
Lessons from 342 Medical Device Failures

Dolores R. Wallace and D. Richard Kuhn
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

dwallace@nist.gov, kuhn@nist.gov

Abstract

Most complex systems today contain software, and systems
failures activated by software faults can provide lessons for
software development practices and software quality
assurance. This paper presents an analysis of software-
related failures of medical devices that caused no death or
injury but led to recalls by the manufacturers. The analysis
categorizes the failures by their symptoms and faults, and
discusses methods of preventing and detecting faults in
each category. The nature of the faults provides lessons
about the value of generally accepted quality practices for
prevention and detection methods applied prior to system
release. It also provides some insight into the need for
formal requirements specification and for improved testing
of complex hardware-software systems.

1. Introduction

Henry Petroski devotes an entire book to failures in
engineering and lessons to be learned [1]. In his preface, he
states "the concept of failure - mechanical and structural
failure in the context of this discussion - is central to
understanding engineering, for engineering design has as its
first and foremost objective the obviation of failure." He
further states "the lessons learned from … disasters can do
more to advance engineering knowledge than all the
successful machines and structures in the world."

We take license in extending Petroski's views from
mechanical and structural engineering into the domain of
software system failures. Lessons learned can either affirm
proposed software engineering principles or help define
new ones. Several industries, including
telecommunications, space, business, and defense, were
early drivers of computer technology. Within these
industries, more and more systems are controlled by, or
dependent on, software today than in the early years. We
find a great need to examine software-based failures from
many domains to gain insight about possible common
causes of failures and the means to prevent them in the next

system or, at the very least, to detect them before the
system is released. The purpose is to reduce costs by
finding and detecting problems before systems are recalled
from multiple users. Loss of revenue from the customer
and additional costs for fixing a faulty system after release
can become exorbitant.

We focus our current study on medical devices that have
been recalled by the manufacturers due to computer
software problems. Any findings may well apply to other
application domains. Like most industries, the health care
industry depends on computer technology to perform many
of its functions, ranging from financial management and
patient information to patient treatment. The use of
software in some kinds of medical devices has become
widespread only in the last two decades or so. Their
developers had limited software experience and had to
develop the expertise for avoiding preventable problems1

The Federal Food Drug & Cosmetic Act defines a medical
device as:

"an instrument, apparatus, implement, machine,
contrivance, implant, in vitro, reagent, or other
similar or related article, including a component
part, or accessory which is:

• recognized in the official Formulary, or the
United States Pharmacopoeia, or any
supplement to them,

• intended for use in the diagnosis of disease or
other conditions, or in the cure, mitigation,
treatment, or prevention of disease, in man,
or other animals, or

• intended to affect the structure or any
function of the body of man or other animals,
and which does not achieve any of its
primary intended purposes through chemical
action within or on the body of man or other
animals and which is not dependent upon

1 From the lecture by Lynn Elliott, "When Safe Patients Means
Dependable Software," in the Lecture Series on High Integrity Systems,
U.S. National Institute Standards and Technology, October 1995.

being metabolized for the achievement of any
of its primary intended purposes."

The problems cited in this study were found in medical
devices recalled by their manufacturers either in final
testing, installation, or actual use from 1983 to 1997. It is
important to note that there were no deaths or serious
injuries caused by these failures, nor was there sufficient
information to guess at potential consequences had the
systems remained in service.

Using the FDA database of medical device failures, we
have examined the symptoms that indicated there were
problems, identified the software faults that may have
caused the problems, provided some generic guidance, and
assessed what could have been done to prevent or detect the
classes of faults. Section 2 contains a characterization of
the system failure data, while Section 3 provides an analysis
of the software faults. Section 4 contains a synopsis of the
lessons learned with Section 5 providing conclusions about
this study and recommendations for additional work.

2. Characterization of the Data

A medical device may be as simple as a tongue depressor,
but this paper is concerned only with those containing
software. The study includes only those devices in the
categories of anesthesiology, cardiology, diagnostics,
radiology, general hospital use, and surgery. Examples of
these devices are insulin pumps, cardiac monitors,
ultrasound imaging systems, chemistry analyzers,
pacemakers, electrosurgical devices, and anesthesia gas
machines. The following highly simplified description is
provided only to enable understanding of the classes
selected for observed symptoms of malfunctions. A device
is a system providing a service, involving one or more
components. Some components may contain computer
software, executing functions that produce an output either
to the next function within a component or to another
component of the system (e.g., a display device). The
system behaves according to the values or messages it
receives from the functions’ output. An alarm may sound
and / or the device may cease operation. A dosage rate or
volume may change. Equipment may move. Measurements
of various specimens or human reactions may be taken, and
data may be recorded and associated with a patient's name.
The failures have been observed as a response of the
physical system and usually not as an obvious software
fault.

