
Task-Oriented Solutions
to Over 175 Common Problems

Steve Holzner

Eclipse
Cookbook TM

Covers
Eclipse 3.0

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

140

Chapter 6CHAPTER 6

Using Eclipse in Teams

6.0 Introduction
Professional developers frequently work in teams, and Eclipse is up to the task.
Eclipse supports the Concurrent Versions System (CVS) for this purpose. If you’re
working in a team, you have to coordinate your development work with others to
avoid conflicts. You’re all sharing the same code, which means your work of genius
might be destroyed unintentionally by someone else’s thoughtless efforts.

Source control precludes those kinds of problems because it controls access to
shared code in a well-defined way. Besides controlling access to code, source control
maintains a history of changes so that you can restore the code from earlier versions.
Because it maintains a history of your code, not only can you restore code against
earlier versions, but you can also compare the current code to earlier versions to see
the differences at a glance.

Like much else in the Java world, CVS is an open source project. CVS first appeared
in 1986, when it was a set of Unix shell scripts; it wasn’t until 1989 that dedicated
CVS software first appeared. Today, CVS is available on many operating systems
across the board, from Unix and Linux to Windows.

For details on CVS, take a look at http://www.cvshome.org.

The CVS repository is where developers store code files to be shared. To retrieve a
file from the repository, you check that file out of the repository. When you want to
store your newly changed version of the file, you commit it to the repository.
Refreshing your copy of the code from the repository is called updating it.

CVS also has slightly different terminology than Eclipse; what’s a project to Eclipse is
a module to CVS. Each module gets its own directory in the repository, making it

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Getting a CVS Server | 141

easier to separate modules. Standard projects also are called physical modules, while
logical or virtual modules are collections of related resources.

How many copies of your code are available to be checked out at once? That
depends on which repository model you use. Here are the options:

Pessimistic locking
Sequential access. With this type of locking, only one developer can check out a
file at a time. When the file is checked out, the file is locked. It’s possible for
someone else to check out read-only copies of the file, but not to change the
original. Access is sequential.

Optimistic locking
Random access. With this type of locking, developers can check out and modify
files freely. When you commit changed files, the repository software merges your
changes automatically. If the merge operation has issues, the software will flag
them and ask you to resolve the problems.

CVS uses optimistic locking by default (some CVS software also supports pessimistic
locking). We’ll be using optimistic locking here, which is what Eclipse supports. You
use a CVS server to handle the actual file manipulation, as we’ll do in this chapter.

CVS also automatically assigns a version number to each file when it’s committed.
When you first commit a file, it’s version 1.1 (1.0 on some CVS installations). The
next time, the version number is 1.2, and so on. When you update your code locally,
Eclipse doesn’t just overwrite your local version of a file. Instead, it merges the
changes with your local file in an intelligent way. If conflicts exist, it’ll insert special
CVS markup to make the conflicting lines stand out, and those conflicts will have to
be handled before running the code. Usually updates are smooth, but if there are a
lot of conflicts because there’s been a lot of work on the file or you haven’t updated
in some time, it can take a while to unravel.

CVS also enables you to support multiple development streams, called branches, in
the same module. The main development stream in a module is called the head, and
branches are forks that can diverge from that main stream. For example, a branch
can represent a beta version of the project, or some new capability you’re adding to
your code that you want to test first.

6.1 Getting a CVS Server

Problem
You want to start working with CVS and need to install a CVS server.

Solution
You might already have a CVS server installed; if not, you can download one.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 6: Using Eclipse in Teams

Discussion
Today, most Linux and Unix installations come with a CVS server as part of their
standard distribution. To check if you have a working CVS installation, type cvs

--help on the command line; you should see a list of help prompts. If you can’t find
a CVS server, download one from http://www.cvshome.org. On larger systems, talk to
the support techs if you can’t find a CVS installation.

If you’re running Windows, you can find a number of CVS servers available for
download. For example, the venerable CVSNT is available for free from http://www.
cvsnt.org. Just run the executable to install it.

A variety of CVS servers are available, and they all come with their
own installation instructions. I’m not going to reproduce those instal-
lation instructions here, having been burned by that in the past as new
versions—with totally different installation instructions—appeared.
Usually, installation is not difficult once you’ve downloaded the server
you want. Just check the instructions that come with the download.
And bear in mind that if the install is too complex, and things aren’t
working, other CVS servers are always available.

