
0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

software engineering glossary
E d i t o r : R i c h a r d H . T h a y e r ■ C a l i f o r n i a S t a t e U n i v . , S a c r a m e n t o ■ t h a y e r @ c s u s . e d u

Te c h n i c a l R e v i e w e r : M e r l i n D o r f m a n ■ C i s c o S y s t e m s ■ d o r f m a n @ c o m p u t e r . o r g

design constraint: Any requirement that
affects or constrains the design of a
software system or software system
component (for example, physical re-
quirements, performance requirements,
software development standards, soft-
ware quality assurance standards).
[ANSI/IEEE Std 610.12-1990]

design entity: A part of a design that is
structurally, functionally, or otherwise
distinct from other elements or that
plays a different role relative to other
design entities. Each design entity is
separately named and referenced. Also
called design element.

design fault: A design (specification,
coding) fault that results from a hu-
man error during system design and
that might result in a design failure.

design inspection: A static analysis tech-
nique that relies on visual examination
of development products to detect er-
rors, standards violations, and other
problems. Similar to design walk-
throughs. [IEEE Std 610.12-1990]

design language: A standardized nota-
tion, modeling technique, or other
representation scheme and its usage
conventions, shown to be effective in
representing and communicating de-
sign information.

design level: The design decomposition
of the software item (for example, sys-
tem, subsystem, program, or module).
[IEEE Std 610.12-1990]

design methodology: A systematic ap-
proach to creating a design consisting
of the ordered application of a specific
collection of tools, techniques, and
guidelines.

design pattern: A description of the
problem and the essence of its solution
to enable the solution to be reused in

different settings; not a detailed speci-
fication, but a description of accumu-
lated wisdom and experience.

design phase: The period of time in the
software life cycle during which defin-
itions for architecture, software com-
ponents, interfaces, and data are cre-
ated, documented, and verified to
satisfy requirements.

design strategies: An overall plan and di-
rection for performing design (for ex-
ample, functional decomposition).

design view: A subset of design entity at-
tributes that are specifically suited to the
needs of a particular participant or
stakeholder. [IEEE Std 610.12-1990]

design-to-cost: An approach to managing
a system/software project so as to hold
the project to a predetermined cost.
Actual and projected costs are closely
tracked, and actions such as deleting
or postponing lower-priority require-
ments are taken if costs threaten to ex-
ceed targets. Also called cost as an in-
dependent variable (CAIV).

detailed design: 1. The process of refining
and expanding software architectural
designs to more detailed descriptions of
the processing logic, data structures,
and data definitions. This continues
until the design is sufficiently complete
to be implemented. 2. The result of the
detailed design process. Also called de-
sign, low-level design, module design,
program design. [ANSI/IEEE Std
610.12-1990]

detailed design description: A document
that describes the exact detailed con-
figuration of a computer program. It
identifies the input, output, control
logic, algorithms, and data structure
of each individual low-level compo-
nent of the software product and is

the primary product of the detailed
design phase. Also called detailed de-
sign specification.

detailed design phase: The software de-
velopment lifecycle phase during
which the detailed design process
takes place, using the software system
design and software architecture from
the previous phase (architectural de-
sign) to produce the detailed logic for
each unit such that it is ready for cod-
ing. Also called detailed design stage.

detailed design review: A milestone re-
view to determine the acceptability of
the detailed software design (as de-
picted in the detailed design descrip-
tion) to satisfy the requirements of the
software requirements document.

formal design: The process of using a
formal method for software design.

framework: A partially completed soft-
ware subsystem that can be extended
by appropriately instantiating some
specific plug-ins.

function-oriented design: The partition-
ing of a design into subsystems and
modules, with each one handling one
or more functions. Contrast with ob-
ject-oriented design, data-structure-
oriented design.

interface design document (IDD): A
description of the architecture and
design of interfaces between system
and components. These descriptions
include control algorithms, proto-
cols, data contents and formats, and
performance.

Jackson Structured Design Method
(JSD): A structured software develop-
ment methodology for the analysis
and design of both data-processing
and real-time systems developed by
Michael Jackson Systems.

Software Design, Part 2

