
Engineering
High-Dependability Systems

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 21 2

Socio-technical Systems
What is Dependability?
Dependability is that
property of a computer
system such that reliance
can justifiably be placed on
the service it delivers.

The service delivered by a
system is its behavior as
perceived by its user(s).

A user is another system
(human or physical)
interacting with the system
considered.

What are Socio-technical
Systems? Systems involving
humans, organizations,
environment,…

Here is a holistic view of
Socio-technical Systems

Software is a (significant)
part of the “whole system”

Environment

Software

HardwareLiveware

© 2004-2006 SEOC - Lecture Note 21 3

What is Dependability?

ATTRIBUTES

AVAILABILITY

RELIABILITY

SAFETY

CONFIDENTIALITY

INTEGRITY

MAINTAINABILITY

DEPENDABILITY MEANS

FAULT PREVENTION

FAULT TOLERANCE

FAULT REMOVAL

FAULT FORECASTING

IMPAIRMENTS

FAULTS

ERRORS

FAILURES

© 2004-2006 SEOC - Lecture Note 21 4

(Some) Flavours of Dependable Systems

Safety-critical: failure leads to serious
injury, loss of life, or significant
environmental damage
Security-critical: access control,
permissions and monitoring (potentially in
the face of malicious attack) a key issue
Fault-tolerant: system is robust – can
withstand errors in, or failures of, parts of
the system (e.g., auto-pilots)
High-reliability: likelihood of failure-on-
demand exceptional low (e.g., fire-safety
shutdown systems)

© 2004-2006 SEOC - Lecture Note 21 5

What is undependability?

“Classic” high provide failures:
• Mars Climate Orbiter
• Ariane 5
• Therac 25
• …

What else?
• pervasiveness of computers (e.g., Y2K)
• Multiple low- criticality failures
• Dependence of society
• Service loss: “the system is down”

Impact on organizations
• NATS, NHS, finance,…

© 2004-2006 SEOC - Lecture Note 21 6

NASA’ Mars Climate Orbiter
Part of Mars Surveyor programme (1993)
Developed at cost of $327.6 million (orbiter and lander)
Launched December 1998
Intended to enter Mars orbit September 1999. at 210km altitude
September 23rd, attempted orbit at 57km, burned up in Martian
atmosphere
Investigation – Phase 1 Mishap Investigation report, November
1999
• Root cause: failure to use metric units in ground software file “Small Forces”
• Team developing SM_FORCES used English units of pounds-seconds
• Team developing navigation software algorithm assumed metric units of

Newton-seconds.
• Project SIS (Software Interface Specification) not followed

Contribution causes
• Process did not adequately address transition from development to

operations
• Inadequate communication between teams
• V&V process did not adequately address ground software

© 2004-2006 SEOC - Lecture Note 21 7

Therac 25 Radiotherapy Machine
Therac-25 had two operating modes:
• Low intensity (electron radiation), wide spread
• High intensity (X-ray radiation), tight focus

Software fault in data entry permitted high
intensity, wide spread
• X-ray generated by placing tungsten shield as “filter” for

high-intensity electron beam
• Set-up process takes considerable time
• Changes during set-up not validated

6 known accidents between June 1985 and January
1987, leading to 2 confirmed deaths

Hardware interlocks in Therac-20 removed
(software error present, but caused blown fuse)

© 2004-2006 SEOC - Lecture Note 21 8

(Some) Other Major Software Failures

London Ambulance Service

Taurus Financial System

CUFS (Cambridge University Financial
System)

Swanwick ATC? Proposed 1988 (for 1996),
building commenced 1991, completed 1994,
software working “by winter 2002”?

© 2004-2006 SEOC - Lecture Note 21 9

Safety Critical Systems
Variety of industrial sectors; both regulated and
(relatively) unregulated
• Regulated

• Hazardous manufacturing (e.g., chemical, explosives, etc.)
• Travel and transport (e.g., air, rail, sea)
• Energy (e.g., nuclear, petrochemical)

• (less) regulated
• Automotive (e.g., engine controllers, ABS, etc.)
• Medical informatics (e.g., radiotherapy, anaesthetics, medical

expert systems, etc.)
Focus on design for assessment
Motivation/drivers for safety culture
whole system issues
Software not necessary susceptible to traditional
engineering approaches

