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Abstract

This paper reports the results of a small study of requirements changes to the onboard software of seven spacecraft subsequent to

launch. Only those requirement changes that resulted from operational (i.e., post-launch) anomalies were of interest here, since the

goal was to better understand the relationship between critical anomalies during operations and how safety-critical requirements

evolve. The results of the study were surprising in that anomaly-driven requirements changes during operations were rarely due to

previous requirements having been incorrect. Instead, changes involved new requirements either (1) for the software to handle rare

but high-consequence events or (2) for the software itself to compensate for hardware failures or limitations. The prevalence of new

requirements as a result of post-launch anomalies suggests a need for increased requirements-engineering support of maintenance

activities in these systems. The results also confirm both the difficulty and the benefits of pursuing requirements completeness,

especially in terms of fault tolerance, during development of critical systems.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

This paper reports the results of a study of safety-

critical requirements changes, in response to anomalies

during flight, to the software onboard seven spacecraft.

We distinguish these anomaly-driven requirements

changes from requirement changes resulting from plan-

ned evolution or maintenance in an effort to understand

and, perhaps, reduce their number and attendant risks.

In planned evolution or maintenance there are many
requirement changes to the onboard software on a

spacecraft after launch. The lifetime of a spacecraft is

usually measured in years, and scheduled updates must

maintain the software as the spacecraft proceeds

through the phases of its mission. For example, new

software tailored to the next phase will often be up-
linked to a spacecraft�s computers prior to each navi-

gational maneuver, orbital insertion around a planet,

sequence of scientific data-gathering, etc.

In this study, however, it was not these anticipated

requirements changes due to scheduled maintenance that

were of interest. Instead, the goal was to better under-

stand the relationship between anomalies during opera-

tions and the evolution of safety-critical requirements.
We thus focus on a very small but essential and high-risk

(because urgent and unplanned) subset of the total set of

requirements changes to the spacecraft software. Soft-

ware requirements such as these that are essential to the

accomplishment of the spacecraft�s mission are defined

as safety-critical in this domain. The objects of study

were thus the unanticipated requirements changes

prompted by critical, operational anomalies.
The rest of the paper is organized as follows. Section

2 describes the approach. Section 3 presents and dis-

cusses the results. Section 4 places these results in

the context of related work in both requirements
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engineering and maintenance. Section 5 provides a

summary and some concluding remarks.

2. Approach

The data for the analysis of critical, unanticipated

requirements changes were drawn from an institutional

database of anomaly reports. Data were analyzed from

seven spacecraft: the Galileo mission to Jupiter, laun-

ched October, 1989; Mars Global Surveyor, a mapping

mission launched in November, 1996; Cassini/Huygens,

launched in October, 1997, to explore Saturn and Titan;

Deep Space 1, a technology demonstration mission (of
ion propulsion and remote agent technologies, among

others) launched in October, 1998; Mars Climate Or-

biter, launched December, 1998, and lost at Mars; Mars

Polar Lander, launched January, 1999, to study the

Martian surface and dig for water ice, lost during

landing; and Stardust, a spacecraft that will return

cometary material to Earth, launched in February, 1999.

The reporting mechanism for the operational anom-
aly data is an on-line form called an incident/surprise/

anomaly report (ISA). An ISA consists of three parts.

The first part is filled in at the time of the occurrence by

the operator. The second part is filled in by the analyst

assigned to investigate the occurrence. The third part is

filled in later with a description of the corrective action

that was taken to close out the incident. Additional in-

formation regarding criticality, priority, time and date,
subsystem, etc., can also be entered into the available

fields.

It is worth noting that an ISA is not a defect report.

An ISA is written whenever the behavior of the system

differs from the expected (i.e., required) behavior in the

eyes of the operator. Thus, the ISA provides valuable

information to the requirements engineer because it

tends to capture gaps between the requirements as
specified and implemented and the, perhaps different,

user�s expectations.
The ISA also provides a means of documenting near-

misses, i.e., failures that almost occurred but were pre-

vented by some fortuitous circumstance (e.g., fault

monitoring, contingency commands, a change of mode,

etc.). In some cases the near-miss prompts a change to

the flight software requirements. For example, in this
study six ISAs described incidents in which an in-flight

anomaly triggered a contingency (safe) mode or fault-

protection response. In these cases a new software re-

quirement resulted from analysis of the incident in order

to preclude such an anomaly in the future.

