
1 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
his is the last Design column that will ap-
pear in IEEE Software under my editor-
ship. I’m passing the reins over to Re-
becca Wirfs-Brock (www.wirfs-brock.
com), whose writing has helped me ever
since I started in this business. So, as I say

goodbye, this seems like a logical time to reflect
on what’s appeared in this column over the past
five years. Let’s see if I can tie all the articles to-
gether into a coherent story.

Design principles
A useful way to talk about design is to iden-

tify principles that lead to well-designed systems.
My first column (“Avoiding
Repetition”) discussed proba-
bly my favorite design principle.
(Throughout, I include each
column’s title in parentheses;
see the sidebar for authors and
issue.) This principle is rela-
tively easy to understand, yet
applying it in a determined ef-
fort to remove duplication in
code often leads to effective de-

signs. Ideally, all principles should be like
this—simple to express yet complex in their
consequences.

Unfortunately, it’s hard to find and capture
good design principles. One topic I always in-
tended to cover was orthogonality—ensuring
that different things are kept separate, or that
each part of a system has a single and clear set
of responsibilities. Although this is a good prin-
ciple, I find it hard to apply. How do you de-
cide how big the bounds of a cohesive module
should be? What exactly is a single set of re-
sponsibilities? Fortunately, sometimes a general
principle such as this can spawn more concrete
principles that are easier to apply (and easier to

write about). A good example of this is sepa-
rating user interface code from other system
parts (“Separating User Interface Code”).

Modules and interfaces
A central design idea is to break a system

into modules that hide complex implementa-
tions behind clear interfaces. A good way to
make these divisions is to view each piece as a
protected variation (“The Importance of Being
Closed”), identifying system areas that change
and then hiding that variation behind an un-
changing interface. To give these modules good
interfaces, you need to make the interface easy
for other programmers to use (“The Most Im-
portant Design Guideline?”). This idea of vari-
ations behind interfaces is the essence of en-
capsulation, which goes far beyond just hiding
data—although it’s important to have good
data access routines when you need them
(“Data Access Routines”).

Interfaces are handled differently depending
on what they’re separating. Object-oriented sys-
tems are well known for decomposing systems
into small objects with interfaces, but we must
treat these kinds of interfaces differently from
those that are exposed across a network or
shared between teams. Not all interfaces are
clearly recognized by languages or design nota-
tions—I’ve long argued that the difference be-
tween published and public interfaces (“Public
versus Published Interfaces”) is extremely im-
portant. As you produce these larger-grained
systems, you also need to worry about how the
components will interact (“Components and the
World of Chaos”) as well as how to assemble
them without coupling them during construc-
tion (“Module Assembly”). Large components
often figure most in design discussions, but don’t
forget that you can gain a lot by defining smaller

The State of Design
Martin Fowler

N o v e m b e r / D e c e m b e r 2 0 0 5 I E E E S O F T W A R E 1 3

DESIGN

objects that simplify the larger structures
(“When to Make a Type”).

Interfaces help separate modules in a
program’s text, but increasingly we find
value in separating modules by time as
well. Most developers are used to syn-
chronous behavior, where a caller waits
for a return before continuing. How-
ever, many systems, like baristas, gain
by thinking asynchronously (“Your
Coffee Shop Doesn’t Use Two-Phase
Commit”).

Fitting into the development
process

A significant issue in software design
is determining where design fits in the
overall software process. Is design a de-
velopment phase that should be (mostly)
done before programming, or should we
intermingle it with programming? I’ve
made little secret of my preference for the
latter—with the implication that design is
a continuous process (“Continuous De-
sign”). Thinking about design in this way
has its own challenges and rewards,
which haven’t been sufficiently explored.
Fortunately, the agile meme’s prolifera-
tion has opened up this discussion.

