
A Secure On-line Submission System

Michael Luck and Mike Joy

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom

fMichael.Luck,M.S.Joyg@dcs.warwick.ac.uk

Fax: 01203 525714

Telephone: 01203 523364

1



Abstract

As student numbers on Computer Science courses continue to increase, the corresponding

demands placed on teaching staff in terms of assessment grow ever stronger. In particular the

submission and assessment of practical work on large programming courses can present very

significant problems. In response to this, we have developed a networked suite of software utilities

that allow on-line submission, testing and marking of coursework. It has been developed and used

over the course of five years, and has evolved into a mature tool that has greatly reduced the

administrative time spent managing the processes of submission and assessment. In this paper we

describe the software and its implementation, and discuss the issues involved in its construction.

Keywords: submission, assessment, coursework, testing, security, course management

Introduction

Large numbers of students on computing courses in further and higher education present a distinct

problem for those involved in the delivery of the courses, especially in relation to the assessment of

practical work. The teaching of programming in particular demands the preparation and assessment

of practical exercises which, in the face of such large numbers, can be prohibitive in terms of time

and effort. For an effective course, however, the assignments must be processed and graded quickly

so that students receive useful feedback that can benefit their progress.

The solution to this problem, as has been recognised by several institutions, lies in the potential for

the processes of submission and assessment of programming assignments to be automated, at least in

part. In essence, there are two important aspects here that can be labelled as information management

relating to the submission and organisation of assignments, and assessment techniques relating to

the testing of the submitted assignments. While the obvious issues involved in the introduction of

such systems are concerned with pedagogical matters of how to employ the assessment techniques,

user-interface design, and so on, issues such as security, especially with a user base of technically

competent students, are equally important.

The Problem

As has been documented elsewhere (e.g., [1, 2, 3]), it is generally not possible to assess the correctness

of a program with a large degree of accuracy simply by inspecting the source code listings. While

this is obviously true of large programs, it also holds even for small programs on introductory pro-

2



gramming courses. The only way to arrive at an accurate assessment of a program is by running the

program against several sets of test data, yet this is time-consuming, and can be prohibitive if done

manually with large classes. It is possible to require students to provide evidence of their own testing,

but this requires further skills on the part of the students that are not typically covered by introductory

programming courses. Moreover, such tests might easily be faked by students modifying the output

from their programs to give the desired results.

By automating the processes of submission and testing, these problems, at least to some extent,

can be addressed. Indeed, several distinct requirements of systems for such a purpose were identified

by a recent panel discussion [1], and elsewhere [4, 5].

� The system must copy the student’s source code program to a location accessible only by the

instructor, noting the date and time of submission.

� It should allow for multiple source files of various types, including documentation.

� It should allow late submission of assignments.

� Before submission, the system should compile and run the program against public test cases to

alert the student to obvious errors.

� After submission, the program should be compiled and run against several sets of test data.

Related Work

There have been several attempts to address some of the concerns outlined above, with varying de-

grees of success. MacPherson [6] describes a system that allows students to work in a special course

directory in their own filestore, but at the appropriate time transfers ownership to an instructor who

can then subsequently run and test the programs. Canup and Shackelford [7] have developed a suite

of programs for assisting in automatic submission, but do not address automated testing of programs.

Isaacson and Scott [8] use a C shell script for automating the compilation and testing of student pro-

grams against sets of test data once students have placed their program files in an appropriate directory

structure. Similarly, Reek’s TRY program [2] copies student programs into the instructor’s filestore,

runs them against sets of test input data, and produces a log file that can be used to provide feedback to

students. All of these systems address some of the main functionality requirements described above,

3



but are rather rudimentary and, more importantly, do not provide adequate security. In particular, op-

portunistic attempts by students to exploit loopholes in the systems cause special concern given that

learning environments are generally intended to encourage and stimulate experimentation.

Alternative approaches, such as that by Dawson-Howe [3], manage the process of submission

and testing through the sending of email messages containing programs, data and results. While this

avoids some of the security loopholes, it does not address many of the key requirements of such a

system as described above. However, Dawson-Howe’s work does go further than the others in that it

includes some simple database management facilities for maintaining information about submissions

and grades, and generating simple reports.

A third class of system, exemplified by one package in particular, deserves some discussion be-

cause of its size and distinct approach. Ceilidh, a system developed by Benford et al. at Notting-

ham [9], is a large system that contains many features including on-line exercises and teaching aids.

Each course has several distinct components, all of which are accessible from Ceilidh. First, general

course information, such as lecture notes, assignment deadlines, specifications and solution outlines,

can be viewed or printed. Second, programs can be edited, compiled and tested, with details of the

compilation process hidden to a greater or lesser extent from the student. Third, the programming

assignments can be marked by the system, and the marks provided as feedback, with completed work

being submitted and retained together with mark details for further analysis. Finally, model solutions

and test data can be made available to be viewed, run and tested.

While such a system is indeed a formidable achievement — and is gaining wider use [10] —

in encapsulating in one monolithic structure nearly all of the possible forms of interaction that a

student can have on a programming course, it sanitises the learning environment by restricting the

nature of interaction. For example, familiarity with underlying tools, programs and shells is typically

gained through experience of using them. This learning by doing, by which compilers and editors

are encountered and understood, is denied in Ceilidh, which instead offers its own set of commands

for editing and compilation that do not apply beyond this particular system. In this way, the variety

of useful experience that students might otherwise have, and which is valuable in gaining familiarity

with general software, is no longer available. In our approach, by contrast, we do not constrain the

use of existing tools, but merely provide extra utilities that are used in conjunction with them to offer

increased functionality. Indeed, there is a great temptation to use technology to develop such systems,

yet we must be aware of the potential difficulties that they can cause beyond the immediate benefits,

4



and of the barriers to confidence and familiarity that they can create in attempting to provide a rich,

flexible and stimulating learning environment.

