
The 4+1 View
Model of
Architecture
PHlLlPPE B. KRUCHTEN, Rational Software

*Th 4+1 ViewMOdel
organizes a description of a
sojiware architecture using Jive
conmwent views, each of which

e all have seen turely partitioning the software or
many-books and-articles in which a
single diagram attempts to capture the
gist of a system architecture. But when
you look carefully at the diagram’s
boxes and arrows, it becomes clear that

”
Architeas capture their design
decision5 in four views and use
t,r,e~fih vim to illustrate and
validate them.

Do the boxes represent running pro-
grams? Chunks of source code?
Physical computers? Or merely logical
groupings of functionality? D o the
arrows represent compilation depen-
dencies? Control flows? Dataflows?
Usually the answer is that they repre-
sent a bit of everything.

Does an architecture need a single
architectural style? Sometimes the
software architecture suffers from sys-
tem designers who go too far, prema-

. . -
overemphasizing one aspect of devel-
opment (like data engineering or run-
time efficiency), development strategy,
or team organization. Other software
architectures fail to address the con-
cerns of all “customers.”

Several authors have noted the
problem of architectural representa-
t ion, including David Garlan and
Mary Shaw,’ Gregory Abowd and
Robert Allen,’ and Paul C1ements.j

The 4 + 1 View Model was devel-
oped to remedy the problem. The 4 +
1 model describes software architec-
ture using five concurrent views. As
Figure 1 shows, each addresses a spe-
cific set of concerns of interest to dif-
ferent stakeholders in the system. + T h e logical view describes the

design’s object model when an object-
oriented design method is used. T o
design an application that is very data-
driven, you can use an alternative
approach to develop some other form
of logical view, such as an enti ty-
relationship diagram.

+ T h e process view describes the
design’s concurrency and synchroniza-
tion aspects.

+ T h e physical view describes the
mapping of the software onto the
hardware and reflects its distributed
aspect.

+ T h e development view describes
the software’s static organization in its
development environment.

Software designers can organize the
description of their architectural deci-
sions around these four views, and
then illustrate them with a few selected
use cases, or scenarios, which constitute
a fifth view. The architecture is partial-
ly evolved from these scenarios.

At Rational, we apply Dewayne
Perry and Alexander Wolfs formula’

Software archi tecture = [Elements ,
Forms, Rationalelconstraints}

independently on each view. For each
view we define the set of elements to

use (components, containers, and con-
nectors), capture the forms and pat-
terns that work, and capture the ratio-
nale and constraints, connecting the
architecture to some of the require-
ments.

Each view is described by what we
call a “blueprint” that uses its own par-
ticular notation. T h e architects can
also pick a certain architectural style for
each view, thus allowing the coexis-
tence of multiple styles in one system.

T h e 4+1 View Model is ra ther
generic: You can use notations and
tools other than those we describe, as
well as other design methods, especial-
ly for the logical and process decom-
positions.

4t1 VIEW MODEL

Software architecture deals with
abstraction, decomposition and com-
position, and style and aesthetics. It
also deals with the design and imple-
mentation of software’s high-level
structure.

Designers build architectures using
several architectural elements in well-
chosen forms. These elements satisfy

Components Connectors

~ tonversation ~

Class - lontainment,
aggregation

Programmers
1 -

End users
functionality software management

Logical i iew - Development i i ew

P **I)-=-

Scenarios
’ *---/ ’

Process i iew - Physital view __- - ...w ”

System integrators System engineers
performante system topology
scalability delivery
throughput installation

telecommunication
-

Figure 1. The 4+1 View Model is
used t o organize the description of the
architecture of a software-intensive
system.

the major functionality and perfor-
mance requirements of the system as
well as other, nonfunctional require-
ments such as reliability, scalability,
portability, and system availability.

logical view. T h e logical view pri-
marily supports the functional require-
ments - the services the system
should provide to its end users.
Designers decompose the system into

Display and
user ioterioce

External interfaces/
gate’woys

Simulation and

services .? - xw-l_l

II _- Translation training

-.

i) Class utility Usage Terminal Connection Flight Air t ro i f ic
rnanogement rnanogement ZZ-J *U9 Y L .*,

--*‘w
---+ Inheritance

formal arquments

Aeronautical
information

--__I I
I Hethanisms I

Class category
Basic

elements
[C] L I

- ~~

Ft’pre 2. (A) Notation for the logical blueprint; (B) logical blueprint for the Tdic PBX; (C) bluepiFintfor an aiiT-trafic
control system.

