ogy and to evolutionary changes to that tech-
nology (the concept of platform-independent
models is often closely connected to MDD).

Of course, if models end up merely as docu-
mentation, they are of limited value, because
documentation all too easily diverges from re-
ality. Consequently, a key premise behind MDD
is that programs are automatically generated
from their corresponding models.

As noted, however, both software modeling
and automatic code generation have been tried
before, meeting with limited success at best
and mostly in highly specialized domains. But
things have progressed since the early days.
Aside from the fact that we now better under-
stand how to model software, MDD is more
useful today because of two key evolutionary
developments: the necessary automation tech-
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nologies have matured and industry-wide
standards have emerged.

Automation technologies
Automation is by far the most effective

technological means for boosting productivity
and reliability. However, most earlier attempts
at applying automation to software modeling
were limited to “power-assist” roles, such as
diagramming support and skeletal code gener-
ation. These are often not substantive enough
to make a significant difference to productivity.
For example, once the code is generated, the
models are abandoned because, like all soft-
ware documentation, they require scarce and
expensive resources to maintain. This is why
solutions based on so-called round-trip engi-
neering, which automatically converts code
back into model form, are much more useful.
One drawback here, though, is that an auto-
mated conversion from code to model usually
can’t perform the kind of abstraction that a
human can. Therefore, we can attain MDD’s
full benefits only when we fully exploit its po-
tential for automation. This includes

� Automatically generating complete pro-
grams from models (as opposed to just
code skeletons and fragments)

� Automatically verifying models on a com-
puter (for example, by executing them)

Complete code generation simply means
that modeling languages take on the role of
implementation languages, analogous to the
way that third-generation programming lan-
guages displaced assembly languages. With
complete code generation, there is rarely, if
ever, a need to examine or modify the gener-
ated program directly—just as there is rarely a
need to examine or modify the machine code
that a compiler produces.

Automatically verifying models means using
a computer to analyze the model for the pres-
ence of desirable properties and the absence of
undesirable ones. This can take many different
forms, including formal (mathematical) analy-
ses such as performance analysis based on
queuing theory or safety-and-liveness property
checking. Most often, though, it means execut-
ing (simulating) models on a computer as an
empirical approach to verification. In all cases,
it is critical to be able to do this on highly ab-
stract and incomplete models that arise early in

the development cycle, because this is when
software designers make most of the funda-
mental design decisions.

The techniques and tools for doing this suc-
cessfully have now reached a degree of matu-
rity where this is practical even in large-scale
industrial applications. Modern code genera-
tors and related technologies can produce
code whose efficiency is comparable to (and
sometimes better than) hand-crafted code.
Even more importantly, we can seamlessly in-
tegrate such code generators into existing soft-
ware production environments and processes.
This is critical because it minimizes the dis-
ruption that occurs when MDD is deployed.

Standards
The last decade has seen the emergence of

widely supported industry standards, such as
those that the Object Management Group
provides. The OMG is a consortium of soft-
ware vendors and users from industry, govern-
ment, and academia. It recently announced its
Model-Driven Architecture initiative, which
offers a conceptual framework for defining a
set of standards in support of MDD (see
www.omg.org/mda/index.htm). A key MDA
standard is the Unified Modeling Language,
along with several other technologies related
to modeling.3–5 In addition, other formal and
de facto standards, such as various Web stan-
dards (XML, SOAP, and so forth) are also ma-
jor enablers of MDD.

Standardization provides a significant im-
petus for further progress because it codifies
best practices, enables and encourages reuse,
and facilitates interworking between comple-
mentary tools. It also encourages specializa-
tion, which leads to more sophisticated and
more potent tools. 

Still, with all the benefits of automation and
standardization, model-driven methods are only
as good as the models they help us construct. 

The quality of models
Models and modeling have been an essential

part of engineering from antiquity (Vitruvius, a
Roman engineer from the first century B.C., dis-
cusses the effectiveness of models in the world’s
oldest known engineering textbook6). Engineer-
ing models aim to reduce risk by helping us bet-
ter understand both a complex problem and its
potential solutions before undertaking the ex-
pense and effort of a full implementation. In
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contrast, large software projects typically in-
volve great uncertainty about the design’s viabil-
ity until the final implementation phases—
unfortunately, this is when the cost of fixing fun-
damental design flaws is greatest.

