
1 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

M odel-driven development is simply the notion
that we can construct a model of a system that
we can then transform into the real thing.

focus
Model-Driven Development

guest editors’ introduction

Stephen J. Mellor, Project Technology

Anthony N. Clark, King’s College London

Takao Futagami, Toyo

By this definition, we are all—right now—
model-driven developers. When we write a
program in Smalltalk, Java, or C#, we don’t
expect it to execute directly. We expect it to be
transformed into the language of some virtual
machine that can cause our model to do its job.

But this is not how many developers think
about “models” today. Too often, they equate
models with simply drawing pictures—
removed from real systems development and
needlessly heavy on process. Before decon-
structing this narrow perception, let’s take a
deeper look at what a model is and isn’t.

What is a model?
A model is a coherent set of formal ele-

ments describing something (for example, a
system, bank, phone, or train) built for some
purpose that is amenable to a particular form
of analysis, such as

� Communication of ideas between people
and machines

� Completeness checking
� Race condition analysis
� Test case generation
� Viability in terms of indicators such as

cost and estimation
� Standards
� Transformation into an implementation

Each model addresses some number of subject
matters. For example, we could build a bank
model, ignoring security and user interface as-
pects, or we could model a combination of
these domains. We choose which subject mat-
ters to include and which to ignore, although
we might then need to weave several models
together. When a model’s subject matter has a
high degree of abstraction, the model is closer
to the eventual user’s language—that is, a
smaller gap exists between a noncomputer ex-
pert and the model.

Additionally, we express a model in a lan-
guage that exists at some (language) abstrac-
tion level. A model written in the C modeling
language will ignore (or “abstract away”) the
realization of function calls and expressions,
leaving CPU-oriented issues such as register al-
location to the compiler or to a virtual ma-
chine interpreter that adds such realizations at
runtime. Similarly, a model expressed in the
Unified Modeling Language will ignore the re-
alization of associations, leaving those deci-

sions to a model compiler or human designer.
Figure 1 illustrates these two dimensions:

the language’s abstraction level and the degree
of abstraction of the subject matter under
study. The subject matter axis has an inverted
scale, which leads to a neat curve with analy-
sis models at the top and design models lower
down. However, we don’t have to migrate in
both dimensions at once, and there are plenty
of reasons why we shouldn’t.

Help or hindrance?
A model need not be complete. Often, a

graphical model excludes code, although it’s
by no means necessary now that UML is a
computationally complete language. More-
over, a model has multiple views, some of
which are revealed. For example, we can ex-
pose individual collaborating state machines
on a statechart diagram, or we can emphasize
their collaborations directly using a sequence
diagram. Clearly, any set of diagrammatic
views must be consistent with the underlying
model of which they are projections. Incom-
pleteness and a high degree of abstraction do
not equate to imprecision. Not all models are
or need to be executable or even formal, but
those that are can benefit from automation.

We use models to increase productivity.

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 1 5

Start with an abstract problem (e.g. a Bank),
with an abstract modeling language (e.g. UML).

End with a concrete statement of the solution
in a low-level concrete language(eg Java)

Language
Abstract Concrete

Abstract

Concrete

Su
bj

ec
t m

at
te

r

Figure 1. A language’s abstraction level and the degree of abstraction
of the subject matter under study. Start with an abstract problem (for
example, a bank) with an abstract modeling language (for example,
the Unified Modeling Language) and end with a concrete statement of
the solution in a low-level concrete language (for example, Java).

It’s cheaper to write one line of Java than to
write 10 lines of assembly language. Simi-
larly, or so the argument goes, it’s cheaper to
build a graphical model in UML, say, than to
write in Java. We pause now to allow the
squirming to abate.

The squirming comes about because others
argue that models offer more hindrance than
help. Some proponents of Extreme processes
argue that a model is often used to mean a
blueprint that acts as an interface between de-
velopers. Moreover, they argue that this inter-
face has flaws:

� The analyst’s concerns are not the pro-
grammer’s—so much so that analysis
blueprints are merely advisory, and likely
bad advice at that.

� The language in which modelers construct
the blueprints is often ill defined and diffi-
cult to translate reliably into code.

� The blueprints are out-of-date before
they’re even finished.

� Modelers often intend these blueprints to
predict the unpredictable—the creative act
of inventing abstractions in code.

These arguments are valid to the extent that
models are transformed by passing through
the developer’s mind. When models are fully
automated—as with executable models (such
as models constructed with a programming
language)—or successively extended by
adding content, these arguments become less
persuasive.

Furthermore, model-driven development
offers the potential for automatic transforma-
tion of high-level abstract application-subject
matter models into running systems. In this is-
sue, Bran Selic (“The Pragmatics of Model-
Driven Software Development”) argues that
modeling technology has matured to the point
where it can offer significant leverage in all as-
pects of software development. He also argues
that, in an increasing number of application
areas, you can generate much of the applica-
tion code directly from models.