2.1 General features of the recall data

The FDA recall data consists of the recall number, the
product name, a problem description, and a cause
description. The code for the recall number yields the year

of the recall and the general type of device. To protect the
privacy of the manufacturers, we do not publish either the
recall number or the product name. Our purpose is to
understand the types of software problems and to abstract
generic guidance about preventing and detecting the
software faults before systems are released. Over time,
manufacturers may have improved their software
development processes and eliminated many factors
contributing to these failures. Learning from recalls
reinforces the need for software quality practices and
provides specific guidance on how to prevent and detect
faults.

For the Fiscal Years 1983-1991, there were 2,792 quality
problems that resulted in recalls of medical devices,
including devices that do not contain software. Of those,
165, or 6%, were related to computer software. While the
second group of data from 1992-1997 is not quite complete,
the results are within the same ranges. We base our study
on only the software recalls. The total number of software
recalls from 1983-1997 is 383. The years 1994, 1995,
1996 have 11%, 10%, and 9% of the software recalls. One
possibility for this higher percentage in later years may be
the rapid increase of software in medical devices. The
amount of software in general consumer products is
doubling every two to three years [2].

10%

21%

19%10%

7%

30%

3%

Anesthesiology -10%
Cardiology - 21%
Diagnostic - 19%
General Hospital -10%
Other - 7%
Radiology - 30%
Surgery - 3%

Figure 2.1 Failure distribution by device panel

The medical devices can be grouped into classification
panels according to the primary function of the medical
device. The medical devices fit into 7 panels:
anesthesiology, cardiology, general hospital , diagnostic,
radiology, general & plastic surgery, or other. Diagnostic
includes chemistry, hematology, immunology,
microbiology, pathology, and toxicology. The label “other”
includes anything else such as obstetrics & gynecology or
ophthalmology for which there were not enough recalls to

be grouped into their own panels. The distribution of recalls
by classification panel is shown in Figure 2.1. The pie
wedges match the legend going clockwise, starting with
anesthesiology, near the top, at 10%.

Some systems are more difficult to develop than earlier
similar devices, such as in radiology where ultrasound and
tomography are highly complex. The added complexity in
algorithms and system interactions may have affected the
failure rates for radiology.

2.2 Observed behavior signifying recall

The problem and cause descriptions contain information on
which we base our analysis. They provide observations
about the system or a feature as shown in the following
examples:
• An alarm failed to sound.
• Dosages were too fast, too slow or were stopped

inconsistent with the data on the display unit.
• Display unit values were inconsistent with other

visual outputs of the device, for example, name of
patient on screen not correct.

• The system simply stopped.
• The device performed in a manner completely

unplanned, when several conditions occurred
simultaneously.

• Data were lost or corrupted.
• A calculation or other function was missing, or an

instruction was omitted from the user manual.

For each recall, we reduced the problem description to a
symptom of the failure (e.g., behavior–alarm did not sound;
output – incorrect relationship with display). We next
reduced the list to only the key attribute and one
description, such as behavior alarm and ended with thirteen
primary symptoms shown in Figure 2.2. The pie wedges
match the legend going clockwise, starting with behavior,
near the top, at 22%.

Definitions for the thirteen primary symptoms are the
following:
• Behavior: the system performs an action due to some

output of some function. The action is a physical
action, e.g., movement of the gantry.

• Data: a consequence to the data, usually corruption or
loss of input data.

• Display: the visual display on a screen –numbers, text,
or images in various formats.

• Function: usually a single calculation or activity; a
software function in one module.

• General: not enough information to assign to a
category.

• Input: the initial input (typed, sampled, read off
equipment, database, file or tape, etc.) on which some
operation is performed.

• Output : result of some function; generally an output to
be used by the next function.

• Quality: user observations stated that “quality
requirement was not met".

• Response: something has happened that should not,
e.g., power emitted above allowed amount; manifested
in some hardware function.

• Service: an identifiable system service involving
multiple functions such as pumping, ventilating, giving
medication; generally involves more than one
component (module, subsystem).