Best Copy Available

43 --- ~ I E E E S O F T W A R E

a set of key abstractions, taken mainly
from the problem domain. These
abstractions are objects or object classes
that exploit the principles of abstrac-
tion, encapsulation, and inheritance. In
addition to aiding functional analysis,
decomposition identifies mechanisms
and design elements that are common
across the system.

W e use the Rational/Booch
approach’ to represent the logical view
through class diagrams and templates.
A class diagram shows a set of classes
and their logical relationships: associa-
tion, usage, composition, inheritance,
and so on. Designers can group sets of
related classes into class categories. Class
templates focus on each individual class;
they emphasize the main class opera-
tions and identify key object character-
istics. If an object’s internal behavior
must be defined, we use state-transi-
tion diagrams or state charts. Class util-
ities define common mechanisms or
services.

Ahtion. We derived the logical-view
notation in Figure 2a from the Booch
notation, which we simplified consid-

erably to account for only those items
that are architecturally significant. The
numerous adornments are not very
useful at this level of design. We use
Rational Rose to support the logical-
view design.

Style. For the logical view, we use an
object-oriented style. The main design
guideline we follow is to keep a single,
coherent object model across the
entire system, avoiding the premature
specialization of classes and mecha-
nisms for each site or processor.

Examples. Figure 2b shows the main
classes involved in a sample PBX archi-
tecture we developed at Alcatel. A PBX
establishes communication among ter-
minals. A terminal might be a tele-
phone, a trunk line (a line to the cen-
tral ofice), a tie line (a private PBX-to-
PBX line), or a feature phone line.

Different lines are supported by dif-
ferent line-interface cards. T h e
Controller object decodes and injects
all the signals on the line-interface
card, translating card-specific signals to
and from a small, uniform set of

events, such as a “start,” “stop,” or
“digit.” The controller also bears all
the hard real-time constraints. This
class has many subclasses that cater to
different interfaces.

The Terminal object maintains the
state of a terminal and negotiates ser-
vices on behalf of that line. For exam-
ple, i t uses the services of the
Numbering Plan object to interpret
dialing.

The Conversation object represents
a set of terminals engaged in a conver-
sation. It uses the Translation Services
object (for accessing a directory, map-
ping a logical address to a physical one,
and routing) and the Connect ion
Services object to establish a voice path
among the terminals.

Larger systems contain dozens of
architecturally significant classes, such
as the top-level class diagram of an air-
traffic control system‘ in Figure 2c.
T h e system, developed by Hughes
Aircraft of Canada, contains eight class
categories.

Process view. The process view takes
into account some nonfunctional

Component Connectors
__ Unspecified

- ~ - -- Message

P

Process

Terminal process .-

-_I

Controller process 4

(ontroller task
(low rote)

.
(ontroller task

[high role)
“.._I

~ _ _
Figure 3. (A) Notation for the process view; (B) partial process blueprint for the Tdic PBX.

44 Best Copy Available - N O V E M B E R 1 9 9 5

requirements, such as performance and
system availability. It addresses con-
currency and distribution, system
integrity, and fault-tolerance. T h e
process view also specifies which
thread of control executes each opera-
tion of each class identified in the logi-
cal view.

Designers describe the process view
a t several levels of abstraction, each
one addressing a different concern. At
the highest level, the process view can
he seen as a set of independently exe-
cuting logical networks of communi-
cating programs (“processes”) that are
distributed across a set of hardware
resources, which in turn are connected
by a bus or local area network or wide
area network. Multiple logical net-
works may exist simultaneously, shar-
ing the same physical resources. For
example, you can use independent log-
ical networks to separate on- and off-
line operational systems and to repre-
sent the coexistence of simulation or
test versions of the software.

A process is a group of tasks that
form an executable unit. Processes rep-
resent the level a t which the process
view can he tactically controlled (start-
ed, recovered, reconfigured, shut
down, and so on). In addition, process-
es can be replicated to distribute pro-
cessing load or improve system avail-
ability.

fortitioning. T o develop the process
view, designers partition the software
into a set of independent tasks: separate
threads of control that can he individu-
ally scheduled on separate processing
nodes.