An Integrated Course Management Tool

This paper describes the design of an integrated software system for the task of submission and as-

sessment, focussing on the technical issues and the lessons learned. Known as BOSS, the system

comprises a suite of programs that allows students to submit coursework on-line — typically, but not

exclusively, programming assignments — and allows them to be run against test data, the results of

such tests then being made available to staff marking the submitted work. Some aspects of the soft-

ware are similar to some of the systems described above (e.g., [2]), but these are part of an overall

integrated system that addresses the weaknesses identified. The approach taken has been to isolate

tasks that can be fully automated, such as submission and testing of programs, to provide modules

to implement each such task, and to provide a graphical user interface to these modules. In general,

it is not feasible to automate all of the process of assessment — marking a program is a non-trivial

process, best performed by a human. In contrast to alternative approaches elsewhere [9, 10], we have

attempted to solve the problems of security and reliability with the intention of seamlessly integrating

the modules into a robust coursework management tool.

The next section provides a functional overview of the BOSS submission system, and identifies

the main components. Then, in Section 3, the way in which the wide variety of information and

raw data needed by BOSS is structured, and how it is managed, is described in detail. Section 4

addresses the important security aspects of the system, covering issues of data integrity, privacy and

rogue programs. In Section 5, the main algorithms relating to the submission and testing of student

programs are presented and the administration of marking is explained. The following two sections

provide details of the plagiarism detection component and the user-interface, before concluding with

an overall summary of the system and its benefits.

The BOSS Submission System

The BOSS system is intended to perform several distinct tasks within a single overarching framework.

It is aimed at course management rather than instruction in that it incorporates facilities for submission

of assignments, their subsequent testing and marking, and the provision of feedback on assignments

5



to students. Thus it does not constrain in any way the delivery of instructional materials, which is a

completely separate problem. To be effective in addressing these aims, the system must also ensure

that security issues are sensibly dealt with, and that the overall system is well designed and organised.

The structure of the system reflects the conceptual division of the software into three core modules,

each well-defined, which can be treated as largely independent components. These are represented

as the ovals at the top of Figure 1, and address submission of assignments, their testing and their

marking.

===================================================================

===================================================================

Figure 1 about here

===================================================================

===================================================================

� The submission module allows students to submit a piece of coursework, and handles the task

of copying that coursework to a secure location where it can be accessed subsequently.

� The testing module runs and tests a single piece of coursework against one data set, and reports

success or failure according to the given expected output.

� The marking module assists an instructor in marking a collection of coursework after the sub-

mitted programs have been run and tested against several sets of data.

Each of these components provides information through the user-interface that is processed and

managed by lower level utilities that access the central file store through careful and secure techniques.

The arrows in the figure indicate the flow of information through the system and illustrate its general

organisation. Before considering the distinct aspects of these components, we describe the aspects of

the system that cut across them.

Information Management

A large part of the system is concerned with information management as explained briefly in the

introduction. Each student submits files containing programs and possibly other documentation, and

these must be stored so that they may subsequently be accessed, compiled and tested. It should also

6



be possible to store multiple submissions by a single student, backing up older copies to a suitable

desired depth. All of this, of course, must be done in a secure fashion so that the stored data is not

generally accessible, but only accessible to the instructor for the purposes of assessment.

The organisation of the stored data is structured around user-centred concepts relating to high

level course organisation. While notions of courses, assignments, etc., are loose and may differ from

institution to institution and from one degree programme to another, in the context of system design,

distinct and specific meanings have been adopted. A course denotes a unit of a degree programme that

contributes to that programme, such as an introductory programming course on a Computer Science

degree programme. An assignment denotes a piece of work that forms part, or all, of the credit for

a course, typically with a given deadline, and containing one or more exercises, each of which is a

specified task such as writing a program. These come together with the convention that, for a given

assignment, a student completes exactly one exercise, so that an assignment requiring students to

complete two or more exercises would be specified as two or more separate assignments.

Using these notions of courses, assignments and exercises, the detailed file system can then be de-

scribed. The entire file system structure for BOSS is illustrated in Figure 2, with the store for submitted

programs forming a UNIX directory hierarchy by course, assignment and exercise, as shown in the

bottom half of the figure. Each such directory contains a configuration file named settings, which

specifies the properties for the course, assignment or exercise that directory represents. To facilitate

discussion of the data, we have chosen to give specific illustrative names to the files and directories,

but naturally these might be different in a real installation of the software.

===================================================================

===================================================================

Figure 2 about here

===================================================================

===================================================================

Two usercodes are needed, boss to own the software and the submitted programs, and slave to

run programs when they are being tested, as discussed below. Both of these are indicated in Figure 2,

which shows the topmost directory as the boss home directory.

At the top level of the file hierarchy there are standard UNIX directories such as man, src, and

doc, for storing the utilities and their related documentation, together with the following application

7



specific files and directories.

� A file containing an audit trail, with entries for each submission, or attempted submission, is

maintained to track submissions for use in the case of conflicts, as described below. This file is

named audit.log.

� A global configuration file, settings, is used to temporarily disable the software should that

be required as, for example, with updates or other software maintenance.

� For ease of addition of new courses to the system file space, a template of the course data files

is stored in the skel directory.