• System: the total system.
• Timing : timing of the instrument or a service of the

device
• User instruction: manual, or other descriptions for the

operator/ user

22%

1%

8%

29%0%

4%

19%

1% 1%

10%

3%

1%

1%

Behavior -22%

Data - 1%

Display - 8%

Function -29%

General - 0%

Input -4%

Output - 19%

Quality -1%

Response -
3%
Service -10%

System -1%

Timing -1%

User instruct -
1%

Figure 2.2 Distribution of 383 failures by symptom

3. Analyses of the Data

While the observed symptoms provide some insight about
the nature of the failures of the medical devices, the
vendors' determination of the software fault is important
information. In many cases, the vendors did not provide this
information. We were limited in determining the fault by
the problem and description data; there was no mechanism
for getting any further details. We want to understand the
nature and reason for occurrence of the software fault and
to develop lessons regarding software quality practice. We

selected the final fault class terminology from several
published taxonomies and reasoned how the various
problems best fit, based on the problem and description as
provided in the FDA database. We had no access to the
manufacturers or to any other data. From this limited
information, we could discern the fault type for only 342
failures. Only these 342 failures are discussed in the rest of
this study.

3.1 Fault distributions

In many cases there could have been 2 or 3 fault types
contributing to a failure. Often study of the symptom
revealed the generic nature of the fault. For example, the
observed behavior may indicate that two or more events
had occurred at their boundary values simultaneously,
resulting in an incorrect or unexpected response. Possibly,
the developers had not specified in the requirements that
these events could occur, or the logic of the design failed to
account for these simultaneous events, or the code logic
was incorrect. If the first situation had been true, then the
problem would have been classified as a requirements
problem (e.g., omission, ambiguity, conditions not
considered). While recognizing the value of better
specification methods, specifically formal methods in some
of these situations, we classified most of these as logic
problems at the point of failure. Without additional
information we could not classify some of these problems
as requirements. In Table 3.1 the primary fault type is
shown first, followed by one or more specific problems
related to it, for example, "rate" following "algorithm"
indicates a function performed at wrong rate in an
algorithm.

Table 3.1 Partial list of detailed fault categories
Accuracy; rounding Logic; initialization
Algorithm; logic Memory; dead code
Algorithm; rate Missing code

Assignment Missing information in user
manual

Calculation; factor Not enough information
Calculation; fault tolerance Not validated; QA
Change impact; QA Reinitialization
COTS; memory lost; size Requirement-wrong formula

Data passing; QA Scaling
Improper impact of change Sequence of operations; QA
Incorrect change to counting Transposition
Initialization; data passing Typo
Input; data passing Units, calculation
Interface; parameter value Volume

We reduced the number of fault categories to the final list
in Figure 3.1, placing the detailed fault type into the class it

best fit. For example, “incorrect change to counting” was
placed under “calculation” because the error occurred in the
counting algorithm and did not cause additional problems
that would have fit under “change impact.” In figure 3.1,
the pie wedges match the legend going clockwise, starting
with calculation, near the top, at 24%.

Among the fault types, logic appears very high at 43%;
with further details, some of these faults might fit into other
classes. This class includes possible errors such as incorrect
logic in the requirement specification, unexpected behavior
of two or more conditions occurring simultaneously, and
improper limits. The group “data” includes units, assigned
values, or problems with the actual input data. The group
“other” includes problems in COTS, EPROM, hardware,
resources (e.g., memory), configuration management,
typos, mistakes in translating requirements into code, and
quality assurance. For quality assurance, either the
processes were not sufficient, or a new version was not
validated.

For 1996-7, calculation faults occur 9 times in radiology
compared with 13 faults in all the panels. For 1996, logic
has 4 faults in cardiology and 3 in radiology out of 11. For
1997, logic has 5 in diagnostics, but only 1 in radiology.
The other fault classes are smaller and vary over the years.
For the other years, also, the higher percentages are
generally for calculation and logic. The obvious questions
are "Why are logic and calculation the prevalent types?"
and "What can prevent or detect them before product
release?"