3. Results and analysis

The data set analyzed consisted of 189 ISAs in the

highest criticality level from the seven spacecraft listed

above. The criticality level had been assigned by each

project based on standard classifications (JPL, 1997).

Since there were slight differences in the processes of the

seven projects regarding which fields of the anomaly

reports were used, we studied the anomaly reports that

met one of the following three criteria in order to assure
that we provided coverage of all critical ISAs: Red flag

or Potential red flag¼ on (indicates high mission risk if

the event were to recur; significant or catastrophic risk;

and uncertain fix); criticality ¼ 1 (the highest category,

indicating an unacceptable risk with no work around);

or criticality ¼ 2 and priority ¼ 1 and failure effectP 2

(the high priority is assigned by the correcting agency

indicating a ‘‘must-fix’’ situation; the failure effect of the
anomaly is significant or catastrophic) Anomalies

meeting one or more of these criteria were studied and

are together included under the shorthand term ‘‘critical

ISAs’’ in this paper.

The results reported here are part of a larger project

to use analyses based on orthogonal defect classification

(ODC) (Chillarege et al., 1992) to characterize post-

launch safety-critical software anomalies. The ODC-
based approach has allowed detection of a surprising

number of high-criticality anomalies resolved by chan-

ges to flight software requirements (the ‘‘target’’ in ODC

terms) during operations.

Table 1 summarizes the results. 44 of the 189 critical

ISAs had flight software as their target, i.e., the anomaly

prompted a change to the flight software. (The other 145

ISAs produced changes to procedures, ground software,
documentation, etc., outside the scope of this paper.) 15

of the 44 ISAs resulted in updates only to the code but

not to design or requirements (e.g., bias or filter updates,

adjustment of a timeout parameter, erroneous re-

initialization to ‘‘on’’ rather than ‘‘off’’). Nine of the

remaining anomalies that had flight software as their

target had fixes to design logic as the corrective action,

but had no effect on requirements. Of the remaining
ISAs, two were maintenance problems (incorrect soft-

ware patches); one recorded an occasion on which an

existing contingency software command, previously

created just in case an overpressure emergency should

Table 1

Summary of flight software changes due to safety-critical operational

anomalies

Change Number

New requirement 11

Design logic fix 9

Code fix 15

Maintenance (previous patch fixed) 2

Contingency command 1

Fix not implemented 1

Unclassified 5

Total: Changes to flight software 44

156 R.R. Lutz, I.C. Mikulski / The Journal of Systems and Software 65 (2003) 155–161



ever occur, needed to be sent to the spacecraft to close a

leaking valve; one fix was not implemented due to cost

and schedule tradeoffs; and five anomalies were not

classified due to currently incomplete information.

The discussion that follows focuses on the remaining

eleven of the 44 high-criticality, flight software ISAs,
since each of these involved new software requirements

for the flight software.

3.1. New requirements for rare events

Post-launch critical anomalies were resolved by new

requirements to handle rare or anomalous events in se-

ven cases. In the first of these, an unusual code path (due
to an unanticipated combination of circumstances)

caused unexpected behavior. In another, an unforeseen

scenario led to the use of obsolete data in a particular

case. In another case, an inappropriate software request

for data just as it became unavailable resulted in loss of

timing and mode synchronization among software

components. In three other critical anomalies, a rare

scenario led to an overflow. For example, in one of these
cases, a contingency situation (failure of both redundant

units) caused an overflow of the message queue and a

warm boot.

In another anomaly, safety-critical post-launch re-

quirements changes were initiated due to a rare envi-

ronmental event-namely the unexpected outflow of some

debris that interfered with the spacecraft�s ability to

determine its position in space. The new software re-
quirements were to make the spacecraft more fault-

tolerant to that type of temporary ‘‘loss of vision’’ in the

future. In each of these seven cases, the anomaly was

considered to contribute risk to the mission, and a

critical software change was made to add robustness

against future occurrences.