� In order to prevent simultaneous submission of the same exercise, a directory labelled locks

contains lock files. Whenever a user runs the program, a file in the directory is created; when the

program terminates, the file is deleted. If the user attempts to run a second copy of the program,

and a lock file is detected, the new program will terminate.

� The slaves directory is used as temporary workspace when running tests on programs during

the assessment phase, and is owned by user slave, as discussed further below.

� Finally, the bin directory stores the program modules. This also contains the subdirectory,

closed, with no general access permissions, and which itself contains programs that can only

be called from programs in the bin directory that are set-uid user boss. That is, when run,

they inherit the file access permissions of boss rather than those of the calling program.

As described above, there are other top-level directories for each course, named course.1,

course.2, and so on. In each such directory is another configuration file, again named settings,

containing course properties including the course title, the course code number, the usercode of the

instructor, and the usercodes of other staff assisting. The course may be configured so that only

students from a given cohort may submit work, in which case a related text file called students

contains the identification numbers of those students.

Within these course directories are subdirectories for each assignment, which are named as-

sign.1, assign.2, etc. In addition to a title, the deadline and the maximum mark for the assign-

ment are included in the properties detailed in the settings file.

Similarly, each assignment directory contains subdirectories for each exercise, ex.1, ex.2, etc.,

with each of these containing several further subdirectories.

8



Course Assignment Exercise

course code submissions allowed? CPU time limit

exam code multiple files allowed? file size limit

instructor maximum mark language selection

multiple submissions allowed? penalty regime real time limit

student restrictions penalty per day exercise title

course title assignment title

course tutor list

Table 1: Information contained in the settings configuration files

� The solutions subdirectory simply contains a directory for each student who has submitted

work for the exercise, comprising copies of the submitted files and the files used by BOSS to

store the test results.

� There are several scripts in separate files, initially set to defaults, for compiling a program in

various languages, such as compile.Fortran, and for comparing two data sets, such as

compare.boss. The latter may simply contain the UNIX command diff, or may be made

more complex as required.

� Finally, there is a directory for each test that is to be carried out on submissions for the exercise.

These contain a script, runtest.boss, to run that test, and directories in, containing data

for the test, and out containing the expected output for the data. The input includes the standard

input stream, the output includes the standard output and standard error streams, and both may

contain other files as specified.

The contents of the settings file at each level is given by Table 1. In part, this summarises and

illustrates the organisation of the whole system in that the levels at which the different aspects of

assignments are considered determine the nature of the system itself. For example, only at the exercise

level is the system concerned with the choice of programming language or time and space limits for

program execution, as these are only relevant at this point. Moreover, this allows complete flexibility

in terms of all these choices until the last point at which a commitment to them must be made.

9



Security

With a system such as this in which student work is stored on a central file system, security is

paramount. The importance of this is heightened by the fact that many of the students involved in

submitting work through the system are technically very competent. The broad heading of security

covers several different aspects, each providing distinct possibilities for exploitation by dishonest and

cunning students. By addressing the security issues described below, and by developing software that

correctly implements the corresponding checks, no security failures have been suffered during the

deployment of the BOSS software.

Data Integrity

From the moment the student instructs BOSS to complete the process of submitting a piece of course-

work, they must be confident that their files have been copied intact.

� All submissions must be logged.

� A mechanism for verifying that a stored document used for assessment is the same as the docu-

ment actually submitted by a given student is needed to prevent claims of discrepancies between

the two.

� A feedback mechanism must be in place to confirm to students that submission of their work

has been successful.

� The identity of a student submitting coursework must be established so as to uniquely identify

them.

Logging of all submissions is trivial, and details are recorded in the audit.log file mentioned

earlier. Verification and feedback are tackled by forming an authentication code for each file submitted

using the Snefru algorithm [11]. The Snefru algorithm is a secure hash function that maps an input

file to a fixed-length byte array. Small changes in the input file generate completely different output

that cannot be easily predicted, thus preventing a user who has submitted work subsequently altering

their submission and claiming it was the same one they had previously submitted. Other algorithms

are available, such as MD5 [12], but at the time of coding, an implementation of Snefru was the most

readily available.

10



A file containing a receipt for the submitted files that includes their authentication codes is created,

and is sent by email to a student after their files are submitted successfully. If the student does not

receive such a receipt after submission, they are told to contact the instructor to resolve the problem.

The authentication code for the receipt is written to the log file, and a copy of the receipt is stored

together with the student’s submitted files. Finally, the problem of student identification is solved by

using an existing and available mapping between usercodes and University identification numbers,

with all submissions being stored in directories labelled with these numbers.

Privacy

Submitted coursework must be stored with sufficient read-protect security mechanisms to prevent

unauthorised access. This is achieved through allowing access only by the users identified in the

appropriate settings files as described in the previous section. Furthermore, writing and reading

to and from these directories is only allowed through the submission and marking modules, and not

in any other way.

Rogue Programs

Once a program has been stored securely, there can still be problems that arise at the point of testing

the program, and the test harness must guard against a number of scenarios.

� It is easy for programs to contain infinite loops and space leaks that cause the software to crash.

The system must be resilient, in that it avoids such situations.

� Some programs may, by design or accident, contain code that adversely affects any of a number

of other systems or processes. The test harness must therefore be secure, so that such Trojan

horses are prevented from causing damage.