24%

6%

1%

5%

1%

2%

43%

3%

3%

3%

4% 3%

2%

calculation -24%

change impact -6%

CM - 1%

data - 5%

fault tolerance-1%

initialization -2%

interface -2%

logic - 43%

omission -3%

other -3%

quality assurance -
3%
requirements -4%

timing - 3%

Figure 3.1 Fault class distribution

3.2 Prevention and detection of faults

These software recalls were distributed over 342 devices
built by different vendors. What could have been done,
individually, to prevent or detect each fault before the
release of the device? We examined each fault in each of
the thirteen classes and attempted to determine an answer to
this question. By prevent, we mean some method applied
by the development group before testing. By detect, we
mean some method applied during testing or by quality
assurance staff.

Obviously we cannot ascertain whether these methods were
used or not. We have no evidence that more experienced
companies used these more than inexperienced companies.
Rather, we can indicate perhaps an affirmation that these
are best practices, consistent with today's focus on process
and need to be utilized [3]. Thirteen fault classes contain
342 faults. First, by each class, for each fault, we
considered various techniques/ methods for prevention, and
then for detection. Next we reduced the results to a smaller,
generic set for each fault class. While we provide
descriptions of typical problems, only one problem per
class is shown below with prevention or detection
approaches. The complete tables are available at
http://hissa.nist.gov/effProject/handbook/failure.

Certain methods appear frequently in the complete
synopses as well as in the few examples provided in this
paper. We include inspection as both a prevention and
detection technique, where inspection as prevention is used
in a broader sense than the original Fagan inspection [4].
Glass explains this broader view which is based on
practitioners' presentations in workshops and conferences
[5]. In the prevention approach, then, inspection may
include code reading and various static analyses.
Sometimes we were specific, because the fault description
warranted more specificity. When inspection appears as a
detection technique, it generally means the traditional
Fagan-type inspection.

The class Calculation includes many types of algorithmic
problems. Attention to algorithms and computations
includes such details as verifying units, operators, intervals,
limits, ranges, transformations from mathematical
expressions into their implementation, and others.
Sometimes even verifying that the original algorithm
requirement is the correct version may require significant
effort. Understanding how the specific computer will
handle registers and floating point values is mandatory.
Verifying all the issues for a calculation may require
expertise outside computer science or software engineering.
Often someone must verify that the algorithm is adequate
for its intended use, e.g., increments used in the algorithm

will be useful in the displayed output (neither too large nor
too small to be meaningful). An example for calculation is:

Constants or table of constants incorrectly coded.
Prevention Detection
Design, code reading to ensure
correct relationship between code
and specified constant or table.

Code reading,
inspection. Unit test.

While change impact is not necessarily considered a fault
type, these cases indicate that failure to examine the impact
of changes hides other problems. In all cases, another
practice, performing a traceability analysis, is a prerequisite
for performing change impact analysis. The analyses
identify the region the proposed change will affect. An
example for change impact is:

No verification against original design specification
Prevention Detection
Traceability analysis. Change
impact analysis.

Inspection of proposed
changes. Regression
test.

For configuration management (CM), that is, keeping all
artifacts correctly associated with the appropriate version of
the system, several problems may have been due to the
incorrect exercise of CM procedures. Others may have
been prevented simply by using CM. The use of tools to
manage the software versions would be helpful. In some
cases, the problems stem not from improper software
versions, but from selecting a software program that is not
compatible with the hardware. This is also a problem of
requirement specification; once hardware and software
configurations are selected, the assumptions about each
component need to be recorded as part of the CM history.
An example for CM is:

Use of wrong master program for the software revision.
Prevention Detection
Use of CM
tools.

Verification of appropriate master
program. CM manager inspects the
versions.

Problems in software programs can arise from input data.
Data requirements for a program must be specified, entered
in a data dictionary, and validated before the operation
using the data is executed. The specification includes
information such as units, acceptable range of values, the
expected quantity or frequency with which values will
change. The specification is published in the data dictionary
of the database and in user instructions, emphasizing values
that could cause program stoppage if they are out of range.
Of course, the program itself may address some potential
problems by containing assertions for input values or input
omission, with actions to take when data are incorrect or

missing. When a program is fielded, data in a database
should be protected against database corruption. The
software should facilitate an error-handling package to
detect database corruption. An example for data is:

System failed due to invalid input data
Prevention Detection
Assertions for invalid
values, checks for ranges
that imply incorrect data.
Design: set criteria of
input data validation.
Code: implementation of
input data validation.

Review for completeness of
data specification, and that
all data specifications are
included in the user
instructions. Inspection:
focus on data validation.
Test against invalid data.

The fault tolerance category relates to safety-critical
systems that should include facilities to handle abnormal or
anomalous conditions. An example for fault tolerance is:

Excessive use of the program causes failure
Prevention Detection
Fault tolerance such as
handling failures through
redundancies.