We separate tasks into two groups:
+ Mujor tusks are the architectural

elements that can he uniquely
addressed (designated from another
task). They communicate through a
set of well-defined intertask-commu-
nication mechanisms: synchronous
and asynchronous message-based
communication services, remote pro-
cedure calls, event broadcasts, and so
on. Major tasks should no t make
assumptions about their collocation in

the same process or processing node.
+ Mznor tasks are additional tasks

introduced locally for implementation
reasons such as cyclical activities,
buffering, and time-outs. They can he
implemented as Ada tasks or light-
weight threads, for example, and com-
municate by rendezvous or shared
memory.

Exomple. Figure 3 b shows a partial
process view for the PBX introduced
in Figure 2b. All terminals are handled
by a single terminal process that is dri-
ven by messages in its input queues.
T h e Controller objects are executed
on one of three tasks that comprise the
controller process: a low cycle-rate

task, which scans all
inactive terminals (200 TO DEVELOP ms) and puts any termi-

the scan list of the high I THE DESIGNER cvcle-rate task (10 ms),

We -use the process
blueprint to estimate
message flow and THE PROCESS VIEW, nal becoming active in
process loads. It is also
Dossible to imdement

“hollow” process PARTITIONS THE which detects any signif-
view with dummy icant changes of state
Drocess loads and mea- I S O W A R E INTO and Dasses them to the
sure its performance I SEPARATE TASKS mai; controller task,
on a target system.’ ’ which interprets the

lotofion. Our process-view notation is
expanded from Booch’s original nota-
tion for Ada tasking and focuses on
architecturally significant elements, as
Figure 3a shows.

W e have used TRW’s Universal
Network Architecture Services to
build and implement the processes and
tasks (and their redundancies) into net-
works of processes. UNAS contains a
tool - the Software Architects
Lifecycle Environment - that sup-
ports our notation. SALE lets us depict
the process view graphically, including
specifications of the possible intertask-
communication paths. It can then
automatically generate the correspond-
ing Ada or C++ source code. Because it
supports automatic code generation,
SALE makes it easier to change the
process view.

Style. Several styles would fit the
process view. For example, picking
from Garlan and Shaw’s taxonomy,’
you can use pipes and filters or
cliendserver, with variants of multi-
ple-cliendsingle-server and multiple-
clients/multiple-servers. For more
complex systems, you can use a style
similar to the ISIS system’s process
groups, as described by Kenneth
Birman using another notation and
toolset.8

changes and communi-
cates them by message to the corre-
sponding terminal. Message passing
within the controller process is done
through shared memory.

Development view. The development
view focuses on the organization of the
actual software modules in the soft-
ware-development environment. The
software is packaged in small chunks
- program libraries or subsystems -
that can he developed by one or more
developers. The subsystems are orga-
nized in a hierarchy of layers, each
layer providing a narrow and well-
defined interface to the layers above it.

T h e development view takes into
account internal requirements related
to ease of development, software man-
agement, reuse or commonality, and
constraints imposed by the toolset or
the programming language. T h e
development view supports the alloca-
tion of requirements and work to
teams, and supports cost evaluation,
planning, monitor ing of project
progress, and reasoning about software
reuse, portability, and security. It is the
basis for establishing a line of product.

The development view is represent-
ed by module and subsystem diagrams
that show the system’s export and
import relationships. You can describe
the complete development view only

I

I E E E S O F T W A R E 4 5

(ompanents Connec tor

_r Referenre

t

(ompilotian
deDendencv

4
Subsystem

I*"?YL Pa*-

.

Layer

1

Figure 4. Notation for a development
blueprint.

Human computer interfate
Externol systems

ATC functional areas flight manage
ment, sector management, and so on layer 4

Aeronouticol classes
Layer 3 AT(classes

Support methonisms
layer 2 tommunitotion time storage,

resource monogement and so on

toyer 1 Common utilities Bindings
Low~level services

Figure 5. The five layers of Hughes
Air Trafic System.

after you have identified all the soft-
ware elements. However, you can list
the rules that govern the development
view - partitioning, grouping, and
visibility - before you know every ele-
ment.