The resilience criterion is handled by standard UNIX signalling. That is, whenever an undesired

event occurs, such as the program running beyond a certain time or using more than a pre-set amount

of memory, the operating system sends a signal to the program that the program acts upon by termi-

nating cleanly. The security criterion can be handled by running programs under a dummy usercode,

the previously mentioned slave, which is denied all possible permissions, including a home direc-

tory. Furthermore, during testing, a temporary directory whose name is randomly generated, is created

within the top-level slaves directory in which to store a copy of the program, which is then used for

11



testing. This temporary directory has read and write access denied to all users, including slave, so

preventing discovery of its location by a malicious program.

Submission and Testing

The core of the system consists of three modules. First, the submit module fulfills the function of

copying a student’s assignment to the relevant location in the directory hierarchy. The second module,

onetest, runs a program against a set of data, reporting the results back to the user. Third, the mark

module allows an instructor to enter a final mark for a student into an SQL database. Additionally,

there are a number of smaller modules, with limited functionality, which typically call onetest,

and which are used to implement the full graphical user interface (GUI) as described below. In this

section, the first two of these modules is described.

Coursework Submission

The main functional requirements for coursework submission include the selection by a student of the

files containing coursework they wish to submit, and the copying of those files to a location where

they can subsequently be accessed by authorised staff.

The coursework submission module forms a set-uid program owned by boss, with arguments

of the student username, the course, assignment and exercise numbers, and the names of the files to

be submitted. The main control algorithm of the program is shown in Table 2, with any error being

fatal, causing the program to terminate immediately with a message displayed to the student. The

effective user-id changes between the student and boss repeatedly depending on whether the files in

the student’s file space are being accessed, or data in the BOSS store, the latter being minimised.

The algorithm starts by checking several items of data before proceeding. First, the username is

checked for validity, and if it is valid, the corresponding University identification number is estab-

lished. Then, the course, assignment and exercise numbers are checked for validity, and the specified

filenames are checked for read permission. At this point, the assignment settings file is checked

for submission permission at this date and time by the student. If the student has already submitted,

then the assignment settings file must be checked for permission to resubmit, and any resubmis-

sion must cause the previous submission to be moved to a backup location. A new subdirectory of

the appropriate solutions directory named by the University ID number is then created, and each

12



file to be submitted is copied to that subdirectory. The final part of the submission process requires

an authentication code for each file to be calculated, a receipt file and an authentication code for the

receipt to be created, an entry to be added to the log file, which includes the receipt authentication

code, and an email message containing the receipt to be sent to the student.

Program Testing

As described earlier, one of the key problems in dealing with programming assignments is that it is

difficult to assess the correctness of a program simply by inspecting a paper copy. On-line submission

of assignments not only streamlines the administration of submission, it also facilitates what might

be regarded as the primary requirement of such a system, the automated testing of a program against

specified data sets. This is particularly important, since it enables different parts of a program to be

tested, and the program’s limits to be explored, by providing multiple data sets and running multiple

tests.

Modes of Testing

The testing module is used in two circumstances. First, it is used during the process of assessment,

which is described in more detail later. Second, students can access the testing program with a single

data set for each exercise, so that they can try out a program prior to submission. The aim is not

for the module to assist substantially in their debugging activity, rather to ensure that a program they

think works in fact does so. It is not unusual for programs to generate output containing, for example,

control characters that are not seen when the program is run, but which the testing module would

notice. Also, since students can modify their system environments — and this is especially common

when using UNIX — it is possible for a program to run correctly for a student and fail under the

configuration used by the testing program.

The Testing Process

A testing protocol for each submitted exercise is needed. First, a collection of data sets containing

the input data and the corresponding expected output must be created. Then, a test harness satisfying

two constraints additional to the security conditions detailed above is used to run programs against

the data. First, the test harness must run automatically without user intervention, otherwise it would

13



� if username is valid then

establish corresponding ID

else

error

� if course, assignment and exercise are not valid

or submitted files are not readable then

error

� if settings file does not permit submission then

error

� if student has already submitted then

if not allowed to re-submit then

error

else

move previous submission to back-up location

� create directory in BOSS file space for new files

� for each file

copy file to BOSS file space

calculate authentication code for each file

� create receipt file in BOSS file space

� calculate authentication code for receipt

� add entry to log file

� email receipt to student

Table 2: Algorithm for coursework submission

14



generate its own administrative overheads. Second, in order for subsequent inspection to take place

information must be stored regarding failed tests.

The expected output from a program is stored as a set of files, including two files for the standard

output and standard error streams. Simply by use of indirection, a program requiring interaction via

the standard input and output streams can run without manual intervention. The actual output from

a program is compared file-by-file with the expected output. If an exact match between the two is

needed, a utility such as diff is used to perform the check. For more complex processing, a short

UNIX shell script can be written to preprocess the submitted program’s output prior to comparison

with the expected output files as, for example, if small variations between the files regarding whites-

pace or case sensitivity can be ignored. The results of applying diff are used, after processing, to

generate reports on the differences between the files.

Comparison of the actual and expected outputs has perhaps been the most problematic part of

the software, however. First, any non-printing characters in the input to diff cause it to terminate

immediately, with a non-zero exit status. Unfortunately, especially when using Pascal or C, it is very

easy for a program to generate unexpected control characters in its output. Second, in order for the

marker, and consequently the student, to appreciate the correctness of a program, they must know

exactly how the files differ. However, presenting the output of diff in such a form as to display that

information in a clear and simple to understand form is not an easy task.