See Also
Chapter 4 of Eclipse (O’Reilly).

6.2 Creating a CVS Repository

Problem
You need to create a CVS repository to store code to share with others.

Solution
In Linux and Unix, use the command cvs -d path init, where path gives the location
of the directory you want to use as the repository. In Windows CVSNT, use the
Repository tab’s Add button to add a new repository.

Discussion
After installing a CVS server, you need to create a repository in which to store shared
code. In Linux and Unix, you can enter cvs -d path init at the command prompt,
where path is the location of the repository.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Connecting Eclipse to a CVS Repository | 143

When creating a repository, bear in mind that the permissions and
ownership for path have to allow access to all members of the develop-
ment team.

In Windows, CVSNT runs as a Windows service. You start it from the Start menu,
selecting the Service control panel item from whatever program group you’ve added
it to. This opens the CVSNT control panel shown in Figure 6-1. Click the Reposito-
ries tab in the CVSNT control panel, click the Add button, enter the path of the new
repository directory, and click OK. In the figure, we’re using the directory c:/
repository as the CVS repository.

You start the server by selecting the Service control panel item from the program
group to which you’ve added CVSNT, opening the CVSNT control panel. Click the
Start button in both the “CVS Service” and “CVS Lock Service” boxes, which will
make CVSNT display the word Running in both of those boxes, as shown in
Figure 6-2.

See Also
Recipe 6.4 on storing a project in a CVS repository.

6.3 Connecting Eclipse to a CVS Repository

Problem
You want to connect Eclipse to a CVS repository.

Figure 6-1. Selecting a repository

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 6: Using Eclipse in Teams

Solution
In Eclipse, open the Repositories view, right-click that view, and select New ➝

Repository Location, opening the Add CVS Repository dialog. Enter the required
information, and click OK.

Discussion
You have to establish a connection from Eclipse through the CVS server to the CVS
repository before working with that repository. First, make sure your CVS server is
running.

To connect Eclipse to the CVS repository, select Window ➝ Open Perspective ➝

Other, and select the CVS Repository Exploring perspective. After you do this the
first time, Eclipse adds this perspective to the Window ➝ Open Perspective sub-
menu and also adds a shortcut for this perspective to the other perspective shortcuts
at the extreme left of the Eclipse window.

When the CVS Repository Exploring perspective opens, right-click the blank CVS
repositories view at left, and select New ➝ Repository Location, opening the Add
CVS Repository dialog shown in Figure 6-3.

In the Add CVS Repository dialog, enter the name of the CVS server, often the name
of the machine hosting the CVS server, and the path to the CVS repository. To con-
nect to the CVS server, you’ll also need to supply a username and password, as
shown in Figure 6-3 (in this case we’re using integrated Windows NT security, so no
password is needed). You can use two connection protocols with CVS servers, SSH
(secure shell) and pserver. We’ll use pserver here.

Figure 6-2. Running CVSNT

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Connecting Eclipse to a CVS Repository | 145

pserver is a CVS client/server protocol that uses its own password files
and connections. It’s more efficient than SSH but less secure. If secu-
rity is an issue, go with SSH.

Click Finish after configuring the connection. The new connection to the CVS server
should appear in the CVS Repositories view, as shown in Figure 6-4.

A public CVS server is available that gives you access to the code for
Eclipse; go to :pserver:anonymous@dev.eclipse.org:/home/eclipse.

If you wish, you can see what commands Eclipse sends to the CVS
server. To do so, open the CVS console by selecting Window ➝ Show
View ➝ Other ➝ CVS ➝ CVS Console. The CVS Console view will
appear (this view overlaps the standard Console view).

Eclipse 3.0

Eclipse 3.0 also supports CVS SSH2 in addition to the pserver and SSH protocols.
You can enable SSH2 in the SSH2 Connection Method preference page (right-click a
project and select Team ➝ CVS ➝ SSH2 Connection Method). All CVS server con-
nections of type extssh will use SSH2 from that point on.

Figure 6-3. Connecting Eclipse to a CVS repository

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 6: Using Eclipse in Teams

See Also
Chapter 4 of Eclipse (O’Reilly).

6.4 Storing an Eclipse Project in a CVS
Repository

Problem
You have an Eclipse project you want to store in a CVS repository to make it avail-
able to other developers.