To be useful and effective, an engineering
model must possess, to a sufficient degree, the
following five key characteristics. The most
important is abstraction. A model is always a
reduced rendering of the system that it repre-
sents. By removing or hiding detail that is ir-
relevant for a given viewpoint, it lets us un-
derstand the essence more easily. Considering
the steady demand for ever-more sophisticated
functionality from our software systems, ab-
straction is almost the only available means of
coping with the resulting complexity.

The second key characteristic is under-
standability. It isn’t sufficient just to abstract
away detail; we must also present what re-
mains in a form (for example, a notation) that
most directly appeals to our intuition. Under-
standability is a direct function of the expres-
siveness of the modeling form used (expres-
siveness is the capacity to convey a complex
idea with little direct information). A good
model provides a shortcut by reducing the
amount of intellectual effort required for un-
derstanding. One reason why programs are
not particularly expressive, even when based
on languages that support sophisticated ab-
stractions, is that they require too much de-
tailed parsing of text to be properly under-
stood. Classical programming statements
assault the reader with a profusion of syntac-
tical detail assembled according to intricate
lexical rules. The amount of information that
must be absorbed and recognized to under-
stand linear programs is enormous and re-
quires significant intellectual effort. 

The third key characteristic of useful mod-
els is accuracy. A model must provide a true-
to-life representation of the modeled system’s
features of interest.

Fourth is predictiveness. You should be able
to use a model to correctly predict the modeled
system’s interesting but nonobvious properties,
either through experimentation (such as by ex-
ecuting a model on a computer) or through
some type of formal analysis. Clearly, this de-
pends greatly on the model’s accuracy and
modeling form. For instance, a mathematical
model of a bridge is much better at predicting
the maximum allowable load on a bridge than

even a very precise and detailed scale model
constructed out of balsa wood.

Finally, a model must be inexpensive—that
is, it must be significantly cheaper to construct
and analyze than the modeled system.

Probably the main reason why software
modeling techniques had limited success in the
past is that the models often failed to meet one
or more of the criteria just listed. In particular,
the techniques tended to be weak in terms of
accuracy (which also meant that the models
weren’t very useful for prediction). In part,
this is because it wasn’t always clear how the
concepts used to express the models mapped
to the underlying implementation technologies
such as programming language constructs, op-
erating system functions, and so forth. This se-
mantic gap was exacerbated if the modeling
language was not precisely defined, leaving
room for misinterpretation. 

Also, because the models weren’t formally
connected to the actual software, there was no
way of ensuring that the programmers followed
the design decisions captured in a model during
implementation. They would often change de-
sign intent during implementation—thereby in-
validating the model. Unfortunately, because the
mapping between models and code is imprecise
and the code is difficult to comprehend, such di-
gressions would remain undetected and could
easily lead to downstream integration and main-
tenance problems. (Changing design intent isn’t
necessarily a bad thing, but it is bad if the
change goes unobserved.) Given these difficul-
ties, many software practitioners felt that soft-
ware models were untrustworthy, merely adding
useless overhead to their already difficult task.

This rejection of modeling for software is
particularly ironic when you consider that
software is the engineering medium best posi-
tioned to benefit from it. This is because it is
possible to gradually evolve an abstract soft-
ware model into the final product through a
process of incremental refinement, without re-
quiring a change in skills, methods, concepts,
or tools. The advantage of this is self-evident:
there are no risk-laden semantic gaps to over-
come when transferring a design into produc-
tion. Model accuracy is guaranteed because
the model eventually becomes the system that
it was modeling. Furthermore, it is particu-
larly conducive to an incremental iterative de-
velopment style that is optimal when building
complex engineering systems, because there
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are no conceptual discontinuities that preclude
backtracking. This unique property of soft-
ware models is another cornerstone of MDD.

The pragmatics 
Many software practitioners, when first

faced with the notion of MDD, express con-
cern about the technical difficulties involved in
translating models into code. Will the code be
fast enough and compact enough? Will it be a
correct rendering of design intent? These, of
course, are the very same questions that were
asked when compilers were introduced more
than 40 years ago. Although they were valid
questions to ask at the time, it is worth noting
that hardly anyone questions compiler tech-
nology these days because it is quite mature
and extensively proven in practice. 

