
1 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

on architecture
E d i t o r : G r a d y B o o c h ■ I B M ■ a r c h i t e c t u r e @ b o o c h . c o m

F
or centuries, Ptolemaic theory reflected
civilization’s understanding of the earth
and its place in the universe. To the pre-
scientific mind, this geocentric view-
point was just common sense: it was
consistent with local observations and

generated no dissonance with contemporary
religious beliefs.

Unfortunately, Ptolemy’s theory and most of
the conclusions drawn from it were false.

It wasn’t until the early 1500s that Copernicus
rediscovered the reality of the earth turning on its

axis daily and orbiting around
the sun yearly, observations he
published in De Revolutionibus
Orbium Coelestium in 1543.
Galileo’s unabashed acceptance
of Copernican theory landed
him in trouble but, fortunately
for us, hard scientific evidence
tends to prevail. Later that cen-
tury, the gentleman-scientist Ty-
cho Brahe assembled a detailed,

precise, and comprehensive catalog of the mo-
tion of more than 1,000 stars and planets. After
Brahe’s death, Johann Kepler studied this data
and then formulated his three laws of planetary
motion, which he explained in Astronomia Nova
and Harmonices Mundi.

This story’s lesson is that classical science
advances via the marvelous dance between
quantitative observation and theoretical con-
struction, and, in turn, the engineering disci-
plines apply those advances to creating new
things. In stark contrast to the classical sci-
ences, software engineering and its subdisci-
pline of software architecture are still in their
infancy relative to observation and theory.

Software architecture’s growth
Ten years ago, IEEE Software celebrated

software architecture as an identifiable disci-
pline, and the first International Software Ar-
chitecture Workshop was held. Since then, the
number of people who call themselves soft-
ware architects has steadily increased (al-
though few agree on what “software archi-
tect” means or what skills and activities it
entails). Similarly, organizations have increas-
ingly placed value on treating a system’s soft-
ware architecture as an artifact that they can
create, grow, measure, and manage.

An engineering discipline shows signs of
maturity when we can name, study, and apply
the patterns relevant to that domain. In civil
engineering, we can study the fundamental el-
ements of architecture in works that expose
and compare common architectural styles.
Similarly, in chemical engineering, mechanical
engineering, electrical engineering, and now
even genomic engineering, libraries of com-
mon patterns have proven useful in practice.

Unfortunately, no such architectural refer-
ence yet exists for software-intensive systems.
Although the patterns community has pio-
neered the vocabulary of design patterns
through the work of the Hillside Group (http://
hillside.net) and the Gang of Four (Design Pat-
terns, Addison-Wesley, 1995), our industry has
no parallel to more mature design disciplines’
handbooks (see the “Other Disciplines’ Hand-
books” sidebar for some examples).

A handbook of software architecture
For the past two years, I’ve been working to

create a handbook of software architecture
(www.booch.com/architecture). I don’t expect

On Architecture
Grady Booch

M a r c h / A p r i l 2 0 0 6 I E E E S O F T W A R E 1 7

ON ARCHITECTURE

to complete a critical mass of this work
for another two to three years, simply
because I’m collecting a broad set of
data that’s largely locked up in certain
developers’ heads and in internal docu-
ments that were rarely intended to see
the light of day. In this ongoing col-
umn, I’ll share some of my experiences
as I continue my research.

The handbook’s primary goal is to
fill this empirical void in software engi-
neering by codifying the architecture of
100 interesting software-intensive sys-
tems, presenting them in a manner that
exposes their essential patterns and per-
mits comparisons across domains and
architectural styles. Second, the project
aims to study these architectural pat-
terns in the context of the engineering
forces that shaped them in order to ex-
pose a set of proven architectural pat-
terns that developers can use to con-
struct new systems or reason about
legacy ones. The third goal of this re-
search is selfish—namely, to feed my in-
satiable curiosity. Whenever I encounter
an interesting or useful software-inten-
sive system, I ask myself, how did they
do that? By studying their architectural
patterns and thus exposing these sys-
tems’ inner beauty, I hope to inspire de-
velopers who want to build on the ex-
perience of other well-engineered
systems.

My motivation for this work comes
from Bruce Anderson, who over a
decade ago conducted a series of work-
shops at OOPSLA (ACM SIGPLAN Inter-
national Conference on Object-Oriented
Programming, Systems, Languages, and
Applications) to create The Complete
Handbook of Object-Oriented Soft-
ware Architecture & Designs in 1991.
Since that time, the patterns commu-
nity has grown quite vibrant, but most
of its work has focused on design pat-
terns. As such, around three years ago,
I began sketching out an approach to
continue Bruce’s work, starting with a
broad industry survey.