The possibility of automatically assigning marks to programs that are partially correct in terms

of output is one that was considered, but which has no good solution. In general, where the output

generated by a student’s program differs from the expected output, it must be inspected manually to

determine the nature of the inconsistency. There are, however, some cases where minimal differences

such as incorrect formatting, incorrect case of letter, etc., might lead to partial marks, and these might

easily be incorporated through the diff options. Similar utilities might be developed for enhanced

capabilities in this respect as, for example, suggested by Reek [2]. Nevertheless, the general case

is still problematic, and assessing the correctness of output when it differs more than just minimally

from the expected output can be a sophisticated issue of judgement for which automatic processes are

unsuitable.

The test harness is used by the instructor to run tests on an unlimited number of data sets. Using

a setuid program, the results of the tests are stored in files in the same directory as the student’s

submitted work. Typically, this program is run once, after the deadline for the assignment in question

15



has passed.

Assessment

It is becoming increasingly important that the quality and consistency of marking should be high and

should be seen to be high. Double-marking is often desirable and, at some institutions, is becoming

mandatory. Once a marking scheme has been chosen for a given exercise, marks awarded must be

justifiable relative to that scheme. The BOSS software implements a relatively strong version of this

paradigm by distinguishing between a marker and a moderator for an exercise.

Running the Tests

The first stage in the marking process is to run the tests on all submitted coursework for a given

exercise, as described above. This may be done by any authorised staff, and can be repeated later if,

for example, some students have been allowed to submit late, in which case only newly submitted

coursework will be tested.

Assuming that tests have been run on a set of programs submitted by a class, the results of the

tests are available to assist in the allocation of marks for that piece of work. While automation of

this allocation of marks reduces the time and effort involved, there may be individual circumstances

where the automatically generated test results require human intervention. For example, a failed test

might be due to an obscure system bug or feature for which it would be inappropriate to penalise the

student. Alternatively, a program that almost worked might be worthy of partial credit.

Using the test harness discussed above, an instructor can run tests on all work for a given exercise,

on multiple sets of data. The results of the tests are then made available via either a text-based or

a graphical interace. The latter allows the instructor to specify other marking criteria beyond the

automatic tests, and for a marker therefore to assign marks without recourse to a paper marksheet.

Several independent markers can be involved to facilitate the double marking increasingly required

by many institutions.

Marksheets

Instructors simply need to specify the categories for which marks are awarded, and the weight at-

tached to these categories, and a graphical marksheet is constructed. The marksheet integrates marks

16



resulting from running and testing the program with those relating to other aspects of the program,

such as style, for example.

The marks resulting from the automatic tests, by which a student’s program is run on several sets

of data and the output compared with expected output, are incorporated into the marksheet directly.

If the output is correct and the program passes, then full marks for that category are declared on the

marksheet. If the program fails, then no marks are awarded, but the tutor or instructor may subse-

quently adjust the automatically assigned marks to give either full, half or zero marks. This is shown

by the bottom four mark categories on the marksheet of Figure 3, which shows a typical window

presented to a marker.

===================================================================

===================================================================

Figure 3 about here

===================================================================

===================================================================

Each marking category is assigned a weighting by the instructor, and this is hidden from the

individual markers to prevent bias. The other capabilities, accessed by the buttons at the top of the

window, allow the marker to perform the following actions.

� Examine the output from the testing program.

� Start a UNIX shell in a separate window and in a new, temporary directory into which all the

student’s files have been copied, so that manual examination, and execution if need be, can take

place.

� Write a note to the instructor if there are any matters that the marker considers should be brought

to their attention.

� Edit a file containing feedback for the student.

The remaining categories of marks are awarded by the instructor interacting with the marksheet

and moving the slider along on a scale of zero to ten. Only when this mark is combined with the

weight, which is not shown to the marker, is the final mark calculated. This allows independent

assessment of various aspects of the program without the marker being biased by the number of marks

17



to be awarded. Before a category is assigned a mark, the unmarked box is highlighted so that it is

obvious which parts of the marksheet need addressing. At present, these marks are awarded manually,

but it is possible for various automated measurements of source code to be made to arrive at concrete

indicators of programming style such as modularisation, commenting, consistency of indentation, and

so on [13, 14, 15].

Subsequently, a moderator, who is typically the course organiser, has access to all of the first pass

marks in order to arrive at a moderated mark for each marking criterion. The moderation window

is illustrated by Figure 4, which shows the relevant buttons at the top as before, but now displays

the marks of the individual markers, here named by usercodes smith and jones, as well as the

automatically assigned marks, indicated by auto. On the right-hand side of the window, the system

offers a suggested average as the final mark, which the moderator, with usercode csrat, can adjust

if appropriate. The final marks are shown in the top right corner.

===================================================================

===================================================================

Figure 4 about here

===================================================================

===================================================================

Once a grade for a student has been established for a given exercise, that grade is stored in an

SQL database, which also contains data such as a student’s name, department and degree programme.

Security here is twofold. Not only does the security of the BOSS system forbid access to the database

by unauthorised users, but the database itself restricts access to data. There is thus double confidence

that marks are kept confidential. The data in the database can be used to produce marksheets for

both the instructor and examination secretaries, or other administrators as necessary, minimising the

administrative time needed for the collation of grades.

Plagiarism Detection

There is a danger inherent in any on-line submission system, that some weaker or dishonest students

may be tempted to copy, and edit, each other’s work prior to submission. Within the BOSS system,

software has been included, called SHERLOCK, to assist in the detection of similar programs submitted

18



for the same exercise.

The approach adopted, which we call incremental comparison, involves the comparison of each

pair of submitted programs five times:

� in their original form;

� with the maximum amount of whitespace removed;

� with all comments removed;

� with all comments and maximum amount of whitespace removed; and

� translated to a file of tokens.

