
Software Engineering
with Objects and Components

Open Issues and Course Summary
Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 22 2

A Revision of SEOC

Is software engineering with objects and 
components a good way of building systems?
Software development process
• Lifecycle models and main stages
• Process management
• Testing
• Maintenance and Evolution

Introduction to UML Diagrams
• Use cases
• Class models
• CRC cards
• Interaction diagrams
• State diagrams
• Implementation diagrams

Reuse and components
Dependable systems



© 2004-2006 SEOC - Lecture Note 22 3

A Revision of SEOC

Why are we doing this?
• To build good systems

• What are good systems?
• Why do we need them?

Why a unified language?

A unified language should be (and UML is?)
• Expressive
• Easy to use
• Unambiguous
• Tool supported
• Widely used



© 2004-2006 SEOC - Lecture Note 22 4

SEOC and Development Processes

Development process
• Risk management is central
• Iteration to control risk
• Architecture-centric and 

component-based
(Unified?) design 
methodology
• Pros: dependable, 

assessment, standards
• Cons: constraints, 

overheads, generality
• Unified modelling language 

combines pros while avoiding 
cons

The unified process
• Inception, Elaboration, 

Construction, Transition
• There are many other 

processes (e.g., Spiral, 
Extreme Programming, etc.)

(Rational) Unified Process - RUP



© 2004-2006 SEOC - Lecture Note 22 5

UML: Status and Issues
History:
• 1989-1994 OO “method wars”
• 1994-1995 three Amigos and birth of UML
• Oct 1996 feedback invited on UML 0.9
• Jan 1997 UML 1.0 submitted as RFP (Request for Proposal) 

to OMG (Object Management Group)
• Jun 1999 UML 1.3 released
• Sep 2000 (some UML 2.0 RFP’s submitted
• Feb 2001 UML 1.4 draft specification released
• UML 1.5;
• Current Version: UML 2.0. adopted in late 2003

Open issues
• UML semantics
• Tool support
• OCL (Object Constraint Language)



© 2004-2006 SEOC - Lecture Note 22 6

What's new in UML 2.0
Nested Classifiers: In UML, almost every model building 
block you work with (classes, objects, components, behaviors 
such as activities and state machines, and more) is a 
classifier. In UML 2.0, you can nest a set of classes inside 
the component that manages them, or embed a behavior (such 
as a state machine) inside the class or component that 
implements it. 
Improved Behavioral Modeling: In UML 1.X, the different 
behavioral models were independent, but in UML 2.0, they all 
derive from a fundamental definition of a behavior (except 
for the Use Case, which is subtly different but still 
participates in the new organization). 
Improved relationship between Structural and Behavioral 
Models: UML 2.0 lets you designate that a behavior 
represented by (for example) a State Machine or Sequence 
Diagram is the behavior of a class or a component



© 2004-2006 SEOC - Lecture Note 22 7

Requirements Capture

Users have different potentially conflicting 
views of the system
Users usually fail to express requirements 
clearly
• Missing information
• Superfluous and redundant information
• Inaccurate information

Users are poor at imagining what a system 
will be like
Identifying all the work needing support by 
the system is difficult



© 2004-2006 SEOC - Lecture Note 22 8

Static Structures
Desirable to build system quickly and cheaply

Desirable to make system easy to maintain and 
modify

Identifying classes
• Data driven design
• Responsibility driven design
• Use case driven design
• Design by contract

Class diagrams document: classes (attributes, 
operations) and associations (multiplicities, 
generalisations)

System is some collection of objects in class model



© 2004-2006 SEOC - Lecture Note 22 9

Validating the Class Model

CRC Cards: class, responsibility and 
collaborators

UML interaction diagrams

CRC cards and quality
• Too many responsibilities implies low cohesion
• Too many collaborators implies high coupling

CRC cards used to
• Validate class model, using role play
• Record changes
• Identify opportunities to refactor



© 2004-2006 SEOC - Lecture Note 22 10

Interactions

Sequence and Communication diagrams
• documents how classes realize use cases
• thus, help to validate design

Other uses: design patterns, component use, 
packages
Instance versus generic
Procedural versus concurrent
Law of Demeter
Creation and deletion of objects
timing



© 2004-2006 SEOC - Lecture Note 22 11

Other UML Diagrams…

Describing object behaviour
• State diagrams
• Activity diagrams

Implementation diagrams
• Package Diagrams
• Composite Structures
• Component Diagrams
• Deployment Diagrams



© 2004-2006 SEOC - Lecture Note 22 12

Other Software Engineering Issues

Testing
• Testing strategies: top- down versus bottom- up, 

black- box versus glass- box, stress testing
• Categories (unit, integration, acceptance)
• Regression testing
• Test plans
• OO and component issues

Reuse and components
• Type of reuse: Knowledge (artefacts, patterns), 

software (code, inheritance, template, component, 
framework)

• success stories, pitfalls and difficulties with 
(component) reuse

• Reuse not free and requires management



© 2004-2006 SEOC - Lecture Note 22 13

What else did SEOC cover?
Maintenance and Evolution
• Accounts for significant part of project costs and developer 

effort
• Types: corrective, adaptive, perfective, preventive
• …is hard, requires management,…
• Dealing with legacy code: redevelop, transform (restructure, 

re-engineer, recapture), encapsulate
Software Quality
High Dependability Engineering
• Lots of scary stories…
• Software engineering borrows heavily from traditional 

engineering
• Although software is significantly different

• Focus on process rather than product
• More complex and less visible
• Fails in different ways
• Is far more subject to change



© 2004-2006 SEOC - Lecture Note 22 14

SEOC Lecture Notes
Lecture Note 01 - SEOC Overview. 
Lecture Note 02 - Requirements 
Engineering. 
Lecture Note 03 - Use Cases. 
Lecture Note 04 - Software Design.
Lecture Note 05 - Class Diagrams. 
Lecture Note 06 - CRC Cards. 
Lecture Note 07 - Project Management. 
Lecture Note 08 - Package Diagrams. 
Lecture Note 09 - Composite Structures. 
Lecture Note 10 - Component Diagrams. 
Lecture Note 11 - Deployment Diagrams. 
Lecture Note 12 - Sequence Diagrams. 
Lecture Note 13 - Communication 
Diagrams. 

Lecture Note 14 - Activity Diagrams. 
Lecture Note 15 - Statechart Diagrams. 
Lecture Note 16 - Software Construction. 
Lecture Note 17 - Software Testing.
Lecture Note 18 - Software Maintenance 
and Evolution.
Lecture Note 19 - Reuse and Components. 
Lecture Note 20 - Software Quality. 
Lecture Note 21 - Engineering High-
Dependability Systems. 
Software Engineering: An industry 
perspective - Invited Industry Speakers 
of JPMorgan delivered the lecture. 
Lecture Note 22 - SEOC - Open Issues 
and Course Summary. 



© 2004-2006 SEOC - Lecture Note 22 15

SEOC Practical and Resources
SEOC Practical

Requirements gathering, 
UML Design and Java 
Implementation

Group project

3 teams in each tutorial 
group

Tutorials

SEOC Resources

References 
complementing and 
extending lecture notes

Main Tools
• ArgoUML, Eclipse



© 2004-2006 SEOC - Lecture Note 22 16

Software Engineering 
Any Magic/Silver Bullet?

See (in the resource web page) 
a (kind of historical) list of papers on “Software 
Engineering Bullets”