These results confirm the importance of rare events in

critical failures. As Hecht noted in his 1993 paper, ‘‘the
inability to handle multiple rare conditions, such as re-

sponse to hardware failures or exception conditions

caused by the computer state, is a prominent cause of

program failure in well-tested systems’’ (Hecht, 1993).

Hecht further noted, ‘‘Rare events were clearly the

leading cause of failures among the most severe failure

categories.’’ The results described here suggest a close,

causal relationship between critical anomalies post-
launch that are due to rare events and the evolution of

the flight-software requirements to protect the systems

against such occurrences in the future.

3.2. New requirements to compensate for hardware

Critical requirements changes were driven by changes

to the hardware in four cases. In one case, for example, a
hardware failure prompted on-board fault-protection

software to turn off the hardware component. Sub-

sequent analysis revealed the ‘‘what-if’’ scenario that the

other two, redundant components might fail in worse

condition (unlikely, but credible). In that case, the on-

board software would need to turn on the ‘‘least-failed’’

component that had been previously turned off. A new

software requirement to facilitate this switching was
established in response to the failure scenario arising

from the initial hardware failure.

In another case, a new capability was added to the

flight software in response to a damaged solar array

panel that could not deploy as planned. In a third case, a

new software requirement resulted from the discovery of

unexpected angular rates around an axis whenever a

thruster was fired. Similarly, when proximity to an an-
tenna caused noise in some transducers, resulting in

inaccurate readings and unnecessary re-setting of com-

ponents, the anomaly was resolved by a new flight

software requirement to compensate for the noise.

One issue of interest in these cases is that the trigger

for software change was hardware failure. This is con-

trary to the underlying assumption of some defect

models that what breaks is what gets fixed. It is very
typical, however, of complex, heavily embedded software

on the spacecraft, in which, as hardware degrades, the

software requirements evolve to close the gap (Fig. 1).

Perhaps the best-known example of this is the re-

programming of one of the Galileo spacecraft�s com-

puters with clever, new compression algorithms to

minimize scientific data loss when Galileo�s large an-

tenna failed to deploy.
More recently, when the spacecraft Deep Space 1 lost

a critical sensor, the software onboard was changed to

compensate for the hardware failure. The failure of the

Deep Space 1 star tracker in November, 1999, jeopar-

dized the planned encounter of the spacecraft with a

comet. The star tracker determines the spacecraft�s ori-
entation in space and, without it, the spacecraft is in

Fig. 1. Software requirements change to compensate for hardware

failure.
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some sense blind. In order to compensate for the hard-

ware failure, software was radioed to re-program the on-

board camera to serve as a replacement for the star

tracker. The project manager called the updated soft-

ware ‘‘very complex and innovative’’ and labeled the

change a ‘‘rescue’’ (JPL News Release, 2000). Although
none of the requirements changes in this study ap-

proached the scope of the Galileo or Deep Space soft-

ware changes, the possibility of having to rebuild

remotely a significant amount of the software empha-

sizes the need for requirements engineering support

during the post-launch maintenance phase.

3.3. Consequences for the requirements process

The profile of critical anomalies found during oper-

ations on these three spacecraft was compared with

earlier work by one of the authors on critical anomalies

during integration and system testing of flight software.

The previous work was on two different, but fairly

similar spacecraft (Voyager and Galileo), roughly com-

parable in function and complexity to the spacecraft in
this study. It was found in the earlier study that, during

the testing phase, most of the critical anomalies involved

requirements or interfaces (Lutz, 1993).

The small number of critical requirements-related

anomalies found post-launch in the current study, and

the fact that all the requirements-related anomalies

yielded new requirements (rather than corrected re-

quirements) suggest that the testing process is doing a
good job of removing requirements-related defects. The

extensive integration and system testing of troublesome

components may also provide some explanation for a

recent finding by Fenton and Ohlsson (2000) of what

they call ‘‘strong evidence of a counter-intuitive rela-

tionship’’, i.e., that modules that are the most fault-

prone pre-release are the least fault-prone post-release.

It may be that modules identified as fault-prone during
spacecraft system testing––especially if the fault affects

requirements––are (appropriately) subjected to more

thorough testing.