Notation. As Figure 4 shows, we again
use a variation of the Booch notation,
limited to architecturally significant
items. Rational's Apex development
environment supports the definition
and implementation of the develop-
ment view, the layering strategy
described above, and design-rule
enforcement. Rational Rose can draw
the development blueprints for Ada
and C++ at the module and subsystem
level, in forward engineering, and by
reverse engineering from the develop-
ment source code.

Style. W e recommend you define
four to six layers of subsystems in the
development view. One design rule we
follow here is that a subsystem can
only depend on subsystems in the same
or lower layers. This minimizes the
development of very complex networks
of dependencies between modules in

favor of a simpler, layer-by-layer
release strategy.

Examples. As Figure 5 shows, the
Hughes Air Traffic System has five
development layers.' Layers 1 and 2 -
utilities and support mechanisms -
constitute a domain-independent, dis-
tributed infrastructure that is common
across the line of products. These lay-
ers shield the application from varia-
tions in hardware platforms, operating
systems, or off-the-shelf products such
as database-management systems. T o
this infrastructure, layer 3 adds an air-
traffic control framework to form a
domain-specific software architecture.
Layer 4 adds a palette of functionality,
and layer 5 contains most of the user
interface and the interfaces to external
systems. This top layer is customer-
and product-dependent. Spread across
the five layers are some 72 subsystems,
each containing from 10 to 50 mod-
ules. W e represent these subsystems
on additional, more detailed blue-
prints.