Solution
Right-click the project you want to share, and select Team ➝ Share Project. Follow
the directions in the Share Project with CVS Repository dialog.

Discussion
As an example, we’ll create a project here and add it to a CVS repository. The code
for this example project, GreetingApp, appears in Example 6-1. All this code does is
display the message No problem..

Figure 6-4. A new repository created in the CVS Repositories view

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Storing an Eclipse Project in a CVS Repository | 147

To add this project to the CVS repository, open the Java perspective, right-click the
project, and select Team ➝ Share Project. This displays the Share Project with CVS
Repository dialog, as shown in Figure 6-5.

Make sure the “Use existing repository location” radio button is selected, and select
the repository you want to use. Click Finish to add the project to the CVS reposi-
tory. This creates a CVS module with the same name as the Eclipse project.

If you want to give the created CVS module a different name, click
Next instead of Finish, enter the name of the CVS module you want to
create, enter a new module name, and click Finish.

This adds the project to the CVS repository and also opens a Synchronize view in
Eclipse which overlaps with the Console view (more on how to work with the Syn-
chronize view later in this chapter; because there’s nothing to synchronize with at
this point, it’s not of much use to us now).

Example 6-1. The GreetingApp project

package org.cookbook.ch06;

public class GreetingClass

{

 public static void main(String[] args)

 {

 System.out.println("No problem.");

 }

}

Figure 6-5. Sharing a project with a CVS repository

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 6: Using Eclipse in Teams

See Also
Recipe 6.5 on committing files to the CVS repository.

6.5 Committing Files to the CVS Repository

Problem
You’ve edited a file, saved your changes, and want to send it to the CVS repository so
that others can access it.

Solution
Right-click a file, and select Team ➝ Commit.

Discussion
In Recipe 6.4, you saw how to add a project to a CVS repository. To share your code,
you have to check in code files. This requires two steps: first, you add a file to the
CVS repository, which registers the file with the CVS server but doesn’t actually
upload it; then you commit the file, which uploads it to the repository.

Technically, the way to send files to the CVS repository is to add them to Eclipse’s
version control and then commit them. You do that by right-clicking the files and
selecting Team ➝ Add to Version Control. Then select Team ➝ Commit to commit
the files.

However, Eclipse gives you a shortcut here. To commit all the files in a project, right-
click the project, and select Team ➝ Commit. When you do, Eclipse displays the
Add to CVS Version Control dialog. Click the Details button and check the check-
boxes matching the files you want to add to CVS version control; Eclipse will list all
the files in the project, including your Java source files and the .project and .classpath
files. Then click Yes.

If you want to check in and check out projects as Eclipse projects, be
sure to commit the .project and .classpath files.

Eclipse will prompt you for a comment for the set of files you’re committing, giving
you the chance to label those files. In this case, just enter some text, such as The

Greeting App, as shown in Figure 6-6, and click OK.

You also can simply right-click an individual file and select Team ➝ Commit. If the
file is not yet under version control, Eclipse will ask if you want to add it; click Yes.
Eclipse will display the same Commit dialog shown in Figure 6-6, enabling you to
enter a comment for the file before it’s committed.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Visually Labeling Files Under Version Control | 149

When the file is committed, it’s uploaded to the CVS repository and given a version
number. Eclipse also will use a special decoration for files under version control if
you tell it to do so; see Recipe 6.6.

See Also
Recipe 6.6 on visually labeling files under version control; Chapter 4 of Eclipse
(O’Reilly).

6.6 Visually Labeling Files Under Version
Control

Problem
You want to see at a glance what files in a project are under version control.

Solution
Turn on CVS decorations by selecting Window ➝ Preferences ➝ Workbench ➝ Label
Decorations, check the CVS checkbox, and click OK.

Discussion
To make Eclipse indicate which files are under version control, you turn on CVS
label decorations. Select Window ➝ Preferences ➝ Workbench ➝ Label Decorations
to open the Preferences dialog, then check the “CVS” checkbox, and click OK. This
makes Eclipse add a gold cylinder to the icons of files under CVS version control, as
shown in the GreetingApp project in Figure 6-7. Note also that files in the repository
will have a CVS version number showing; that version is 1.1 here.

Figure 6-6. Committing files

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 6: Using Eclipse in Teams

See Also
Chapter 4 of Eclipse (O’Reilly).