An interesting question regarding the 145 critical

ISAs that did not produce changes to flight software is

whether a mechanism similar to the use of flight soft-

ware to compensate for hardware problems occurs,

whereby changes to ground (as opposed to flight)
components are compensating for problems in flight

software. That is, how many of the ISAs involved

problems with the flight software that were remedied by

changing the more readily modified components of the

system such as ground software or procedures?

Investigation revealed that, in fact, only six of the

ISAs met this criteria, and that only one of the ISAs in-

volved a change to ground software requirements. Of the

six ISAs that involved flight software problems but not

flight software fixes, four of the six resulted in changes to

prevent the recurrence of the problem. Of these, one in-

volved modification to the ground software (to add a

pause), one resulted in an update to documentation (re-

garding an unanticipated side effect of a software com-
mand), and two led to changes in operational procedures

(to preclude recurrences of the scenarios).

The other two of the six ISAs described modifications

to recover from future recurrences of the problem. These

included updating the procedure to recover from

radiation-induced bit errors and adding a procedure to

automatically recover pending commands lost if the

software crashed.
None of these six ISAs involved flight software re-

quirements, in the sense that none of these scenarios

would, if identified during requirements analysis, have

changed the flight software requirements. Thus, it ap-

pears that changes to ground software, procedures, and

documentation are not masking changes to flight soft-

ware requirements.

As far as the long-term goal of the research in which
this study is embedded, i.e., to further reduce the num-

ber of safety-critical anomalies post-launch, the results

are somewhat negative. It is difficult to see how the re-

quirements engineering process during development can

be readily adjusted so as to preclude the post-launch

requirements changes.

To the extent that improvement is possible, these

results emphasize the benefit of thorough hazard anal-
ysis and fault-scenario explorations, and of extensive

contingency planning during requirements analysis.

Even when a possible requirement has not been imple-

mented, documented contingency studies can facilitate

accurate requirements evolution when it becomes nec-

essary during operations. The fact that seven of the

eleven critical post-launch requirements changes were in

response to rare events indicates that the cost/benefit
tradeoff of such hazard analyses makes them practical

for such critical systems.

In summary,

• Bad things did happen due to incomplete require-

ments, i.e., incomplete requirements were not ‘‘good

enough’’ for these critical systems. The benefit of

working toward complete requirements was clear.
• The missing requirements were ‘‘hard’’, i.e., they in-

volved subtle, rare, or unexpected circumstances or

scenarios. The difficulty and cost of achieving the

level of requirements understanding needed to fore-

stall such anomalies were high.

• What broke was not always what got fixed, i.e., new

software requirements compensated for hardware

failures or evolving limitations.
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4. Related work

Most work in requirements evolution focuses on the

pre-implementation phases of a system. For example,

Anton and Potts (1998) describe the use of goals and

obstacle analysis to refine evolving requirements. Zo-
wghi et al. (1997) provide a logical framework for rea-

soning about requirements evolution, also within the

requirements analysis phase of development. An open

issue worth exploring is to what extent these techniques

are also useful for analyzing the consequences of re-

quirements evolution during operations.

Requirements evolution post-deployment has been

studied primarily from the viewpoint of how it can be
managed. deLemos (2000) provides a model of an op-

erational system in which requirements evolution (in this

case, automating the self-destruct feature of a rocket)

can be structured so that the components remain un-

changed while their interactions adapt to the changed

requirements. In our study, the requirements changes

were low-level and functional rather than architectural,

so primarily involved the components themselves.
Lam and Loomes (1998), with experience in product

line evolution, discuss management of requirements

evolution after installation with particular attention to

the impact on stakeholder viewpoints. The requirements

changes that they describe are much more open to ne-

gotiation than are the safety-critical requirements

changes we saw in this study. However, their emphasis

on modeling evolution as a series of distinct changes,
and on developing a ‘‘richer notion of traceability’’ fit

well with the analytical process involved in making

anomaly-driven requirements changes on the spacecraft.

Leveson (1995) emphasized the difficulty of produc-

ing and maintaining high-reliability operational soft-

ware. She noted that even though the Space Shuttle had

one of the most sophisticated software development

processes in existence, with extensive resources devoted
to maintenance and verification, software errors at the

highest level of severity had been discovered in its re-

leased software.