Physical view. T h e physical view
takes into account the system's non-

Components

--* ."*

Processor

~~~- 
Other device 

[AI 

Connectors 

Communication line 

Communitotion (non permanent) 

- + Unidirectional tommunitation 

- High bondwidth tommunitation, 
Bus 

t .  -1 

F F 
primary * - barkup 

4 k % W  *(A%"" 

K K K K 

(61 

7igu.e 6. (A) Notation for a physical blueprint; (B) a PBX physical blueprint. 
~ _ _ _ _ ~ -  

N O V E M B E R  1 9 9 5  4 6  Best Copy Available 
--- 



functional requirements such as system 
availability, reliability (fault-tolerance), 
performance (throughput), and scala- 
bility. The  software executes on a net- 
work of computers (the processing 
nodes). The  various elements identi- 
fied in the logical, process, and devel- 
opment views - networks, processes, 
tasks, and objects - must be mapped 
onto the various nodes. Several differ- 
ent physical configurations will be used 
- some for development and testing, 
others for system deployment a t  vari- 
ous sites or  for different customers. 
T h e  mapping of the software to the 
nodes must therefore be highly flexible 
and have a minimal impact on  the 
source code itself. 

Nototion. Because physical blueprints 
can become very messy in large sys- 
tems, we organize them in several 
forms, with or without the mapping 
from the process view, as Figures 6 and 
J show. 

UNAS provides us with a data-dri- 
ven means of mapping the process 
view onto the physical view. This lets 
us make many changes to the mapping 
without modifymg the source code. 

Figure 6b shows a possible hard- 
ware configuration for a large PBX; 
Figures Ja and 7b show mappings of 
the process view on two different phys- 
ical views, a small and a large PBX. 

Scenarios. W e  use a small subset of 
important scenarios - instances of use 
cases - to show that the elements of 
the four views work together seamless- 
ly. For each scenario, we describe the 
corresponding scripts (sequences of 
interactions between objects and 
between processes) as described by 
Ken Rubin and Adele Goldberg.’ The  
scenarios are in some sense an abstrac- 
tion of the most important require- 
ments. Their design is expressed using 
object-scenario and object-interaction 
diagrams.’ 

This  view is redundant with the 
other ones (hence the “+l”),  but i t  
plays two critical roles: 

+ it acts as a driver to help design- 

F ( 
(entroi Bock-up nodes (onversotion 

protesr 
-”* _q 

’ 
Terminal 
proteir  

t -  _ _  

K T  
Controller 

process 

F b  
Pseudo tentroi 

proters 
* ”- f“-- 

T 

(onversotion 
p r o w  
* 1  - 

T 

Terininol 
process ~ - *  v- 

process 
F1-W - 

F *  
keudo t e r m /  

urotess 
1 

v 

( w e r w t i o n  
proter i  

I ”  

T 

Terminal 
praters 

- 1  

K ’  K ‘  K ’  
Controller (ontroller (ontroller 
proters praters proters 

r = ** L I-” & * u a x l ~  

1 v 1 

(61 l ine tardr tine turds l i ne  to ids 

More K 
processors 

i 

- -  
Figure 7.  (A) A small PBX physical view with process allocation; (B) 
blueprint for-  a larger- PBX; C, F, and K are three types of computers 
differeat capacities and support three different executables. 

ers discover architectural elements 
during the architecture design, and 

+ i t  validates and illustrates the 
architecture design, both on paper and 
as the starting point for the tests of an 
architectural prototype. 

Nototion. T h e  scenario notation is 
very similar to that used for the logical 
view, except that it uses the connectors 
from the process view to  indicate 
object interactions. As for the logical 
view, we manage object-scenario dia- 
grams using Rational Rose. Figure 8 
shows a fragment of a scenario for the 
small PBX. The  corresponding script 
reads: 

1. T h e  controller of Joe’s phone 
detects and validates the transition 
from on-hook to off-hook and sends a 
message to wake the corresponding 
terminal object. 

2 .  T h e  terminal allocates some 
resources and tells the controller to 
emit a dial tone. 

3. T h e  controller receives digits 
and transmits them to the terminal. 

4. The  terminal uses the number- 
ing plan to analyze the digit flow. 

- 
a physical 
that have 

5 .  When a valid sequence of digits 
has been entered, the terminal opens a 
conversation. 

CORRESPONDENCE AMONG VIEWS 

T h e  various views are no t  fully 
independent. Elements of one view are 
connected to elements in other views, 
following certain design rules and 
heuristics. 

From logical view to process view. W e  
identify several important characteris- 
tics of the logical view classes: autono- 
my, persistence, subordination and dis- 
tribution. 

Autonomy identifies whether objects 
are active, passive, or  protected. An 
active object invokes other objects’ 
operations or its own operations, and 
has full control over other  objects 
invoking its operations. Apassive object 
never spontaneously invokes any oper- 
ations, and has no control over other 
objects invoking its operations. A pro- 
tected object never invokes sponta- 
neously any operations but arbitrates 

I E E E  S O F T W A R E  Best Copy Available 
~~ 

47 



( 1 )  off-hook . 
Joe tonlroller . (') 'One - Joe terminol ( 4 )  digi' . Numbering plan 

(3)  digit . 