6.7 Examining the CVS Repository

Problem
You want to explore the CVS repository from inside Eclipse.

Solution
Use the CVS Repository Exploring perspective. Open this perspective by selecting
Window ➝ Open Perspective ➝ Other ➝ CVS Repository Exploring. Or, if you’ve
opened this perspective in the past—which means Eclipse will have added it to the
Open Perspective menu—select Window ➝ Open Perspective ➝ CVS Repository
Exploring.

Discussion
The CVS Repository Exploring perspective enables you to see what’s inside the CVS
repository. For example, you can see the entire GreetingApp project, all the way
down to the GreetingClass.java file, in the CVS Repositories view at left in
Figure 6-8.

Figure 6-7. Files under version control

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Examining the CVS Repository | 151

This project, GreetingApp, is in the repository’s HEAD section, which is the main
development stream.

Also note the CVSROOT directory, which holds CVS administrative
data; the Branches node, which holds any files in other branches of
development; and the Versions node, which holds explicitly labeled
versions.

Eclipse 3.0

In Eclipse 3.0, you can determine who’s responsible for a bug. You right-click a file
and select Team ➝ Show Annotation to open a CVS Annotation view showing the
selected file in the CVS Repositories view. When you select a line in the editor, the
CVS Annotation view reveals who released that edit to the file.

See Also
Recipe 6.8 on checking projects out of a CVS repository; Recipe 6.13 on creating
CVS branches; Chapter 4 of Eclipse (O’Reilly).

Figure 6-8. The CVS repository perspective

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 6: Using Eclipse in Teams

6.8 Checking Projects Out of a CVS Repository

Problem
Someone wants to check out a project of yours from the CVS repository.

Solution
In Eclipse, right-click a file in the CVS Repositories view, and click Check Out As.
Then use the Check Out dialog to check out the item.

Discussion
If other people want to check out a module that you’ve stored in a CVS repository,
they have to create a connection to the repository as we did earlier in this chapter. To
do this, they should right-click the CVS Repositories view; select New ➝ Repository
Location; and enter the name of the CVS server, the location of the repository, the
username, the password, and the type of connection.

They can then open the CVS Repositories view to explore the files in the repository.
To check out the GreetingApp module, they can right-click the module in the Reposi-
tories view and click Check Out As from the context menu. Eclipse will open the
New Project dialog and automatically create a new project corresponding to the CVS
module.

If you’re sharing an Eclipse project, and each CVS module has its own Eclipse .
project file, you can select Check Out As Project from the Repositories view’s con-
text menu, which checks out an Eclipse project and adds it to the Package Explorer.
Note that if your code isn’t in a project of a kind that Eclipse can recognize, it will
ask you what type of project to create.

See Also
Chapter 4 of Eclipse (O’Reilly).

6.9 Updating Your Code from a CVS Repository

Problem
You want to update your local code with the code in a CVS repository.

Solution
Right-click the file, and select Team ➝ Update, then resolve any conflicts. Alterna-
tively, if you just want to replace your version with what’s in the CVS repository,
right-click the file and select Replace With ➝ Latest From HEAD.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Updating Your Code from a CVS Repository | 153

Discussion
For example, say that someone checked out your code and changed this line:

public static void main(String[] args)

{

 System.out.println("No problem.");
}

to this:

public static void main(String[] args)

{

 System.out.println("No problems at all.");
}

When she makes these changes in his version of Eclipse, a > character appears in
front of files that haven’t yet been committed, as shown in Figure 6-9.

When she commits her changes, the latest version of GreetingClass.java in the CVS
repository changes from 1.1 to 1.2, as shown in Figure 6-10.

To update your code with the most recent version of the code in the repository
(which is now Version 1.2, as stored by the other developer), right-click the project
or file in your version of Eclipse and select Team ➝ Update. Doing so upgrades your
version of the project’s files to version 1.2—if there’s no conflict.