In fact, experience with MDD in industrial
settings indicates that code efficiency and cor-
rectness, although very important, are not the
top-priority or even the most technically chal-
lenging issues associated with MDD. In fact,
most standard techniques used in compiler
construction can also be applied directly to
model-based automatic code generation.

Model-level observability
Like all compilers, automatic code genera-

tors are idiosyncratic and often generate pro-
gram code that, as a result of various internal
optimizations, is not easily traceable to the
original model. Thus, if an error is detected in
the generated program, finding the place in the
model that must be fixed either at compile time
or runtime might be difficult. In traditional
programming languages, we expect compilers
to report errors in terms of the original source
code and, for runtime errors, we now expect a
similar capability from our debuggers.

The need for such facilities for models is
even greater because the semantic gap between
the modeling language’s high-level abstrac-
tions and the implementation code is wider.
This means that model-level error reporting
and debugging facilities (in essence, “decom-
pilers”) must accompany practical automatic
code generators. Otherwise, the practical diffi-
culties encountered in diagnosing problems
could be significant enough to nullify much of
MDD’s advantage. Programmers faced with
fixing code that they don’t understand will
easily break it and will likely be discouraged
from relying on models in the future.

This is a particularly important factor to
consider for model-driven systems that are
based on the notion of customizable transfor-
mation “templates.” Such templates capture
rules for translating models into correspon-
ding code. By exposing these to developers, it
is possible to streamline the generated code for
specific target environments. This is a highly
appealing and useful capability, but it must be
matched by a similar facility for specifying in-
verse transformations, or model observability
will most certainly be an issue.

Also related to model-level observability are
two other critical facilities: model mergers and
model difference tools. These tools are typically
an integral part of configuration management
systems that help us track different versions of
the same model. Model merging tools merge
two or more possibly overlapping models into
one. In contrast to source-code merging used
for traditional text-based programming lan-
guages, a model-level merge is much more com-
plex because it requires a deeper understanding
of the more complex semantics of the modeling
language. The result must be a well-formed
model. Furthermore, the tools must report any
problems in a form that is meaningful to the
modeler. Model difference tools identify the dif-
ference between two models (usually two dif-
ferent versions of the same model). They too
must work at a semantically meaningful level. 

Model executability
One of the fundamental ways that we learn

is through experimentation—that is, through
model execution (David Harel compares mod-
els that can’t be executed to cars without en-
gines). One important advantage of executable
models is that they provide early direct experi-
ence with the system being designed. (When
learning a new programming language, we are
always inspired by the successful run of our
first trivial “hello world” program. Simple as it
is, that experience raises our confidence level
and gives us a reference point for further explo-
ration.)  The intuition gained through experi-
mentation is the difference between mere for-
mal knowledge and understanding.

A common experimental scenario with exe-
cutable models involves refining some high-
risk aspect of a candidate solution down to a
relatively fine level of detail, while other parts
of the model remain sketchy or even unde-
fined. This means that even incomplete models

S e p t e m b e r / O c t o b e r  2 0 0 3 I E E E  S O F T W A R E 2 3

Experience 
with MDD in
industrial
settings
indicates 
that code

efficiency and
correctness
are not the

primary
challenges 

of MDD. 



should be executable, as long as they are well
formed. It also requires suitable runtime sys-
tem support: the ability to start, stop, and re-
sume a model run at any meaningful point; to
“steer” it in the desired direction by simulating
inputs at appropriate points in space and time;
and to easily attach automated instrumenta-
tion packages to it. Finally, it is also extremely
useful for developers to be able to execute a
model in a simulation environment (for exam-
ple, on a development workstation), on the ac-
tual target platform, or—and this is the most
useful—on some combination of the two.

Efficiency of generated code
As mentioned earlier, one of the first ques-

tions asked about MDD is how the automati-
cally generated code’s efficiency compares to
handcrafted code. This is nothing new; the same
question was asked when compilers were first in-
troduced. The concern is the same as before: hu-
mans are creative and can often optimize their
code through clever tricks in ways that machines
cannot. Yet, it is now common knowledge that
modern optimizing compilers can outperform
most practitioners when it comes to code effi-
ciency. Furthermore, they do it much more reli-
ably (which is another benefit of automation).

