
1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

focus
Software Design
in a Postmodern Era

O
ver the last 30 years, software design has made tremendous
progress. But this progress hasn’t been continuous: it proceeded
by jumps and leaps, with some plateaus in between. For example,
after the plateau of structured methods and functional decompo-

editor’s introduction

Philippe Kruchten, University of British Columbia

sition, object-oriented design approaches sur-
faced, then bounced and leaped through the
late ’80s and early ’90s. It has now reached a
plateau. It’s gradually become mainstream,
codified, and partly standardized in the form
of UML.

Reaching a plateau isn’t at all negative; it’s a
necessary step for every discipline to have time
to integrate good practice, to reflect, and to pro-
duce a critique that will launch further progress.
Any bold advance needs some time to mature—
to “cross the chasm,” as Geoffrey Moore elo-
quently described, to get a critical mass of prac-
titioners across our industry beyond the eager
early-adopter stage.1 Techniques, practices, and
methods must be taught in schools and must be
supported by tools. They must prove their value
beyond any reasonable doubt and sometimes
even be enshrined in some industry standard. All
this takes time and effort—hence, the value of
having these plateaus.

Over time, as we developed larger and more
complex systems, we realized that software de-
sign has several nested levels, from the module
or class level up to the system or enterprise ar-
chitecture level. It was exactly 10 years ago
that IEEE Software had its first special issue
on software architecture,2 then still described
as an “emerging discipline” by Mary Shaw and
David Garlan.3 Software architecture also
seems to have reached a plateau today, while
its concepts and techniques continue to perco-
late in our software processes.

Postmodern programming
Perhaps we’ve reached another, more fun-

damental plateau, wittily called the era of
“postmodern programming” by James Noble
and Robert Biddle.4 Computer science hasn’t
achieved the grand narrative that explains it
all, the big picture—we haven’t found the fun-
damental laws of software that would play the
role that the fundamental laws of physics play
for other engineering disciplines. We still live
with the bitter aftertaste of the Internet bubble
burst and the Y2K doomsday. So, in this post-
modern era, where it seems that everything
matters a bit yet not much really matters,
what are the next directions for software de-
sign? Where will be the next plateau?

We should ask ourselves two questions re-
garding software design: Where are we? And
where do we want to go from here? And maybe
even, what exactly is software design?

Where are we?
Answering “Where are we?” was one of the

intentions of the Guide to the Software Engi-
neering Body of Knowledge project. SWEBOK

took a broad and shallow perspective to answer
this for design. In this issue of IEEE Software,
Javier Garzás and Mario Piattini go narrower
and deeper on the topic of design knowledge.
They show how we can systematically harvest
and organize our collective knowledge, experi-
ence, and wisdom—variously captured in de-
sign principles and heuristics, patterns, best
practices, and bad smells—into a coherent
whole. To do this, they offer us an ontology for
microarchitectural design knowledge.

In another article in this issue, six pioneers
of the concept of software architecture and ar-
chitectural reviews share some 17 years of ex-
perience and practice in more than 800 projects
in their four companies. Clearly, the practice of
architectural review has matured and proven its
benefits.

Where do we go from here?
Noble and Biddle see “scrap-heap software

development” ahead of us.4 But this seems very
ad hoc, and limited to small software develop-
ment efforts. We need a better, grander vision
for software design. The process of designing
software must be made to fit better with the
surrounding engineering processes, both up-
stream and downstream. Our processes are not
seamless. Upstream, there’s still a wide gap be-
tween users’ needs and the way we express re-
quirements on one hand, and our designs and
the way we design on the other. The Standish
Group reports make this clear: the primary
cause of failure in our software endeavors is
our inability to deal correctly with users and
their changing needs.5,6 We try to alleviate this
with various means—XP’s onsite customer, for
example. Downstream, we still struggle to an-
alyze our designs, to demonstrate that they’re
correct and that they fulfill the requirements.
And finally, there’s still a gap between our de-
signs and the code that the programmer fills
manually. All these gaps have become nar-
rower in the last 15 years, but they’re still a
major obstacle to our industry consistently
producing great software products.