Automation doesn’t remove the require-
ment for creativity. Rather, it formalizes exist-
ing solutions and raises the level at which we
can apply creativity, thus giving the developer
more leverage. In turn, we must now ask how
we can produce developers that think at a
level of abstraction above the currently fash-
ionable programming language or technology.

Models and metamodels
To make automation a reality, models must

have a defined meaning, and that’s a loaded
topic itself. A language consists of syntax and

1 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

OMG: The Object Management Group is an international, not-for-profit
industrial consortium that creates and maintains software interoperability
specifications. The OMG’s specifications include the UML modeling nota-
tion, XMI (XML metadata interchange), CORBA (common object request
broker architecture) middleware, and dozens of domain-specific interop-
erability specifications in such areas as transportation, life sciences,
telecommunications, and manufacturing.

UML: The Unified Modeling Language is an industry standard visual lan-
guage for modeling software systems. These models capture knowledge
about a system at various abstraction levels, ranging from requirements
and analysis models to design models. This means that modelers can
specify software systems using higher-level domain-oriented concepts that
abstract away much of the underlying implementation technology used to
realize such systems. UML enables automated tools that interchange and
transform models as part of the process and generate a system’s imple-
mentation artifacts (typically source code and metadata).

MOF: The Meta-Object Facility is OMG’s standard for metadata and
model management and lies at the heart of MDA. It specifies how to de-
fine metamodels (using a UML subset), generate XML schemas for inter-
change, and generate application programming interfaces for manipulat-
ing actual models (for example, UML designs). It is also being extended
to specify services for managing models and their elements such as
identity, life cycle, versioning, views, and—very importantly for MDA—
transformations.

MDA: The Model-Driven Architecture is a set of OMG standards that en-
ables the specification of models and their transformation into other
models and complete systems. MDA separates subject matters so that ap-
plication-oriented models are independently reusable across multiple im-
plementations and vice versa.

PIM: A platform-independent model is a model that contains no reference
to the platforms on which it depends. (MDA classifies the relative rela-
tionship between two models in terms of the platform, the set of technolo-
gies a model assumes to exist.)

PSM: A platform-specific model is the result of weaving a PIM with the
platforms on which it depends.

TLA: Three-letter acronym.

TLAs You Need

semantics. The syntax can be human- or ma-
chine-centric. Semantics define what the syn-
tax means by linking the syntax to a seman-
tic domain, rather like arithmetic expressions
“mean” numbers. Ed Seidewitz’s article—
“What Models Mean”—tackles this tricky
topic by relating the meaning of computer sys-
tem models to how people use models in
mathematics and physics. Conrad Bock, in a
short article, “UML without Pictures,” neatly
highlights the separation of a modeling lan-
guage’s meaning from its syntax, which is im-
portant because developers must base au-
tomation on a definition of the language’s
meaning.

Model-driven development automates the
transformation of models from one form to
another. We express each model, both source
and target, in some language. The target
model’s language, for example, might define a
meaning for remote access of objects, even
though the source model’s language does not.
We must define the two languages somehow,
and because modeling is an appropriate for-
malism to formalize knowledge, we can define
a modeling language’s syntax and semantics
by building a model of the modeling lan-
guage—a so-called metamodel. (The Greek
word meta means “after.”) For example, the
UML standard is written in UML (the UML
metamodel), which raises interesting issues
with respect to the precise definition of a lan-
guage defined in terms of itself. In “Model-
Driven Development: A Metamodeling Foun-
dation,” Colin Atkinson and Thomas Kühne
investigate model-driven development’s tech-
nical foundations and discuss the role of meta-
modeling in a supporting infrastructure.

Mapping functions
The productivity gains accrued by using

models in a defined modeling language pale
against those accrued by defining mappings
between models. Consider the case in which
an expert designer transforms an application
model by applying knowledge of transaction
safety and rollback or squeezes an application
into an embedded system-on-a-chip. When the
inevitable happens and the application is ex-
tended or the underlying technology is en-
hanced, it’s difficult to reuse the expert knowl-
edge, particularly in a consistent way across
an integrated system. Practically, that expert
knowledge is lost; more accurately, that know-

ledge is embedded in code ready for architec-
tural archeology by someone who probably
“wouldn’t have done it that way!”

Model-driven development captures expert
knowledge as mapping functions that trans-
form between one model and another. Execut-
ing those mapping functions transforms one
model into another form. Mapping functions
capture expert knowledge, so designers can
reuse it when an application changes or when
any of the technologies the application de-
pends on change. This effectively decouples
the several models so that each can evolve in-
dependently, which in turn increases the mod-
els’ longevity.

Shane Sendall and Wojtek Kozaczynski
(“Model Transformation: The Heart and Soul
of Model-Driven Software Development”)
give an overview of the issues involved in
model transformation, and Robert France,
Sudipto Ghosh, Eunjee Song, and Dae-Kyoo
Kim (“A Metamodeling Approach to Pattern-
Based Model Refactoring”) neatly illustrate
the concept of capturing expert knowledge by
describing an approach for model refactoring
based on patterns. In “Model Metamorpho-
sis,” Torben Weis, Andreas Ulbrich, and Kurt
Giehs describe a scheme for transforming
models using a graphical modeling language
that veils explicit reference to the metamodels
involved.