Stress/ volume test.
Testing against boundary
and abnormal conditions.

Initialization is essential for enabling programs either to
begin or to perform more than one cycle of a function.
Default values for variables are a necessity, and likewise,
re-initialization of a variable must be established.
Explicitly documenting initial conditions in requirements
through the code is essential. Code reviews and code
reading need to focus not on whether initialization is
specified, but specified according to good programming
practices. An example for initialization is:

For first execution, program fails to store initialization
values for the succeeding run.
Prevention Detection
Document initial
conditions for initial run
and consecutive run.
Design review.

Code review. Stress test
(run the program multiple
times).

In a system, interfaces allow software to send and receive
data (that is, interface) to physical components of the
system, as well to other software modules and to users.
Clearly, the requirement specification must be accurate,
complete, and consistent. A traceability scheme provides a
basis for ensuring that all interfaces are addressed and
included correctly. A well-developed test plan for
integration testing must be executed to verify the interfaces
between devices or software components. An example for
interface is:

Software does not properly interface with external device or
other software component.
Prevention Detection
Trace requirements to design to
code- all functions must
interface to software module,
output device, user or other
system component. Examine
spec for each interface.

Inspections, reviews.
Integration test.

Logic problems appear to be significant. While some
failures of the devices did result from bad logic, the "bad"
logic might have resulted from incorrect, incomplete, or
inconsistent requirements or designs. Frequently,
interactions among different functions might not have been
considered at all or might have been neglected at boundary
conditions of a function. Sometimes the logic might have
been incorrect in the design. All of these were classified as
logic problems, but it should be understood that the source
of the problem could have been requirements, design, or
code. Two examples include 1) "When power lost and then
restored, system defaults to off status, which causes false
information to operator and possible hazard to the operator
" and 2) "When a second cartridge is in the other slot and
detects an artifact condition, the monitor is prevented from
alarming below set levels." An example for logic is:

Incomplete or incorrect control logic
Prevention Detection
Apply traceability analysis from
design to code. Walk through
code against design.

Code Review.
Inspection. Testing.

The class omission indicates a required system function
that is missing from the final implementation.
Documentation provided is missing or not sufficient to
install or operate the product. An example for omission is:

Vital system functions are missing.
Prevention Detection
Traceability, focus on all
interfaces, to user and test
documentation. Critical path
analysis. System test scenarios
for requirements specification.

Inspections, reviews
examining
traceability of
functions. System
Test.

Other faults too low in frequency to be classified separately
include problems such as performance issues, I/O problems,
typographical errors. An example for other is:

A typographic error in software algorithm causes
incompatibility between two devices.
Prevention Detection
Code reading against algorithm
specifications.

Walkthrough for on
algorithms. Testing.

The role of quality assurance (QA) is to ensure that quality
practices are defined in company standards and that they
are used. Procedures are necessary for validation after
modifications. The problems described in the recall data
often cite that process checks were not made on the testing
process and that testing was not performed after
modifications. The problem descriptions do not reveal
whether procedures for testing or other quality practices had
been defined. Change impact analysis is a key task to
ensure appropriate tests after modifications. While QA is
not a fault type, it is a process problem whose use might
have prevented some of the failures. For this category,
prevention techniques refer to discovering problems with
QA. The responsibility for quality belongs to everyone on
the project. An example for QA is:
Test plan was not implemented or executed appropriately.
Prevention Detection
Software project
management oversight.

Project status review.
QA process checks.

Some faults, such as omission, logic, and calculation, may
have their genesis in the requirements specification. This
category demonstrates the need to develop, verify and
validate a requirement specification, in some cases uses
formal methods. The document specifying the product
requirements is critical to the completeness and correctness
of the software of the final product. The review of the
requirements may require experts with different types of
expertise to ensure that the requirements call for the right
functions, appropriate algorithms, correct interfaces,
function interaction, and other aspects. An example for
requirements is:

Exceptional conditions were not specified in the
requirement specification.
Prevention Detection
Modeling. Formal methods.
Traceability

Interface analysis.
Requirement review.
System test.

Timing, or synchronization, is vital to the execution of real-
time applications. An example of timing is:

Two inter-react processes out of time synch with one
another
Prevention Detection
Simulation. Design review.
Code review.

Timing analysis.
Integration test.