1 1  ( 5 )  open tonversolion 

7 

tonversotion 

Figure 8. A scenario example fiom a local-call selection phase. ~l ' 
the invocation of its own operations. 

Persistence identifies whether objects 
are transient or permanent. Do they 
survive the failure of a process o r  
processor? Subordination determines if 
the existence o r  persistence of an 
object depends upon another object. 
Diswibution determines if the object's 
state or operations are accessible from 
many nodes in the physical view and 
from several processes in the process 
view. 

In the logical view of the architec- 
ture, we could consider each object as 
active and potentially concurrent; that 
is, behaving in  parallel with other  
objects and paying no more attention 
to the exact degree of concurrency than 
it needs to achieve this effect. Hence 
the logical view takes into account only 
the requirements' functional aspects. 

However, when we define the 
process view, i t  is no t  practical to 
implement each object with its own 
thread of control (such as its own Unix 
process or  Ada task) because of the 
huge overhead this imposes. More  
over, if objects are concurrent, there 
must be some form of arbitration for 
invoking their operations. 

On  the other hand, multiple threads 
of control are needed to 

+ react rapidly to certain classes of 
external stimuli, including time-relat- 
ed events; 

+ take advantage of multiple CPUs 
in a node or multiple nodes in a dis- 
tributed system; 

+ increase CPU utilization by allo- 
cating CPUs to other activities when a 
thread of control is suspended during 
another activity (such as access to some 
external device or access to some other 
active object); 

+ prioritize activities (and thus 
potentially improve responsiveness); 

+ support system scalability (by hav- 

ing additional processes sharing the 
load); 

+ separate concerns between differ- 
ent areas of the software; and 

+ achieve a higher system availabili- 
ty (with backup processes). 

Determining concurrency. W e  use two 
strategies simultaneously to determine 
the "right" amount of concurrency and 
define the set of necessary processes. 
Keeping in mind the set of potential 
physical target views, we can proceed 
either from the inside out or the out- 
side in. 

+ Inside out. Starting from the logi- 
cal view, we define agent tasks that 
multiplex a single thread of control 
across multiple active objects of a given 
class. W e  execute subordinate objects 
on the same agent as their parent. 
Classes that must be executed in mutu- 
al exclusion, or that require a minimal 
amount of processing share a single 
agent. This clustering proceeds until 
we have reduced the processes to a 
small number that still allows distribu- 
tion and use of the physical resources. 

+ Outside in. Starting with the physi- 
cal view, we identify external stimuli 
(requests) to the system, and then 
define client processes to handle the 
stimuli and server processes that pro- 
vide (rather than initiate) services. W e  
use the problem's data integrity and 
serialization constraints to define the 
right set of servers and allocate objects 
to the client and servers agents. W e  
then identify which objects must be 
distributed. 

The  result is a mapping of classes 
(and their objects) onto a set of tasks 
and processes of the process view. 
Typically, there is an agent task for an 
active class, with some variations, such 
as several agents for a given class to 
increase throughput or several classes 

mapped onto a single agent either to 
assure sequential execution or because 
the class operations are infrequently 
invoked. 

Finally, this is not a linear, deter- 
ministic process leading to an optimal 
process view; it requires a few itera- 
tions to reach an acceptable compro- 
mise. There are numerous other ways 
to proceed.','" 

Exumple. T h e  exact method used to 
construct the mapping is complex. 
However, a brief example from a hypo- 
thetical air-traffic control system can 
illustrate it.  Figure 9 shows how a 
small set of classes from the system can 
be mapped onto processes. 

The  flight class is mapped onto a set 
of f l igh t  agents tha t  must  quickly 
process many flights and spread the 
load across multiple CPUs while con- 
tending with large numbers of external 
stimuli. The  persistence and distribu- 
tion aspects of the flight processing are 
deferred to a flight serve?', which is 
duplicated to assure system availability. 
Flight profile or flight clearance is always 
subordinate to a flight, and although 
there are complex classes, they share 
the processes of the flight class. Flights 
are  distributed to several o ther  
processes, notably for display and 
external interfaces. 

A sectorization class establishes a par- 
titioning of airspace to assign con- 
troller jurisdiction over flights. Because 
of its integrity constraints, this class 
must be handled by a single agent, but 
it can share the server process with the 
fl ight,  as updates are  infrequent.  
Locations, airspace, and other static 
aeronautical information are protected 
objects, shared among several classes. 
These are rarely updated and mapped 
on their own server and distributed to 
other processes. 