Figure 6-9. Outgoing changes ready

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 6: Using Eclipse in Teams

If you’ve changed this line of code yourself to something such as this:

public static void main(String[] args)

{

 System.out.println("No problems here.");
}

there will be a conflict with the new line in the new version, version 1.2, of the file.
Eclipse will mark that conflict by listing both versions in your code with some added
CVS markup such as this:

public static void main(String[] args) {

<<<<<<< GreetingClass.java
 System.out.println("No problems here.");
=======
 System.out.println("No problems at all.");
>>>>>>> 1.2
 }

}

It’s up to you to handle these conflicts in your code (Eclipse is not going to compile
your code until the CVS markup has been dealt with and removed). Letting Eclipse
handle updates like this is one way to handle updates from the CVS repository, but if
the changes are substantial, it’s best to synchronize with the repository, an issue we
discuss in Recipe 6.10.

Figure 6-10. A new version in the CVS repository

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Your Code with the CVS Repository | 155

Note that if you just want to replace your version of a file with the latest version of
the file in the main development stream for the project in the CVS repository, right-
click the file and select Replace With ➝ Latest From HEAD.

6.10 Synchronizing Your Code with the CVS
Repository

Problem
You’ve got a lot of changes from the version of a file in the CVS repository and want
to get your code up to speed.

Solution
Right-click the project and select Team ➝ Synchronize with Repository. Then take a
look at the synchronization issues that Eclipse displays side by side.

Discussion
Synchronizing with the repository enables you to compare changes that have been
made side by side in an easier format than the update merge format. For instance,
say that the version of the code in the repository uses this code:

public static void main(String[] args)

{

 System.out.println("No problems at all.");
}

But you’ve changed that line of code to this:

public static void main(String[] args)

{

 System.out.println("No problems here.");
}

To synchronize your code with the version of the file in the repository, right-click the
project and select Team ➝ Synchronize with Repository. Then double-click the
GreetingClass.java node in the Structure Compare view to take a look at the synchro-
nization issues for that file. You can see the results in Figure 6-11.

Note the side-by-side comparison going on at the bottom of Figure 6-11, where your
local file is being compared to that in the CVS repository. As shown in the figure,
lines appear connecting the differences in the files.

You can use the up and down arrow buttons at right in the Java Source Compare
view to navigate between changes. You also can use the two arrow buttons next to
the navigation buttons to accept or make changes. The button with the left-facing
arrow copies the current change from the repository to your local code, and the but-
ton with the right-facing arrow copies the current change from your local file to the

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 6: Using Eclipse in Teams

repository. After you’ve synchronized your version of the code with that in the repos-
itory, commit your changes to the repository.

Eclipse 3.0

Eclipse 3.0 has a handy way to look at changes in the local document as compared to
the version of that document in the CVS repository. Right-click the Quick Diff ruler,
and set the Set QuickDiff Reference item to CVS Repository. This makes the Quick-
Diff bar compare recent changes to those in the CVS repository—very handy.

See Also
Recipe 4.6 on comparing files against local history; Recipe 4.7 on restoring elements
and files from local history; Recipe 6.9 on updating code from a repository; Chapter
4 of Eclipse (O’Reilly).

6.11 Creating Code Patches

Problem
You need to coordinate your development with another team of developers using a
patch they can install to update their code.

Figure 6-11. Synchronizing code

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Creating Code Patches | 157

Solution
Create a code patch so that they can update their code. (Note that this is a code
patch, not a binary patch. Eclipse can use this patch to update source code to match
another version.)

Discussion
Say your version of the code displays the text "No problems here.":

public static void main(String[] args)

{

 System.out.println("No problems here.");
}

But the code the other team is using from the CVS repository displays "No problems

at all.":

public static void main(String[] args)

{

 System.out.println("No problems at all.");
}

To update the other developers without changing version numbers, you can create a
code patch. To create a code patch, Eclipse compares your local code to what’s in
the repository and creates a patch file holding the differences.

To create a code patch using your local version of a file as the version to which the
patch will update the version in the repository, save your file locally, right-click it,
and select Team ➝ Create Patch, opening the dialog shown in Figure 6-12.

In this example, we’ll save the file named patch in the current workspace, as shown
in Figure 6-12. Click the Finish button to save the patch.

This creates the text file named patch. Here’s what that file looks like; you can see
the line to remove marked with a - and the line to add marked with a +:

Index: GreetingClass.java

===

RCS file: c:/repository/GreetingApp/org/cookbook/ch06/GreetingClass.java,v

retrieving revision 1.2

diff -u -r1.2 GreetingClass.java

--- GreetingClass.java 25 Feb 2004 16:34:07 -0000 1.2

+++ GreetingClass.java 25 Feb 2004 18:12:18 -0000

@@ -17,6 +17,6 @@

 public static void main(String[] args)

 {

- System.out.println("No problems at all.");

+ System.out.println("No problems here.");

 }

 }

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 6: Using Eclipse in Teams

To apply the new patch to code that has not yet been patched, right-click the file to
be updated in Eclipse and select Team ➝ Apply Patch, opening the dialog shown in
Figure 6-13.