Conceptual models express requirements
that we can then address in engineering mod-
els. These models address the requirements
with commitments about how things get done.
Because conceptual and engineering models
address different problem domains, modelers
seldom try to relate one to the other. When the
modeler does make this effort—linking the
conceptual requirement to the engineering
means—interesting things become possible.
Peter Denno, Michelle Potts Steves, Don
Libes, and Edward J. Barkmeyer explore this
issue in “Model-Driven Integration Using Ex-
isting Models.”

Agile MDA
Mapping functions access models ex-

pressed in a modeling language as defined by
its metamodel. We can express all metamodels
using the OMG Meta-Object Facility, which
enables standard definitions for mapping
functions between metamodels. This proposed
standard is called QVT. It provides a standard

S e p t e m b e r / O c t o b e r 2 0 0 3 I E E E S O F T W A R E 1 7

How we
can produce

developers that
think at a level
of abstraction

above the
currently

fashionable
programming
language or
technology?

scheme for querying, viewing, and transform-
ing metamodels represented in OMG MOF.

Successive model transformations provide
a basis for mapping between analysis and de-
sign models that use different metamodels.
However, this raises an issue: Mapping func-
tions are inextricably linked to the metamod-
els that they transform. This could lead—and
some would argue that it already has—to
metamodel “silos” that link vertical domains
(such as telecommunications) to implementa-
tion technologies (such as sophisticated distri-
bution profiles) or Web services to Java-
Beans. This approach results in models that
are not universal, but instead mix the model-
ing language (the metamodel) and the subject
matter at hand. This is a form of architectural
mismatch, a term coined by David Garlan to
refer to components that require tubes and
tubes of glue code to fit together—the very
problem MDA is intended to avoid!

Figure 1 suggests that we can model subject
matters using languages at varying abstraction
levels and can use the same language to model
domains at different abstraction levels. In other
words, it makes sense to model a bank, a secu-
rity subject matter, a user interface, or even an
operating system using the same abstract mod-

eling language. Consequently, mapping func-
tions will always apply to models expressed in
that modeling language, broadening their ap-
plicability and increasing their longevity.

Capturing models at a single (high) level of
language abstraction requires computationally
complete models, which in turn means that we
can execute and then translate them to the tar-
get software platform. We would express these
models using a single executable, translatable
formalism using several subsets of the UML
notation. Each model would state one fact
about its subject matter in just one place, even
though it does not (yet) incorporate other re-
quired domains or the mechanisms actually
required to make the model run in its target
environment.

This is an agile form of model-driven de-
velopment in which each model stands alone,
complete, capable of execution and being wo-
ven together with other models.

A more general expression of the chal-
lenges addressed here is the notion of weav-
ing models together. Each subject matter
model captures a single cross-cutting con-
cern in the system, called an aspect in the
programming world. Vinay Kulkarni and
Sreedhar Reddy, in “Separation of Concerns
in Model-Driven Development,” describe a
system that applies these concepts in a mod-
eling environment.

M odel-driven development is still not
widespread, but the potential is
large. A software development en-

vironment with off-the-shelf models and map-
ping functions changes the way in which we
build systems. Instead of building and rebuild-
ing systems as the application or the techno-
logical infrastructure changes—an expensive
proposal to be sure—we’ll select models, sub-
set or extend them, then weave them together
with other models to build the system.

Model-driven development enables reuse at
the domain level, increases quality as models
are successively improved, reduces costs by us-
ing an automated process, and increases soft-
ware solutions’ longevity. In this way, models
become assets instead of expenses—quite the
business proposition!

1 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

About the Authors

Stephen J. Mellor is vice president and cofounder of Project Technology, a company fo-
cused on tools to execute and translate UML models in the context of Agile MDA. His work fo-
cuses on creating effective engineering approaches to software development. He received a BA
in computer science from the University of Essex, UK. He’s the coauthor of Model-Driven Archi-
tecture Distilled (Addison-Wesley, 2004). He is a member of the IEEE Software Industrial Advi-
sory Board. Contact him at steve@projtech.com; www.projtech.com.

Takao Futagami is a chief consultant at Toyo. His research interests focus on embed-
ded engineering. He received a bachelor’s degree in physics from Tsukuba University. He is a
member of the Information Processing Society of Japan. Contact him at Toyo Corp., 1-1-6
Yaesu, Tokyo, Japan; futagami@sonata.plala.or.jp; www.toyo.co.jp/ss.

Anthony N. Clark is a lecturer in computer science at King’s College London. His re-
search interests include designing and implementing languages for system modeling. He re-
ceived a PhD in computer science from London University. He is a member of the British Com-
puter Society. Contact him at the Dept. of Computer Science, King’s College London, Strand,
London, UK WC2R 2LS; anclark@dcs.kcl.ac.uk; www.dcs.kcl.ac.uk/staff/anclark.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