Fickas and Feather (1995) provide a possible direc-

tion for actually reducing the unpredictability of some

of the anomaly-induced requirements changes. They

describe requirements monitoring for dynamic envi-

ronments. It may be necessary in such domains for the
system to evolve, e.g., as assumptions underlying the

requirements change. An open question is to what ex-

tent it might be possible, via monitoring, to anticipate

some of the rare events or hardware failures that trig-

gered the critical requirements changes on the space-

craft.

As distinct from requirements-engineering ap-

proaches, maintenance methodologies tend to focus on

classifying and managing requirements changes, rather

than on analyzing or anticipating the changes. Fig. 2

summarizes the gap that appears to exist between re-

quirements-engineering-based analysis of requirements

evolution and maintenance-based studies of require-

ments evolution.

Harker et al. (1992) classify evolving requirements as

Mutable (in response to the environment), Emergent (in
response to a fuller understanding of possible scenarios

and their consequences), Consequential (post-delivery

pressures for enhancements), Adaptive (allowing local

customization), and Migration requirements (support-

ing gradual movement to the new system). At least in the

spacecraft domain, the categories can sometimes over-

lap. Some anomaly-induced requirements changes can

accurately be described as both Mutable (in response to
changes in the environment or hardware) and Emergent

(in response to a better understanding of the possible

failure scenarios).

Bennett and Rajlich (2000) note in their recent

roadmap paper that software evolution lacks a standard

definition. They use the term ‘‘Maintenance’’ to refer to

general post-delivery activities, and divide the Mainte-

nance phase into five sequential stages: Initial develop-
ment, Evolution, Servicing, Phase out, and Close down.

The goal of the software evolution stage is ‘‘to adapt the

application to the ever-changing user requirement and

operating environment. The evolution stage also cor-

rects the faults in the application and responds to both

developer and user learning, where more accurate re-

quirements are based on the past experience with the

application.’’
The spacecraft post-launch requirement changes also

here correspond to several phases. Clearly, the on-board

software fits the software phase called ‘‘Evolution.’’ It

also, to some extent, fits the subsequent phase of soft-

ware maturity, called ‘‘Servicing.’’ The Servicing phase

Fig. 2. Continuous evolution of requirements vs. discontinuity in

methodologies.
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is characterized by the danger of loss of key personnel

and information (typical of lengthy spacecraft missions),

as well as by a planned commitment (also typical of

spacecraft missions) to keep requirement changes small

in scope.

Part of the difficulty in using the maintenance litera-
ture to understand the critical spacecraft requirements

changes is that the domain of concern in the mainte-

nance literature is often the business environment (e.g.,

handling the clamor of competing users) rather than

safety or mission-critical physical environments. One

exception is the recent work by Tai et al. (2000) to re-

duce the risk of maintenance in critical systems and

support the evolvability of spaceborne computing sys-
tems post-launch.

5. Conclusion

The results suggest that, for critical systems, effort

spent on requirements analysis, especially of failure

scenarios, rare events, and contingency planning for
how software can compensate for hardware failures, is

merited. Incomplete requirements did, in fact, cause

anomalies to occur. The bad news was that these missing

requirements were hard––that is, they involved subtle,

rare, or unexpected circumstances or combinations of

events. One of the lessons learned from the study of

requirements changes during operations was that new

software requirements were often needed to make the
deployed software more robust against unanticipated

scenarios. To a limited extent, requirements evolution in

response to these causes may be able to be anticipated,

and we have indicated some promising directions in

current research toward this goal.

Another lesson learned was that requirements evo-

lution post-launch was driven in part by a dependence

on software to compensate for evolving hardware limi-
tations. Contrary to common defect analysis assump-

tions, in these cases what broke (the hardware) was not

what got fixed (the software). This mechanism appears

to be more common than expected in systems where the

hardware is difficult to replace. For example, implan-

table medical devices also use safety-critical software

evolution to compensate for hardware anomalies. We

saw, as well, that existing maintenance models do not
incorporate the requirements-engineering techniques

that might help in analyzing and anticipating possible

requirements evolution.
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