If you agree that design and program-
ming are intertwined, then the program
you write has a special value—it also acts
as vital design documentation. As a re-
sult, many programming issues related to
writing code are also design decisions.
I’ve always emphasized writing clear
code that’s easy to understand, which has
led me to value explicit code (“To Be Ex-
plicit”). I often hesitate to use a mecha-
nism that doesn’t make clear what it’s do-
ing. Explicitness is also valuable at
runtime, which is why I favor loud and
rapid failures in response to errors (“Fail
Fast”). In either case, design approaches
are closely tied to our programming lan-
guages—language constructs often affect
design decisions (“How .NET’s Custom
Attributes Affect Design”).

However, explicitness in code has its
limits. System behavior sometimes
comes with enough variation that ex-
plicit code gets too repetitive. When
principles of explicitness and of avoid-
ing repetition start clashing, I prefer to
avoid repetition. That’s when metadata
techniques come into their own (“Using

Metadata”), using reflection or code
generation. We can use this kind of
metadata approach for such things as
decision tables and simple spreadsheets
(“Design to Accommodate Change”),
which can combine ease of change with
a greater visibility to domain experts
who aren’t professional programmers.

Another design consequence related
to agile methods is an emphasis on test-

ing. Agile methods view testing as part
of design, not an afterthought. Test-dri-
ven development (“Aim, Fire”) has been
very popular in the circles I inhabit. It’s a
powerful design aid because it forces you
to think about interfaces before imple-
mentation. Of course, it also helps peo-
ple develop good regression tests, which

Five Years of Design
Following is a list of all the Design columns, which you can download from

http://martinfowler.com/articles.html#id109573 or www.computer.org/software.

2001
“Avoiding Repetition” by Martin Fowler, Jan./Feb.
“Separating User Interface Code” by Martin Fowler, Mar./Apr.
“The Importance of Being Closed” by Craig Larman, May/June
“Reducing Coupling” by Martin Fowler, July/Aug.
“Aim, Fire” by Kent Beck, Sept./Oct.
“To Be Explicit” by Martin Fowler, Nov./Dec.

2002
“Modeling with a Sense of Purpose” by John Daniels, Jan./Feb.
“Public versus Published Interfaces” by Martin Fowler, Mar./Apr.
“Yet Another Optimization Article” by Martin Fowler, May/June
“How .NET’s Custom Attributes Affect Design” by James Newkirk and

Alexei Vorontsov, Sept./Oct.
“Using Metadata” by Martin Fowler, Nov./Dec.

2003
“When to Make a Type” by Martin Fowler, Jan./Feb.
“Patterns” by Martin Fowler, Mar./Apr.
“Components and the World of Chaos” by Rebecca Parsons, May/June
“The Difference between Marketecture and Tarchitecture” by Luke Hohmann,

July/Aug.
“Who Needs an Architect?” by Martin Fowler, Sept./Oct.
“Data Access Routines” by Martin Fowler, Nov./Dec.

2004
“Continuous Design” by Jim Shore, Jan./Feb.
“Module Assembly” by Martin Fowler, Mar./Apr.
“MDA: Revenge of the Modelers or UML Utopia?” by Dave Thomas, May/June
“The Most Important Design Guideline?” by Scott Meyers, July/Aug.
“Fail Fast” by Jim Shore, Sept/Oct.
“Before Clarity” by Michael Feathers, Nov./Dec.

2005
“Your Coffee Shop Doesn’t Use Two-Phase Commit” by Gregor Hohpe, Mar./Apr.
“Design to Accommodate Change“ by Dave Thomas, May/June
“The Test Bus Imperative: Architectures that Support Automated Acceptance Testing”

by Robert C. Martin, July/Aug.
“Enterprise Architects Join the Team” by Rebecca Parsons, Sept./Oct.
“State of Design” by Martin Fowler, Nov./Dec.

Continued on p. 16

1 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

REQUIREMENTS

DESIGN

Just because artifacts are linked
doesn’t mean that a change will prop-
agate. Engineering judgment is nec-
essary for determining which im-
pact-tree branches can be pruned or
where you must add new branches
because new artifacts are required.
Traceability rationale can help you
determine the precise nature of change
propagation.