A token is a value, such as name, operator, begin, loop-statement, that is appropriate

to the language in use. The tokens necessary to detect plagiarism may not be the same as those used

in the parser for a real implementation of the language — it is not necessary to parse a program as

accurately as a compiler. The scheme will work even with a very simple choice of tokens, and a

rudimentary parser, and it is simple to update it for a new programming language. Each line in the file

of tokens will usually correspond to a single statement in the original program.

If a pair of programs contains similarities, then it is likely that one or more of these comparisons

will indicate as much. By examining the similarities and the corresponding sections of code in the

original program, it should be possible to arrive at a preliminary decision as to whether the similarities

are accidental or not. This scheme has been implemented in the SHERLOCK utility, which allows an

instructor to examine a collection of submitted programs for similarities. SHERLOCK is described in

detail in [16].

There are other approaches to plagiarism detection. Attribute counting [17, 18, 19] involves as-

signing to each program a single number capturing a simple quantitative analysis of some program

feature; programs with similar attribute counts are potentially similar programs. Similar, but more

complex, techniques include cyclomatic complexity [20] and scope number [21]. Structural compar-

ison of programs [22, 23] is a potentially more complex procedure than comparing attribute counts,

and depends fundamentally on the language in which the programs are written.

Whale [24, 25] and Verco [26] have carried out a detailed comparison of various attribute count

and structure comparison algorithms. They conclude that attribute count methods alone provide a poor

detection mechanism, outperformed by structure comparison, while the structure comparison software

19



developed by Whale Plague [24] and Wise (Yap) [27] report a high measure of success. Although the

software discussed by Whale was not available, SHERLOCK has been run on some of the data sets for

which the results generated by Plague were available. In that instance, SHERLOCK detected all the

instances of possible plagiarism found by Plague, and more, and it appears that the effectiveness of

SHERLOCK is similar to that of Plague. Furthermore, attempts to deceive SHERLOCK by running it

on test data failed.

Use of SHERLOCK has decreased the amount of detected plagiarism in our department. In the first

year of its use in 1994, out of more than 550 submissions for programming assignments, over 6.5%

were both detected by SHERLOCK and subsequently established as genuine instances of plagiarism.

Two years later this had fallen to under 1%. The number of false hits is usually small.

It is clear that the volume of detected plagiarism has decreased substantially. This is due either to

a reduced level of plagiarism, or to a greater proportion of students being able to hide the changes they

have made. The latter, as has already been remarked, is a difficult exercise, and we therefore claim

that the incidence of plagiarism has decreased.

User Interface

The first version of the program featured a text based interface only, and the paradigm an instructor

would use would be to view the text files containing the marks and transcribe them to a paper mark-

sheet. A GUI was considered but rejected on the grounds that with the available tools — the relatively

low-level Xlib graphics toolkit — the time necessary to develop the GUI would be disproportionately

long. The current user interface is a GUI written in Tcl/Tk [28], which was relatively straightforward

to implement. Unfortunately, large programs written using Tcl/Tk are difficult to maintain due to the

fact that it is an easy-to-use scripting language with few modular syntactic features.

Nevertheless, the GUI has provided us with the opportunity to develop a paper-free environment

for staff marking coursework, with the benefit that transcription errors between the BOSS software and

marksheets are eliminated. Figure 3 shows a typical window presented to a marker and Figure 4 shows

one presented to a moderator. An important observation is that the number of keystrokes required is

kept low, so helping both the marking and the moderation phases to be completed rapidly.

The various different parts of the system are treated in a similar way, so that coursework sub-

mission requires the student to select the course, assignment and exercise, then select the files to be

20



submitted and finally either test or submit the work, using a series of interactive windows constructed

using Tcl/Tk. Users with a special status are provided with extra options in their windows for mark-

ing, for example, or for changing the default parameters in the settings files. Thus, while the interface

is consistent in look and feel across all users, it provides extra functionality when required.

For example, Figure 5 shows the window that offers the possibility of submitting an assignment,

testing it against the public sample data provided, marking the assignment, editing the exercise settings

such as CPU time allowed, etc., testing the submitted programs against the unseen data, or editing the

weightings attached to each marking category for the exercise. Of course, this is only presented to

the markers. For students, the same window would appear with only the first two options of testing

or submitting. The window that results from the last of these options is shown in Figure 6 as an

illustration of the ease with which the weightings are attached to particular categories of marks. The

user interface thus provides a high degree of flexibility in allowing users to tailor the parameters of a

particular course to their needs.

===================================================================

===================================================================

Figure 5 about here

===================================================================

===================================================================

===================================================================

===================================================================

Figure 6 about here

===================================================================

===================================================================

Conclusions

Evaluation

In comparison with the related work considered briefly at the start of this paper, BOSS is a significant

improvement. In Dawson-Howe’s system [3], the student’s program is compiled and executed under

21



the students supervision, using data suggested by the instructor, with email messages containing the

program and its results being sent to the instructor. This avoids security problems, but leaves a large

burden on the instructor beacuse students will invariably make mistakes in the testing process, and

submissions will require further evaluation without tools to assist in that process. MacPherson [6]

simply transfers ownership of files from students to the instructor at an appropriate time, while Isaac-

son and Scott [8] require students to place files readable by the instructor in directories under the

instructor’s filestore. In this latter work some limits are imposed on CPU time and file sizes, but both

of these have minimal security features, and still require significant manual effort in terms of marking

beyond efforts to compile and run the submitted programs. Reek’s TRY system [2] compiles and

runs programs for students against the instructors protected data, comparing results with the expected

results, and generating a log file of all such tests. Again, however, student programs are copied to

the instructor’s filestore for compilation and execution. Ceildih [9] is distinct in that it provides an

entirely separate environment in which a student can compile and test programs and, while offering

great functionality, insulates students from standard tools and utilities.