We can decompose code efficiency into two
separate areas: performance (throughput) and
memory utilization. Current model-to-code
generation technologies can generate code with
both performance and memory efficiency fac-
tors that are, on average, within 5 to 15 per-
cent (better or worse) of equivalent manually
crafted systems. And, of course, we can only
expect the situation to improve as the technol-
ogy evolves. In other words, for the vast ma-
jority of applications, efficiency is not an issue.

Still, there might be occasional critical cases
where manually crafted code might be neces-
sary in specific parts of the model. Such hot
spots are often used as an excuse to reject MDD
altogether, even when it involves a very small
portion of the complete system—the proverbial
“baby and bathwater” scenario. A useful MDD
system will allow for seamless and overhead-
free embedding of such critical elements.

Scalability
MDD is intended for—and most beneficial

in—large-scale industrial applications. This
sometimes involves hundreds of developers
working on hundreds of different but related

parts of a model, and the tools and methods
must scale up to such situations. 

The important metrics of concern here are
compilation time and system size. We can divide
compilation time into two separate parts: full-
system generation time and the turnaround time
for small incremental changes. Perhaps surpris-
ingly, the latter is much more important because
of its greater impact on productivity. Namely,
small changes are far more frequent during de-
velopment than full-system recompiles. There-
fore, if a small, localized change requires regen-
erating a disproportionately large part of the
code, development can slow to an unacceptable
pace. This is particularly true in the latter phases
of the development cycle, when programmers
make many small changes as they fine-tune the
system. To keep this overhead low, it is crucial
for the code generators to have sophisticated
change impact analysis capabilities that mini-
mize the amount of code regeneration.

We can divide the system generation process
into two phases. First, code generators translate
the model into a program in some programming
language and then compile the program using
standard compilers for that language. After com-
piling the code, they link it to the appropriate li-
braries in the usual way. With modern automatic
code generation technology, the compilation
phase is significantly longer. Typically, compila-
tion is an order of magnitude longer than code
generation. This means that the overhead of au-
tomatic code generation is almost negligible
compared to the usual overhead of compilation.

Regarding size, the largest systems devel-
oped to date using full MDD techniques have
involved hundreds of developers working on
models that translate into several million lines
of standard programming language.

Integration with legacy environments and
systems

A prudent and practical way to introduce
new technology and techniques into an exist-
ing production environment is to apply them
to a smaller-scale project such as a relatively
low-profile extension to some legacy system.
This implies not only that the new software
must work within legacy software but also
that the development process and develop-
ment environment used to produce it must be
integrated into the legacy process and legacy
development environment. 

This is not only a question of mitigating risk
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but also of leveraging previous (usually signifi-
cant) investments into such processes and envi-
ronments. For example, a useful MDD tool
should be able to exploit a range of different
compilers, build utilities, debuggers, code ana-
lyzers, and software versioning control systems
rather than requiring the purchase of new ones.
Furthermore, this type of integration should
work “out of the box” and should generally
not require custom “glue” code and tool ex-
pertise. Fortunately, most legacy development
tools have evolved along similar lines, support-
ing similar usage paradigms so that it is usually
possible to construct MDD tools that can ac-
cess these capabilities in a generic fashion.

Last but not least, an MDD project must be
able to take advantage of legacy code libraries
and other legacy software. These often capture
domain-specific knowledge garnered over
many years and often represent an organiza-
tion’s prime intellectual property. This can be
accomplished either using customizable code
generators or by allowing direct calls to such
utilities from within the model. For example, a
model that uses Java to specify the details of
actions along a statechart transition can sim-
ply make the appropriate Java calls without
any intervening translation or having to go
through a layer interface.

M DD’s success is not predicated only
on resolving obvious technical is-
sues such as defining suitable mod-

eling languages and automatic code genera-
tion. Our experience with these methods in
industrial environments on large-scale soft-
ware projects clearly indicates that solving the
unique pragmatic issues described in this arti-
cle is at least equally, if not more, important.7

Unless the experience of applying MDD is ac-
ceptable from the day-to-day perspective of the
individual practitioner and project manager, it
will be rejected despite its obvious potential for
yielding major productivity and reliability ben-
efits. Fortunately, over the past decade, numer-
ous commercial vendors have developed tools
that address these issues successfully. The time
for MDD has come.
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