4. Lessons Learned

The information about the software faults that caused these
system failures provides valuable lessons and affirmation of
quality practices. These concern development procedures,

assurance practices during development & maintenance
activities, and testing or assurance strategies. Methods to
prevent and detect faults should focus on logic and
calculation errors. For logic, methods should address
improved handling of various conditions, assumptions, and
interactions among functions. Attention must be given to
the details of calculations, such as verifying that the correct
algorithm has been specified in the first place or that the
programmed operators and increments are correct. The
lessons addressed below are based on problems that were
observed in this study, that is, they stood out as prevalent
problems for this set of data and are related to the faults
indicated in the fault tables in Section 3. Therefore the
practices suggested in this paper will likely vary in other
domains. Studies of other domains may provide a variation
of the lessons learned here along with a roadmap for
selecting the best quality strategy within a company or
domain from more general guidance on quality practices.
Other guidance discussing general good practices on
software development and assurance includes the
Capability Maturity Model, and NIST documents on life
cycle development and assurance, and verification and
validation [3], [6] [7].

Development & Maintenance

While software development processes are already well
defined by such models as the CMM, this study indicates
particular practices which would help prevent the faults that
led to these specific failures. For example, training in the
characteristics of the computer on which the device will
reside might have prevented some of the computation errors
concerning registers. Training in the application domain
concerning how the outputs of functions interact and will be
used by the operator might have prevented wrong interval
size which produced unusable charts. Attention to details,
that is, checking and verifying one's work as related to the
specifications for that work, might have prevented several
problems. A member of the software team with experience
in the application domain may have caught several
problems. Many logic faults stemmed from
misunderstanding of how various functions interact, that is,
under certain conditions, and in some cases, that they would
interact at all. A traceability map, used regularly, can
identify inconsistencies or incompleteness. The following
list highlights some of the practices recommended for
development and maintenance tasks:
• Complete specification of requirements, with

emphasis on conditions and interactions of
functions. Formal methods may be considered for
highly complex systems.

• Traceability of the development artifacts:
requirements to design (high, low levels) to code
to user documentation and to all test
documentation, especially location of source of

faults. The analysis should be conducted forward
and backward.

• Traceability and configuration management of all
changes to the product as result of any assurance
activities

• Software configuration management
• Change impact analysis
• Expertise in the application domain by at least one

person involved with quality practices such as
requirements analysis, inspections, testing

• Daily attention to details of the current process, the
mapping to results of the previous process, and
personal reviews of one's work.

• Training.

Assurance Practices

The quality of software is the responsibility of everyone
involved in its development. Practices listed above for
development and maintenance are a few enabling factors in
establishing an environment in which this responsibility is
recognized. Other tasks fall into the category of quality
assurance, but may be performed by the persons engaged in
development of the software artifacts or by those separated
organizationally under some quality assurance name. Every
artifact of development processes needs to be scrutinized.
The list of techniques supporting this scrutiny is long, and
again, published elsewhere. Instead we focus on the few
techniques whose value is indicated by the faults causing
the failures of these devices. The inspection technique, as
per Glass [5], can be perceived as a variety of techniques
that examine artifacts, ranging from requirements to design
to code to test cases. Such techniques may include code
reading, formal inspection meetings, review by programmer
using various analytic techniques, and focused inspections.
Porter and Votta describe scenario-based inspections in
which participants looked for certain classes of errors [8].
To focus on a class of errors, the inspectors need to have
some idea of the prevalent classes of errors of the product
they are examining. The following list summarizes these
suggestions:

• Focused review, inspection of the artifact against
the types of faults characteristic of the domain, and
the vendor's history

• Traceability analysis, especially focused on
completeness

• Mental execution of potentially troublesome
locations (e.g., an algorithm, a loop, an interface)

• Code reading
• Recording of fault information from the assurance

activities and better usage of this information

• Recording, during development and quality
assurance activities, of the symptoms that
indicated there are faults

• Checklists, questions, methods designed to force
those symptoms to manifest themselves

• Formal or informal proof of algorithm correctness
• Use of simulation in complex situations where

several interactions may occur, especially
involving several components of the system.