© 2004-2006 SEOC - Lecture Note 21 10

Regulation and Assessment
Regulatory standards:
• National and international
• Generic and domain-

specific
• Independent assessment

and regulatory authorities
Safety cases:
arguments of
acceptable safety of
proposed system
• Pre-1990’s: largely

prescriptive
• 1988: Piper-alpha; Cullen

inquiry highly critical of
“box ticking”

• Post-Cullen: move to goal-
setting standards

Structured Safety Cases

Goal Structuring Notation (GSN)

© 2004-2006 SEOC - Lecture Note 21 11

A Safety Case

A safety case is a document, or collection
of documents, that presents the arguments
for believing that a proposed potentially
dangerous system is acceptably safe

It sets out the risks involved with the
operation of the process or equipment and
the possible consequences of failure, and
specifies what will be done (or has been
done) to minimise the probability and the
impact of these failures

© 2004-2006 SEOC - Lecture Note 21 12

Motivation and Drivers for Safety
Economic – cost benefit analysis (one life ~ £1-2
million)

Responsibility
• Developer versus assessor versus regulator
• In-house versus 3rd party (e.g., COTS/SOUP)

Liability, e.g., British Rail:
• Pre-privatisation: HSE, rail regulatory authority
• Post-privatisation: HSE, rail regulatory authority, Railtrack,

3rd party maintenance, strategic rail regulator, rail safety
assessor,…

History
• Design for significant accidents
• Safety culture “disaster-driven”
• No significant automotive/medical disasters…?

© 2004-2006 SEOC - Lecture Note 21 13

Software Engineering for Safety

No “new” software engineering techniques
Adoption of traditional, physical engineering
techniques
• For design (e.g., triple modular redundancy, fault

tolerance, failsafe, error recovery, etc.)
• For analysis (e.g., hazard analysis, fault tree

analysis, failure modes, effects analysis, etc.)
…but software unlike physical systems
• Often open and evolving
• High functional complexity
• Common mode failures
• Complex dependencies
• Software errors are all latent

© 2004-2006 SEOC - Lecture Note 21 14

Design for assessment
Process versus product
• Design process used will lead to safe system versus system

produced is shown to be safe
Quality versus quantitative
• Claims of good quality (e.g., unsafe states not possible) versus

numerical measures of, for example, probability of error
Formal verification
• Use of formal methods. However, formal models often constructed

but not verified
Adoption of traditional engineering analyses
• HAZOPS (HAZard and Operability Studies), FMEA (Failure Modes

and Effects Analysis), FTA (Fault Tree Analysis)
Software specified standards
• E.g., MOD 00-55, IEC 61508

Responsibility
• Open issue – responsibility versus liability

© 2004-2006 SEOC - Lecture Note 21 15

Safety Standards for Software

MOD Def.Stan. 00-55 – Procurement of
Safety Critical Software in Defense
Equipment
• Requirements:

• Safety management
• Software engineering practice

• Guidance:
• Lifecycles
• Hazard analysis
• Risk analysis
• V&V
• Independent auditing
• …

© 2004-2006 SEOC - Lecture Note 21 16

Safety Standards for Software
IEC 61508 – Functional Safety of
electrical/electronic/programmable electronic
safety related systems
• Safety at the system level

• The overall safety lifecycle
• Management of functional safety
• Hazard analysis, risk reduction and safety integrity levels

• Hardware and architectural safety
• Managing hardware
• Failure probabilities
• Integrating hardware into the safety lifecycle

• Software safety
• Safety related software
• Selecting development methods and tools
• Verification and validation

© 2004-2006 SEOC - Lecture Note 21 17

Computer-related accidental death
An empirical exploration (D. MacKenzie, 1994)

Computer-related – as before

Accidental death – non-deliberate (i.e.,
military); empirically “easy” to measure

Causes
• 4% physical (chiefly electromagnetic interference)
• 3% software error

• Therac-25 (2) + Patriot (28)
• 92% failure in human- computer interaction
• Estimated number of deaths (until end 1992): 1,100

+/- 1,000

© 2004-2006 SEOC - Lecture Note 21 18

Fatalities due to Software Error
1986, Therac-25
• Radiotherapy machine
• Two operating modes:

• Low intensity, wide spread
• High intensity, tight focus

• Software error in data entry permitted high intensity, wide
spread

• Hardware interlock in Therac-20 removed
• Overdosing leads to 2 confirmed deaths