Software-intensive systems written
several decades ago were complex in
their own time; the systems we build
today are equally complex. As intri-
cacy has risen over the years, each new
generation of developers has found

new ways to attack it. The nearly one
trillion lines of code created over the
decades provide a humbling reminder
of our industry’s breadth, depth, and
reach; this body of work is so large that
identifying a representative set of inter-
esting systems for architectural study is
difficult. Far more interesting systems
are worthy of study than any one per-
son could cover in a lifetime.

One way to prune the problem is to
consider only contemporary systems,
systems in production use at the time
of investigation. Thus, I decided to
leave the study of classic software for
another project. (The Computer His-
tory Museum is engaged in a major ef-
fort to preserve a number of classic
software systems’ artifacts; www.com-
puterhistory.org.) This still leaves an
enormous number of systems to con-

sider, but I further pruned the problem
by selecting a set of interesting systems
balanced across different genres—
specifically, artificial intelligence, com-
mercial nonprofit, communications,
content authoring, devices, entertain-
ment and sports, financial, games, gov-
ernment, industrial, legal, medical, mil-
itary, operating systems, platforms,
scientific, tools, transportation, and
utilities.

Selecting specific systems was an-
other problem, one that was guided by
my desire to present a set of interesting
patterns. What you might consider in-
teresting is subjective, but only a few
unique architectural patterns appear to
exist. For example, the basics of ac-
counting have become reasonably sta-
ble over the centuries, and although
every enterprise has its own set of
schemas, rules, and policies, the archi-
tecture of such systems is remarkably
similar. So, I’d like to present widely
differing architectures across domains.
Although practitioners in any given do-
main might consider their architectures
obvious, few outside that domain
would find them obvious at all.

Selecting the final systems for study
within each genre still required a some-
what arbitrary and capricious decision
process. When faced with a family of
systems with a common architecture, I
selected the one whose assets were
more easily available. In a few cases, I
made a specific selection simply be-
cause of the beauty of its architecture or
because it was the seminal exemplar of
its domain. Finally, I’ve intentionally
balanced my selection globally: clearly,
software innovation isn’t constrained
by political or geographical boundaries.

By exposing these
systems’ inner beauty,

I hope to inspire
developers who want

to build on the
experience of other

well-engineered
systems.

Other Disciplines’ Handbooks

■ Building Embedded Linux Systems, by Karim Yaghmour, O’Reilly, 2003
■ The Elements of Style: A Practical Encyclopedia of Interior Architectural

Details from 1485 to the Present, Simon and Schuster, 1997
■ The Phaidon Atlas of Contemporary World Architecture, Phaidon Press, 2004
■ Perry’s Chemical Engineers’ Handbook, McGraw Hill, 1997
■ Mechanism and Mechanical Devices Sourcebook, McGraw-Hill, 2001
■ Electrical Engineers’ Handbook, McGraw-Hill, 1996

1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

ON ARCHITECTURE

To frame my research and my data
collection, I’ve chosen to build on
IEEE Standard 1471, Recommended
Practice for Architectural Description
of Software-Intensive Systems, along
with Philippe Kruchten’s work (“The
4+1 View Model of Architecture,”
IEEE Software, Nov. 1995). Essen-
tially, the data set for each system un-
der study is one instance of the IEEE
metamodel augmented in three ways:
by including information about

■ the environment in which the sys-
tem lives;

■ the development team, tools, and
processes; and

■ a specific set of views.

T he handbook is a work in progress.
In some ways, there’s no end be-
cause new systems worthy of study

constantly emerge. As I said earlier, I
plan to force closure to the present ef-
fort in two to three years.

Perhaps the most fascinating ele-
ment of this research is that I’m ex-
pecting the unexpected: it’s too early to
draw conclusions about the common-
ality of patterns that I might find
across such a wide set of domains. I
hope you’ll enjoy encountering the un-
expected in my future columns.

Grady Booch is an IBM Fellow. He’s one of the Unified
Modeling Language’s original authors. He also developed the
Booch method of software development, which he presents in
Object-Oriented Analysis and Design. Contact him at architecture@
booch.com.

EDITORIAL
CALENDAR

JANUARY/FEBRUARY
Aspect-Oriented Programming

MARCH/APRIL
Past, Present, and Future
of Software Architecture

MAY/JUNE
Requirements Engineering

Update: Best Papers of
IEEE RE ‘05

JULY/AUGUST
Software Testing

SEPTEMBER/OCTOBER
Global Software Development

NOVEMBER/DECEMBER
Software Engineering

Curriculum Development

2006

www.computer.org/software
VISIT US AT