4. Define change. Traverse the impact
tree, working out the precise details
of the changes at each point. A con-
figuration management tool can
help you do this.

5. Apply change. When the changes
are ready, apply them to the system
in all affected layers.

At each stage, you’ll gather more
precise information about the nature of
the change, including cost. A go/no-go
decision point can follow each stage.

W hatever development scale I en-
gage in, I systematically apply in-
formation traceability. It’s a vehi-

cle for thinking about the way the
software meets its requirements; it cap-
tures design rationale to help others

understand and review; and it gives me
far greater confidence in managing fu-
ture changes.

Reference
1. E. Hull, K. Jackson, and J. Dick, Require-

ments Engineering, 2nd ed., Springer, 2004.

Jeremy Dick is a principal analyst at Telelogic UK. Contact
him at jeremy.dick@telelogic.com.

are essential when evolving the design. In-
deed, many view testability as a vital de-
sign property, particularly with older sys-
tems (“Before Clarity”), leading to design
architectures that make the systems more
testable (“The Test Bus Imperative”).

Designers are people too
Design involves people, so in addi-

tion to considering how design fits into
a process, you also have to think about
how it fits with an organization’s peo-
ple. A common question is, What’s the
difference between architecture and de-
sign?—which raises the question of
what an architect’s role is (“Who
Needs an Architect?”). People often
view architects as holding a separate,
directing role. However, I strongly be-
lieve that technical leaders should
work closely with the developers on a
team, a principle that also applies to
enterprise-wide architects (“Enterprise
Architects Join the Team”).

This issue of design leadership goes
further. Architecture can be about the
technical software structure as well as
about how the software faces its users—
leading to questions that many technical
architects don’t consider as frequently as
they should (“The Difference between
Marketecture and Tarchitecture”).

Representing design
For a large part of my career, people

have talked about representing design
in terms of notations, particularly
graphical notations that try to tell you
important things about a program’s
structure. As someone who has written
books on one of these, I understand
both the capabilities and limitations of
graphical notations. A common prob-
lem with using these notations is that

people use them to represent different
kinds of perspectives—even for a single
system. Think of three primary pur-
poses for these models: conceptual,
specification, and implementation
(“Modeling with a Sense of Purpose”).
I’ve come to the conclusion that mod-
els are useful for certain tasks, such as
class structure or visualizing dependen-
cies (“Reducing Coupling”). However,
I don’t see them as absorbing the future
of software development (“MDA: Re-
venge of the Modelers or UML
Utopia?”).

Few of these design principles and
discussions are new. It’s long been
known that you should avoid prema-
ture optimization (“Yet Another Opti-
mization Article”), yet constantly we
see people doing just that. This is why
I spend so much energy simply trying
to find good design techniques that
have worked well in the past and trying
to explain them to others so they’ll use
them in the future (“Patterns”).

S o there it is—five years of writing
compressed into a single column. I
hope that my various authors and I

have given you a few useful ideas along
the way, and I’m pretty certain that Re-
becca will find a lot of good material and
be an excellent steward of this column. I
will, of course, continue to write on my
Web site (http://martinfowler.com), and I
hope to continue finding useful ideas to
write about.

Submit to RE’06!

14th IEEE International
Requirements Engineering
Conference

Minneapolis/St. Paul, MN, USA
September 11-15, 2006
http://www.re06.org

Details and submission instructions are provided on
the conference web pages.

Submission dates
Paper abstracts due
Papers due (all categories)
Tutorial / workshop / panel proposals
Doctoral symposium submissions
Posters and research demos

General Chair Program Chair
Robyn Lutz Martin Glinz
Iowa State University and University of Zurich
Jet Propulsion Lab, USA Switzerland

Feb 6, 2006
Feb 13, 2006
Mar 6, 2006
May 2, 2006
May 2, 2006

Continued from p. 13