By contrast, BOSS provides a complete and effective submission system that allows the testing

and submission of programs, and their subsequent evaluation by instructors in an integrated fashion.

In the standard case, no extra effort is needed to process the submissions, but the capability for them

to access and manipulate submissions for further evaluation is provided. Extensive marking facilities

and plagiarism detection software are also included. Perhaps most importantly, however, is the great

effort made to ensure that security is paramount and that the possibility of student programs corrupting

the instructor’s files or doing other damage is minimised. Thus, not only does BOSS surpass the range

of functionality of the existing systems, it does so based upon a much stronger model of security.

Benefits

The BOSS system has assisted us by speeding up and making more accurate the process of assessing

students’ programming coursework. Over the course of six years, it has been used successfully on

several first year programming courses using Pascal and the UNIX shell, each attended by between

100 and 200 students, and by students on second-year courses on software engineering using C++,

and programming with automata using lex and yacc. By adopting a limited but well-defined set

of criteria, and ensuring that that the software meets the specifications, we have created a robust and

efficient system that minimises the repetitive administrative tasks faced by instructors.

22



As it stands, the system is functioning well. There has been a generally favourable student re-

sponse, and this has improved as the culture of automatic submission has become established within

the Department. Specifically, students have had virtually no difficulty in using the system. This seems

to imply that the newly established culture has taken root, and that initial efforts at integrating the

system into the fabric of the degree courses are paying off. In addition, instructors have also found

the system to be simple and easy to use, and marking times have been reduced significantly with a

corresponding increase in consistency throughout.

The BOSS system has provided us with a number of benefits without compromising the general

approach taken of maximising exposure to standard tools and utilities. Large numbers of students

have been handled efficiently by the system, with security of assignment submission being assured.

Programs submitted cannot be copied by other students, and the possibility of paper submissions

being accidentally lost is removed. Secretarial staff do not need to be employed at deadlines to collect

assignments, making more efficient use of secretarial time, and the volume of paperwork involved can

be reduced to almost zero both for the instructor and for administrative and secretarial staff.

More importantly, perhaps, the time needed to mark an assignment is reduced considerably, while

the accuracy of marking, and consequently the confidence enjoyed by the students in the marking

process, is improved. In addition, consistency is improved, especially if more than one person is

involved in the marking process.

User Feedback

In terms of students, we sought feedback by means of questionnaires that required students to com-

ment on their experiences of using the system, These were generally favourable, and most students

considered it an easy system to use. The ability to use the utility to test programs in advance of sub-

mission to check the conformance of their programs to the specification was also widely appreciated.

The principal concerns expressed fell into two categories. The first of these covered minor criti-

cisms about the user-interface and the specific messages that the system provides to students when a

program fails the test utility. Many of these criticisms have since been addressed in the latest version

of the BOSS system, and development is continuing so that the user-interface is improved still further.

The second — and perhaps more interesting — category of criticism was that the output expected was

too precisely specified. BOSS is far too “fussy”. This criticism relates to the format of the output spec-

ified — as in the precise layout of tabular output, for example — and also to some students’ desire to

23



design their own user-interfaces by establishing interactive prompting for input. This is an important

point, for it seemed to reflect the preference of first year undergraduates who had had considerable

programming experience prior to joining the course. Many of them were thus used to programming

in an unstructured fashion and were unused to being required to follow precise specifications. This

seems to imply that resistance to the system is only significant in those students who have already

adopted particular styles of programming that may not be appropriate for the particular problem at

hand, but who may have preconceptions about the nature of programming.

Standards and Constraints

The core modules themselves were coded in ANSI C [29] using only system library calls as speci-

fied in the POSIX standard [30], and great care was taken to follow those standards and to perform

exhaustive compile-time and run-time checks on the code. The resulting programs passed both Sun

Microsystems’ cc compiler and the Free Software Foundation’s gcc compiler cleanly with maxi-

mum checking enabled. It is interesting to observe that although roughly half the code is concerned

with mundane tasks such as ensuring all function return values are as expected, the resulting programs

required minimal debugging. Furthermore, the programs were able to be ported to machines running

different versions of the UNIX operating system with no changes being required to the code.

Future Work

We are conscious of the rapid changes in technology affecting the discipline of programming, and

the impact of the Internet on users’ interaction with computers. In consequence, these tools are being

actively developed, via the use of Java [31], to create a networked and platform-independent version

of BOSS, in order to maintain step with these paradigm shifts.

One unanswered question that will become ever more pressing, is how a system such as BOSS

can be adapted to handle arbitrary input and output, rather than just being text-based. As the use of

windows, icons, and other graphical devices becomes the normal paradigm for communicating with

a program, the functionality of a program must be specified in such a way that its output can be

accurately and automatically checked. It may be possible to replace arbitrary GUI front ends with

different ones to be used in testing, but this can constrain the nature of the programs themselves. Such

constraints may, nevertheless, be a small price to pay for the benefits of a system that can adequately

address the problem of submission and assessment of student programs in a secure and effective

24



fashion.

Acknowledgements

The authors wish to thank Geoff Whale for providing the test data and William Smith and Chris Box

for the initial software development.

References

[1] D. G. Kay, P. Isaacson, T. Scott and K. A. Reek. Automated grading assistance for student

programs. ACM SIGCSE Bulletin, 26(1), 381–382 (1994).