From logical view to development view. A 
class is usually implemented as a mod- 
ule, and large classes are decomposed 
into multiple packages. Collections of 
closely related classes - class cate- 
gories - are grouped into subsystems. 

Best Copy Available N O V E M B E R  1 9 9 5  48 
~~ ~- 



T o  define subsystems, we must consid- ' 
er additional constraints, such as team 
organization, expected magnitude of 
code (typically 5,000 to 20,000 lines of 
code per subsystem), degree of expect- 
ed reuse and commonality, as well as 
strict layering principles (visibility 
issues), release policy, and configura- 
tion management. Thus,  we usually 
end up with a view that does not have a 
one-to-one correspondence with the 
logical view. 

General issues. The logical and devel- 
opment  views are  very close, bu t  
address very different concerns. W e  
have found that the larger the project, 
the greater the distance between these 
views. This also holds for the process 
and physical views. For example, com- 
paring Figure 2c with Figure 5 ,  there is 
no one-to-one mapping from the class 
categories to the layers. The  External 
InterfaceIGateway category is spread 
across several layers: communications 
protocols are in subsystems in or below 
layer 1, general gateway mechanisms 
are in subsystems in layer 2 ,  and the 
actual specific gateways are in layer 5 
subsystems. 

Processes and process groups are 
mapped onto the available physical 
hardware in various configurations for 
testing o r  deployment.  Birman 
describes some very elaborate schemes 
for this mapping in the ISIS project.x 

In terms of which classes are used, 
scenarios relate mainly to the logical 
view, o r  to the process view when 
interactions between objects involve 
more than one thread of control. 

ITERATIVE PROCESS 

Bernard Wit t  and his colleagues 
describe four phases for architectural 
design - sketching, organizing, speci- 
fylng, and optimizing - and subdivide 
them into 12 steps.IO Although they do 
indicate that some backtracking may 
be needed, we think their approach is 
too linear for ambitious or unprece- 
dented projects, because too little is 

~~ ~ 

f l ighl iertorizotion 

0 .  0 

rleorante profile 

0 '  

rlearoiite 

ioration qirrpote 

i l ighl 

profile 

Sotkup . . 
v 

Mulliple flighl ogentr Flight sewer 
I 

jerlorizolion . 
Single rectorization agent 

lotolion aorkup . 
* 

Aeronouiitai info server 

~~ 
~ 

Figure 9. hfappingfi-om the (A) logical to  the (B) process view. 

known at the end of the phases to vali- 
date the architecture. W e  advocate a 
more iterative development, in which 
the architecture is actually prototyped, 
tested, measured, and analyzed, and 
then refined in subsequent iterations. 

Our  approach not only mitigates 
the risks associated with the architec- 
ture,  i t  also helps build teams and 
improves training, architecture famil- 
iarity, tool acquisition, the initial run- 
in period for procedures and tools, and 
so on. (This holds for evolutionary, 
rather than throwaway prototypes.) An 
iterative approach also helps you refine 
and better understand the require- 
ments. 

Scenario-driven approach. Scenarios 
capture the system's critical functional- 
ity - functions that  are  the most  
important, are used most frequently, 
or present significant technical risk. 

T o  begin, select a few scenarios on 
the basis of risk and criticality. You 
may synthesize a scenario by abstract- 
ing several user requirements. Then  

create a strawman architecture and 
script the scenarios, identifylng major 
abstractions (such as classes, mecha- 
nisms, processes, subsystems)9 and 
decomposing them into sequences of 
pairs (object, operation). 

Next, organize the architectural 
elements into the four views, imple- 
ment  the architecture, test i t ,  and 
measure it. This  analysis helps you 
detect flaws o r  potential enhance- 
ments .  Finally, capture  lessons 
learned. 

Begin the next iteration by reassess- 
ing the risks, extending the scenarios 
to consider, and selecting a few addi- 
tional scenarios on the basis of risk or 
extending architecture coverage. Then 
try to script those scenarios in the pre- 
liminary architecture and discover 
additional architectural elements - or 
significant architectural changes - 
that must occur to accommodate these 
scenarios. Update the four views and 
revise the existing scenarios on the 
basis of these changes. Next, upgrade 
the implementation (the architectural 

I E E E  S O F T W A R E  Best - Copy Available 49 



prototype) to support the new extend- 
ed set of scenarios. 

At this point, you should test the 
architecture by measuring under load 
(in the target environment, if possible) 
and review all five views to detect 
potential simplifications, commonali- 
ties, and opportunities for reuse. Then 
update the design guidelines and ratio- 
nale and capture lessons learned. And 
then loop again. 

Finally, the initial architectural pro- 
totype evolves to become the real sys- 
tem. M e r  two or three iterations, the 
architecture itself should become sta- 
ble, and you should find no new major 
abstractions, subsystems, processes, or 
interfaces. The  rest is in the realm of 
software design - where you can con- 