Testing

Testing is part of the general quality practices, with unit,
integration, and system testing all conducted. The failures
in this study indicated specific test strategies might have
been useful in detecting problems before the systems were
delivered. Many failures were recognized by behavior of
the system, for example, a part moved unexpectedly, or
medication was provided at an incorrect rate. Most of these
resulted from logic faults, so test cases in complex systems
should attempt to drive these symptoms to appear. In some
cases, the systems were updated versions, so previous test
histories may also have been helpful. The list summarizes
these points:

• Test cases aimed at manifesting prevalent
symptoms observed by device operators

• Stress testing
• Change impact analysis and regression testing
• SCM release of versions only with evidence of

change impact analysis, regression testing;
validation of changes

• Integration testing focused on interface values
under varying conditions

• System testing under various environmental
circumstances, with some conditions, input data
incorrect or different from expected environmental
conditions

• Recording of test results, with special recording of
all failures and their resolution, by failure and
symptom of the system, and by fault type of the
software

5. Conclusions

This study yielded information affirming use of quality
practices and identifying approaches for using fault and
failure information to improve development and assurance
practices. The nature of several faults indicates that known
practices may not be used at all or may be misused. An
important conclusion is that the use of many generally
accepted quality practices, rather than use of a "silver
bullet" is significant toward reduction of system failures.
Questions remain for further research:

• If the practices were not used, what can be done to
make them more readily usable?

• If the practices were used, why did they fail to prevent
or detect the fault?

• What methods not yet generally accepted may help to
prevent some faults and subsequent failures?

The analysis in this study demonstrates that different
application domains may have different prevalent fault
classes and different characteristic failure symptoms.
Suggestions for improvement of assurance practices
include:

• gathering failure and fault data,
• understanding the types of faults that are prevalent

for a specific domain, and,
• developing prevention and detection approaches

specific to these.

The subject of this study, failures of medical devices, is
dealing with a relatively young industry, often new to
adding microprocessors to devices2. As experience with
software development and complexity of the software
grow, the prevalent fault classes may change. In domains
with a long history of software, the classes may also differ.
In newer applications such as Electronic Commerce, which
rely on newer technologies, operating systems, and
languages, we would anticipate perhaps new fault classes
for the domains as well as for the underlying software
technologies. Data collection and analysis can help to
identify the most prevalent faults and the areas where
better methods are needed to prevent and detect them
before system delivery.

This paper has shown that valuable lessons can be learned
from system failures involving software. Some lessons may
apply specifically to the application domain of study while
some apply universally. It is important to continue this
research on failures using modern technologies in various
domains. The authors may be contacted by anyone willing
to supply data.

6. Acknowledgments

The authors are grateful to the Food and Drug
Administration (FDA) for making this data available to us.
Our analyses and conclusions do not reflect any analyses or
conclusions by the FDA. We appreciate the reviews and
suggestions of Dr. Larry Reeker and the efforts of Mark
Zimmerman and Michael Koo for their technical support.

2A medical device manufacturer adding software to a device for the first
time called one author during preparation of this paper.

7. References

[1] Petroski, Henry, To Engineer Is Human, Vintage Books of
Random House, Inc., New York, 1992.

[2] Gibbs, W., “Software’s Chronic Crisis,” Sci. Am. (Int.Ed.) 271,
3 (sept.1994), 72-81.

[3] Paulk, et. al., "Capability Maturity Model, Version 1.1," IEEE
Software, July 1993, pp. 18-27.

[4] Fagan, M.E., "Design and Code Inspections to Reduce Errors
in Program Development," IBM Systems Journal, Volume 15,
number 3, 1976, pp. 219-248.

[5] Glass, Robert L., "Inspections - Some Surprising Findings,"
Communications of the ACM, April 1999-Volume 42, Number 4,
pp. 17- 19.

[6] Wallace, Dolores R. and Laura M. Ippolito, "A Framework for
the Development and Assurance of High Integrity Software,"
NIST SP 500-223, December, 1994, National Institute of
Standards and Technology, Gaithersburg, MD 20899.
http://hissa.nist.gov/publications/sp223/

[7] Wallace, Dolores R., Laura Ippolito, and Barbara Cuthill,
“Reference Information for the Software Verification and
Validation Process,” NIST SP 500-234, National Institute of
Standards and Technology, Gaithersburg, MD 20899, April 1996.
http://hissa.nist.gov/VV234/

8] Porter, A., et. al., "An Experiment to Assess the Cost-
Benefit of Code Inspections in Large Scale Software
Developments," Proceedings of the Ninth Annual Software
Engineering Workshop, National Aeronautics and Space
Administration Goddard Space Flight Center, Greenbelt, MD
20771, December 1994.