[2] K. A. Reek. The TRY system — or — how to avoid testing student programs. ACM SIGCSE

Bulletin, 21(1), 112–116 (1989).

[3] K. M. Dawson-Howe. Automatic submission and administration of programming assignments.

ACM SIGCSE, 27(4), 51–53 (1995).

[4] M. Joy and M. Luck. Software standards in undergraduate computing courses. Journal of

Computer Assisted Learning, 12, 103–113 (1996).

[5] M. Luck and M. Joy. Automatic submission in an evolutionary approach to computer science

teaching. Computers and Education, 25(3), 105–111 (1995).

[6] P. A. Macpherson. A technique for student program submission on UNIX systems. ACM

SIGCSE, 29(4), 54–56 (1997).

[7] M. J. Canup and R. L. Shackelford. Using software to solve problems in large computing

courses. ACM SIGCSE, 30(1), 135–139 (1998).

[8] P. C. Isaacson and T. A. Scott. Automating the execution of student programs. ACM SIGCSE

Bulletin, 21(2), 15–22 (1989).

[9] S. D. Benford, K. E. Burke and E. Foxley. A system to teach programming in a quality controlled

environment. The Software Quality Journal, 177–197 (1993).

25



[10] S. D. Benford, K. E. Burke, E. Foxley, N. H. Gutteridge and A. Mohd Zin. Experience using the

Ceilidh system. Monitor, 4, 32–35 (1993/94).

[11] R. C. Merkle. A fast software one way hash function. Journal of Cryptology, 3(1), 43–58 (1990).

[12] B. Schneier. Applied Cryptography. Wiley, New York (1994).

[13] R. E. Berry and B. A. E. Meekings. A style analysis of C programs. Communications of the

ACM, 28(1), 80–88 (1985).

[14] S. Hung, L. Kwok and R. Chan. Automatic programming assessment metrics. Computers and

Education, 20(2), 183–190 (1993).

[15] M. J. Rees. Automatic assessment aid for Pascal programs. SIGPLAN Notices, 17(10), 33–42

(1982).

[16] M. Joy and M. Luck. Plagiarism in programming assignments. IEEE Transactions on Education

(To appear 1999).

[17] G. Rambally and M. Le Sage. An inductive inference approach to plagiarism detection in com-

puter programs. In Proceedings of the National Educational Computing Conference, 23–29.

Nashville, TN, ISTE, Eugene, OR (1990).

[18] J. Faidhi and S. Robinson. An empirical approach for detecting program similarity within a

university programming environment. Computer Education, 11, 11–19 (1987).

[19] S. Grier. A tool that detects plagiarism in pascal programs. In 12th SIGCSE Technical Sympo-

sium, 15–20. St. Louis, Missouri (1981).

[20] T. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(4), 308–320

(1976).

[21] W. Harrison and K. Magel. A complexity measure based on nesting level. ACM SIGPLAN

Notices, 16(3), 63–74 (1981).

[22] S. Robinson and M. Soffa. An instructional aid for student programs. ACM SIGCSE Bulletin,

12(1), 118–129 (1980).

26



[23] K. Magel. Regular expressions in a program complexity metric. ACM SIGPLAN Notices, 16(7),

61–65 (1981).

[24] G. Whale. Identification of program similarity in large populations. The Computer Journal,

33(2), 140–146 (1990).

[25] G. Whale. Software metrics and plagiarism detection. Journal of Systems and Software, 131–138

(1990).

[26] K. L. Verco and M. J. Wise. Plagiarism à la mode: A comparison of automated systems for

detecting suspected plagiarism. The Computer Journal, 39(9), 741–750 (1997).

[27] M. Wise. Detection of similarities in student programs: Yap’ing may be preferable to plague’ing.

ACM SIGCSE Bulletin, 24(1), 268–271 (1992).

[28] J. K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley (1994).

[29] A. N. S. Institute. Programming Language - C. American National Standards Institute, New

York, NY (1990).

[30] I. of Electrical and E. Engineers. Information Technology – Portable Operating System Interface

(POSIX) Part 1: System Application Program Interface (API) [C Language]. IEEE, New York,

NY (1990).

[31] M. Campione and K. Walrath. The Java Tutorial. Addison-Wesley (1996).

27



File Store

Security

Utilities

User-interface

Testing MarkingSubmission

Figure 1: The System Overview

28



assign.2

course.2

~boss

man

src

doc

audit.log

settings

skel

locks

slaves

bin mark

run_tests

submit

testsubmit

closed bosstest

exec_boss

exec_slave

(directory containing source code for the BOSS system)

(text file containing log of all attempted and successful submissions)

(text file containing system-wide settings)

(directory containing lock files)

(directory used by user "slave" when testing programs)

(program for tutor to examine submissions)

(program to run tests)

(program for student to submit an assignment)

(called by run_tests/testsubmit)

(set-id program)

(set-id program)

settings

students

assign.1

(text file containing course settings)

(text file containing list of students)

course.1

settings

ex.1 settings

solutions

compare.boss

compile.Fortran

test.1 runtest.boss

in stdin

out stdout

stderr

(text file containing settings for assignment)

(script)
ex.2

(settings for exercise only)

(script)

(standard UNIX manual directory)

(directory containing documentation)

(directory containing a skeleton for a course.N directory)

(program to test a submission against ONE test)

(script)

test.2

Figure 2: The BOSS File Space Structure

29



Figure 3: Electronic Marksheet

30



Figure 4: Electronic Moderation Sheet

31



Figure 5: The submission and marking window

32



Figure 6: Modification of weightings for marking categories

33