tinue development using very similar 
methods and process. 

Timetable. The  duration of these iter- 
ations varies considerably, depending 
on the size of the project, the number 
of people involved, and their expertise 
in the domain and the development 
method. It also varies relative to the 

development organization. Hence thl 
iteration may last two to three week 
for a small project (10,000 lines o 
code), or from six to nine months for 
large command-and-control systen 
(700,000 lines of code or larger). 

Tailoring the model. Not all softwar’ 
architectures need every view in thl 
4+1 View Model. Views that are use 
less can be omitted. For example, yo’ 
could eliminate the physical view i 
there  is only one processor o r  t h  
process view if there  is only on’  
process or  program. For very smal 
systems, logical and development view 
are sometimes so similar that they cai 
be described together. T h e  scenario 
are useful in all circumstances. 

Documentation. T h e  documentatioi 
produced during the architectura 
design is captured in two documents: + a software architecture documeni 
organized by the 4+ 1 views, and + a software design guideline, whicl 
captures (among other things) impor 
tant design decisions that must b 

ACKNOWLEDGMENTS 
For their help in shaping or experimenting with the 4+1 View Model I thank my many 

colleagues at Rational, Hughes Aircraft of Canada, CelsiusTech AB, Alcatel, and elsewhere, 
and in particular, Chris Thompson, Alex Bell, Mike Devlin, Grady Booch, Walker Royce, 
Joe Marasco, Rich Reitman, Viktor Ohnjec, Ulf Olson, and Ed Schonberg. 

REFERENCES 
1. 

2 .  

3 .  

4. 

5 .  

D. Garlan and M. Shaw, ‘‘An Introduction to Software Architecrure,”Adz’ance.r in Software 
Engineering and fiiowledge Engineering, Vol. 1, World Scientific Publishing Co., Singapore, 1993. 
G. Ahnwd, R. Allen, and D. Garlan, “Using Style to Understand Descriptions of Software 
Architecture,” ACM Softwaw Eizg. Notes, Dec. 1993, pp. 9-20. 
Paul Clements, “From Domain Model to Architectures,” A. Abd-Allah et al., eds., Forused Workshop 
o n  Softwai-e Architectwe, 1994, pp. 404-420. 
D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture,” ACM Sofinre 
Eng. ,Votes, Oct. 1992, pp. 40.52. 
G. Booch, Ob@-Oriented Analysis and Design with ,4pplications, 2nd. ed., Benjamin-Cummings, 
Redwood City, Calif., 1993. 
P. Kruchten and C. Thompson, “An Object-Oriented, Distributed Architecture for Large Scale Ada 
Systems,” Pnx. TRLAdu ’74, ACM Press, New York, 1994, pp. 262-27 1. 
A. Filarey et al., “Software First: Applying Ada Megaprogramming Technology to Target Platform 
Selection Trades,” h c .  TRI-Ada ’71, ACM Press, New York, 1993. 
K.P. Birman and R. Van Renesse, Reliable Distiibnted Computrng with the Isn Toolkit, IEEE CS Press, 
Los Alamitos, Calif. 1994. 

9. K. Rubin and A. Goldberg, “Object Behavior Analysis,” Comnz. ACAI, Sept. 1902, pp. 48-62. 
10. B. I. Witt, F. T. Baker, and E.W. Merritt, Sojiware Arrhitectiire and Design Pmiciples. .2i[odel.r, mid 

Methods, Van Nostrand Reinholt, New York, 1994. 

6. 

7 .  

8.  

respected to maintain the architectural 
integrity of the system. 

e have used the 4+1 View Model W on several large projects, cus- 
tomizing it and adjusting the termi- 
nology somewhat.5 W e  have found 
that the model actually allows the vari- 
ous stakeholders to  find what they 
need in the software architecture. 
System engineers approach i t  first 
f rom the  physical view, then  the  
process view; end users, customers, 
and data specialists approach it from 
the logical view; and project managers 
and software-configuration staff mem- 
bers approach i t  from the develop- 
ment view. 

Other sets of views have been pro- 
posed and discussed at our company 
and elsewhere, but we have found that 
proposed views can usually be folded 
into one of the four existing views. A 
cost and schedule view, for example, 
folds into the development view, a data 
view into the logical view, and an exe- 
cution view into a combination of the 
process and physical view. 

Philippe Kruchten is a 
senior technical consultant 
at Rational Software, 
where he is in charge of 
the Software Architecture 
Practice area. Kruchten 
has 20 years experience in 
software development. He 
has been associated with 
several large-scale soft- 
ware-intensive projects 

around the world, including the Alcatel2505 and 
Alcatel 2600 private telephone exchanges in Francc, 
the Ship System 2000 command-and-control sys- 
tem in Sweden, and several other projects in avioii- 
ics, defense, transportation, and compilation. Since 
August 1902, he has been the lead software archi- 
tect for the Canadian Automated Air Traffic 
System, developed by Hughes Aircraft of Canada in 
Vancouver. 

Kruchten received an M.Sc. in mechanical engi- 
neering from Ecole Centrale de Lyon, France, and 
a P h D  in information technology from the French 
hlational Institute of Telecommunications, Paris. 
I Ie  is a member of the IEEE Computer Society and 
the ACM. 

Address questions about this article to Kruchten 
at Rational Software Corp., 240-1071 1 Camhie Rd., 
Richmond BC V6X 3GS; pkruchten9rational.com 

~ 

5 0  N O V E M B E R  1 9 9 5  

http://pkruchten9rational.com