Figure 6-12. Creating a new patch

Figure 6-13. The Apply Patch dialog

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Naming Code Versions | 159

Click Next to open the dialog shown in Figure 6-14. In this dialog you can review the
changes the patch will create in the local version of the file. As shown in the figure,
Eclipse will change the line:

System.out.println("No problems at all.");

to:

System.out.println("No problems here.");

To apply the patch, click Finish.

Applying the patch makes this change to the code in the other team’s installation of
Eclipse, as shown in Figure 6-15. Note that the version number of the file was not
changed, but the file was updated with the new code.

6.12 Naming Code Versions

Problem
You’ve got a milestone build of your project, and you want to save it by name in the
CVS repository for easy reference later on.

Solution
Tag the project with a version name by right-clicking it and selecting Team ➝ Tag As
Version.

Figure 6-14. Accepting a patch

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 6: Using Eclipse in Teams

Discussion
If you’ve created a milestone build of your project, you might want to save it by
name. Doing so makes CVS store the tagged version so that you can access it by
name later.

Right-clicking a project under version control, and selecting Team ➝ Tag As Version
opens the dialog shown in Figure 6-16. In this case, we’re going to name our current
version of the project Gold_Edition, as shown in the figure.

Note that version labels must start with a letter, and they cannot include spaces or
these characters: `$,.:;@|'. After tagging the current version with this name, you can
find it in the Versions node in the CVS Repositories view, as shown in Figure 6-17.

Figure 6-15. Applying a code patch

Figure 6-16. Tagging a version of your code

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Naming Code Versions | 161

You can check out a tagged version of a module by right-clicking it in the CVS
Repositories view and selecting context menu items such as Check Out as Project, as
with any other CVS module. Alternatively, you can right-click a project in the Pack-
age Explorer and select Replace With ➝ Another Branch or Version, opening the dia-
log shown in Figure 6-18. Select the version with which you want to replace the
current project, and click OK.

Figure 6-17. A new tagged version

Figure 6-18. Accessing a milestone build

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 6: Using Eclipse in Teams

See Also
Recipe 6.4 on storing an Eclipse project in CVS; Recipe 6.5 on committing files to
the repository.

6.13 Creating CVS Branches

Problem
You want to develop a new version of your code, such as a beta version, by creating a
new branch in your development tree.

Solution
Add a new branch to your project’s development tree by selecting Team ➝ Branch.

Discussion
CVS also enables you to create new branches in your code’s development tree. Such
branches can act as alternate streams of development for your code; e.g., you might
want to develop a new version of your code that uses prompts in another language.

To create a branch, right-click a project and select Team ➝ Branch, which opens the
Create a new CVS Branch dialog shown in Figure 6-19. In this example, we’ll name
the new branch Spanish_Version, as shown in the figure. At the same time, you can
create a new version name for your code that will act as a reference, giving Eclipse a
reference point for merging the branch into the main stream if you want to do that;
Eclipse will suggest the name Root_Spanish_Version here.

Clicking OK here opens the new branch in Eclipse, as shown in Figure 6-20 (note the
project name in the Package Explorer).

Figure 6-19. Creating the Spanish_Version branch

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Creating CVS Branches | 163

You can check out the new branch from the CVS Repositories view, as shown in
Figure 6-21.

Figure 6-20. A new branch

Figure 6-21. The new branch in the CVS Repositories view

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 6: Using Eclipse in Teams

You can merge branches back into the main development stream when needed. To
do that, right-click the branch in the Package Explorer, and select Team ➝ Merge,
which opens the Merge dialog shown in Figure 6-22. Select the merge point for this
operation—in this case, Root_Spanish_Version—and click Next.

The next dialog enables you to select the branch from which you want to merge. In
this case, select Spanish_Version, as shown in Figure 6-23.

Clicking Finish in this dialog completes the merge operation.

Figure 6-22. Selecting a root version to merge to

Figure 6-23. Merging a branch