Aspect-oriented software development might
be one way to reduce the gaps, both upstream
and downstream. Upstream, AOSD provides a
more natural way to express some of the non-

M a r c h / A p r i l 2 0 0 5 I E E E S O F T W A R E 1 7

Reaching
a plateau is
a necessary

step for
a discipline

to have time to
integrate good

practices.

functional requirements. At the same time,
downstream, it weaves the appropriate code
more or less automatically, reducing the need
for programmers to translate (typically an er-
ror-prone and tedious process). We’re plan-
ning a special issue of IEEE Software on
AOSD for early next year (see the call for ar-
ticles in this issue on page 95).

Model-driven development resolutely at-
tempts to reduce the gap downstream. It aims
to give software designers the means to ex-
press a large spectrum of semantics in their de-
signs at the model level rather than at the code
level, and then to provide automated ways to
produce a compliant program. In their article
in this issue, Guy Caplat and Jean-Louis Sour-
rouille introduce us to the concept of model
mapping: how we translate concepts and enti-
ties from one model to another—in particular,
from a platform-independent model to a plat-
form-specific one. While the jury is still out on
the best way to produce domain-specific lan-
guages, these authors are strong advocates for
using language extensions (as opposed to lan-
guage modifications).

Do we have our noses too close to our blue-
prints? Many researchers and practitioners want
to shift our focus from design elements (classes,
subsystems, interfaces, and so on) to the de-
sign decision itself. This more central concept
would become a first-class citizen in the process
of designing software-intensive systems and, in
particular, architectural decisions. Jeff Tyree
and Art Ackerman offer a convincing problem
analysis of existing architectural approaches
that fail to treat design decisions as first-class
entities. The authors recognize the importance
of decision making in the architecting process,
which is critical to system development and
maintenance, and they argue that we can make
decisions systematically and document them
in a useful way. Managing design decisions

might be the key to end-to-end traceability—
the solution to capturing design rationale, an-
alyzing the impact of projected changes, or
harvesting reusable know-how when simply
reusing the code isn’t feasible.

The boundaries of software design
If we are to further narrow the gaps be-

tween requirements engineering (upstream)
and programming (downstream), we might
ask, What are the boundaries of software de-
sign? In my article in this issue, I suggest that
we are designing even when we don’t call it
that. In other words, when we elicit and cap-
ture requirements and when we program and
test, we’re making decisions about the system
under construction: this is doing design. Soft-
ware design is therefore a wider concept than
we usually think. To convince you, I cast our
concept of software development in a more
general framework of engineering design, the
Function-Behavior-Structure framework devel-
oped by architect John Gero.

W ith a more integrated and more en-
compassing process, software de-
sign isn’t dead in our postmodern

era. Although the silver bullet is still elusive,
we’re making clear progress in both establish-
ing foundations with our current knowledge
and exploring new avenues. The other engi-
neering disciplines haven’t found a silver bul-
let, either.

References
1. G. Moore and R. McKenna, Crossing the Chasm: Mar-

keting and Selling Technology Products to Mainstream
Customers, Harper Business, 1991.

2. IEEE Software, special issue on software architecture,
vol. 12, no. 6, 1995.

3. M. Shaw and D. Garlan, Software Architecture: Per-
spectives on an Emerging Discipline, Prentice Hall,
1996.

4. J. Noble and R. Biddle, Notes on Postmodern Program-
ming, tech. report CS-TR-02/9, School of Mathematical
and Computing Sciences, Victoria Univ., New Zealand,
2002.

5. The Chaos Report, Standish Group, 1995.

6. Extreme Chaos, Standish Group, 2001.

1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Philippe Kruchten is a professor of
software engineering at the University of British
Columbia. (His full biography appears on p. 58.)
Contact him at kruchten@ieee.org.

About the Author