1991, Patriot anti-Scud missile system
• Internal clock uses tenths of seconds
• Binary rounding error known
• Long run times not anticipated
• 25th February: Alpha Battery in uniterrupted operation for

over 100 hours; unable to track Scud missiles; 28 US
servicemen killed

• 26th February: software fix arrives

© 2004-2006 SEOC - Lecture Note 21 19

Fatalities due to HCI Failures

1992, A320 airbus crashes after over-rapid
descent, 87 die. “Glass cockpit” descent
display of 3.3 (thousands of feet per
minute) wrongly interpreted as angle –
Airbus denies responsibility (although
interface changed subsequently).
Similar incidents
• Habsheim 1988, Bangalore 1990, Moscow 1991,

Nagoya 1994, Toulouse 1994, Paris 1994,….
1998, USS Vincennes shoots down Iran Air
airliner, all 290 on board die: weapon system
human interface deemed “not optimal”

© 2004-2006 SEOC - Lecture Note 21 20

Lufthansa Airbus A320 Crash, Warsaw
14 Sept. 1993, flight DLH 2904 from Frankfurt
overruns runway on landing at Warsaw Airport,
Poland
• co-pilot and 1 passenger die, 54 people hospitalised

Autopilot found to have prevented reverse thrust
braking for 9 seconds
Specification of checks to sever (height, wheel-
spin, weight on both wheels)
Dangers of in-flight reverse thrust activation: May
1991, Boening 767 brought down over Thailand,
killing all on board
Pilot error/specification error? Airbus denies
responsibility (although code subsequently changed)

© 2004-2006 SEOC - Lecture Note 21 21

Fatalities due to HCI Failures
1992, London Ambulance Service Computer Aided
Despatch Systems
• primarily management failure, claims of 20-30 deaths

1982-1991, North Staffs. Royal Infirmary
radiotherapy
• Double error-correction leads to underdosing of around

1,000 patients, 401 die
• Clinical verdict is “tens rather than hundreds” due to double

error-correction

1994, Toulouse: Airbus A330 stalls during testing.
Flight level set at 2,000ft instead of 7,000ft
• 7 dead including Airbus chief test pilot
• Attitudes to “safety envelope” different from Airbus and

Boeing

© 2004-2006 SEOC - Lecture Note 21 22

Where is the danger?

Software does not directly cause fatalities

Interaction between software and physical
world

All software errors latent; present in
specification
• Requirements missed, incorrect or misunderstood
• Failure to correctly implement specification rarer,

e.g., NASA Galileo/Voyager mission critical
software

© 2004-2006 SEOC - Lecture Note 21 23

How Dangerous is Software?

Estimated number of deaths (until end
1992): 1,100 +/- 1,000
Compare with UK road deaths for 1992
alone: 4,274
Human perception of risk and danger
complicated
• Degree of personal control
• Anticipated benefit
• Availability of data
Hypothesis: software is safe, because we
believe it to be dangerous

© 2004-2006 SEOC - Lecture Note 21 24

Where does SEOC fit in?
Art, Craft, Science???
• Science: strong theoretical foundation, knowledge-based

teaching
• Craft: little theory, skill-based apprentices
• Art: highly subjective, innate ability crucial

Errors are latent (often in requirements or
specification)

Physical system convex, e.g., beam is tested for
100kg load and 1000kb load, can assume will carry
any load between 100-1000kg

Software not convex, but structured
• Can partition system; e.g., independence of failures in

interface and operation (c.f., Therac-25)

© 2004-2006 SEOC - Lecture Note 21 25

Where does SEOC fit in?
Process oriented assessment
• E.g., lifecycle models, project planning and management,

structured test plans,…
• Combining qualitative and quantitative modelling and

assessment

Avoiding failure in communication
• During design (c.f., Mars Climate Orbiter)
• During assessment (c.f., Voyager and Galileo; Arianne 5)
• Validation as well as verification (c.f., LASCAD)

(reuse of) trusted/tested components
• E.g., 3rd party developers of high-dependability components

Principled composition of components
• Theory of composition, e.g., independence of failures in

component

© 2004-2006 SEOC - Lecture Note 21 26

Summary

Software Systems as Socio-technical
Systems

Dependability beyond Software

Software (System) Hazards

Software Engineering for Dependable
Systems

