
Software Quality

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 20 2

Software Quality at a Glance

Software Quality

Software Quality
Fundamentals

Software Quality
Management Process

Practical
Considerations

Software Engineering
Culture and Ethics

Value and Costs
Of Quality

Models and Quality
Characteristics

Quality Improvement

Software Quality
Assurance

Verification and
Validation

Reviews and
Audits

Application Quality
Requirements

Defect
Characterization

Software Quality
Management Techniques

Software Quality
Measurement

© 2004-2006 SEOC - Lecture Note 20 3

Software Quality Fundamentals

Commitment to Software Quality as part of
organisation culture

The notion of “quality” is difficult
• Identification of quality characteristics,

attributes and targets

Quality cost

Modelling Software Quality
• Process and Product quality
• It is difficult (may be, not entirely possible) to

distinguish process quality from product quality

© 2004-2006 SEOC - Lecture Note 20 4

Process and Product Quality

A fundamental assumption of quality
management is that the quality of the
development process directly affects the
quality of the delivered products
The link between software process quality
and software product quality is complex
Process quality management involves
• Defining process standards such as how and when

reviews should be conducted
• Monitoring the development process to ensure that

the standards are being followed
• Reporting the software process to project

management and to the buyer of the software

© 2004-2006 SEOC - Lecture Note 20 5

Software Quality Management Processes
Planning software quality involves
• defining the required product in terms of its quality

(internal and external) characteristics
• Planning the processes to achieve the required product

Characteristics that govern how the product works
in its environment are called external, which
include, for example, usability and reliability

Characteristic related to how the product was
developed are called internal quality
characteristics, and include, for example,
structural complexity, size, test coverage, and fault
rates

© 2004-2006 SEOC - Lecture Note 20 6

Software Quality Management Processes
Quality assurance process: ensuring that the
software products and processes in the project life
cycle conform to their specified requirements by
planning, enacting, and performing a set of
activities to provide adequate confidence that the
quality is being built into the software

Verification and validation processes: assessing
software products throughout the product life-
cycle

Review and audit processes: involving Management
reviews, Technical reviews, Inspections, Walk-
through and Audits

© 2004-2006 SEOC - Lecture Note 20 7

Quality Planning
Quality planning is the process of developing a
quality plan for the project

A quality plan involves
• Product introduction: A description of the product, its

intended market and the quality expectation for the product
• Product plans: The critical release dates and responsibilities

for the product along with plans for distribution and product
servicing

• Process descriptions: the development and service processes
that should be used for product development and
management

• Quality Goals: The quality goals and plans for the product
including an identification and justification of critical
product quality attributes

• Risks and risk management: The key risks that might affect
product quality and the actions to address these risks

© 2004-2006 SEOC - Lecture Note 20 8

Quality Assurance and Standards

Quality assurance is the process of defining how software
quality can be achieved and how the development organization
knows that the software has the required level of quality
Quality assurance standards
• Product standards
• Product standards
Software standards
• Are based on knowledge (“best-practice” or “state-of-the-art”)
• Provide a framework for implementing a quality assurance process
• Assist/support continuity in practice within an organization
Issues: Software engineers sometimes dislike standards
• Need to involve software engineering in the selection of standards
• Review and modify standards regularly to reflect changing

technologies
• Provide software tools to support standards where possible

A Brief Introduction to
Software Metrics

© 2004-2006 SEOC - Lecture Note 20 10

Measurement
Measurement is the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a
way as to describe them according to clearly defined rules
• Measurement is a direct quantification
• Calculation (or indirect measurement) is indirect
Issues. Unfortunately, most software development processes
• Fail to set measurable targets for software products
• Fail to understand and quantify the component costs of software

projects
• Fail to quantify and predict the quality of the produced product
• Allow anecdotal evidence to convince us to try yet another

revolutionary new development technology, without doing pilot
projects to assess whether the technology is efficient and
effective

Tom Gilb’s Principle of Fuzzy Targets: projects without
clear goals will not achieve their goals clearly
Tom DeMarco’s Principle: You cannot control what you cannot
measure

© 2004-2006 SEOC - Lecture Note 20 11

The Basics of Measurement
Measurement: a mapping from the empirical world
to the formal, relational world
A measure is the number or symbol assigned to an
entity by this mapping in order to characterise an
attribute
• Direct and Indirect measurement
• Direct measurement of an attribute of an entity involves no

other attribute or entity
Measurement for prediction. A prediction system
consists of a mathematical model together with a
set of prediction procedures for determining
unknown parameters and interpreting results
Measurement scales (mappings between
measurement and empirical and numerical relation
systems) and scale types (e.g., nominal, ordinal,
interval, ratio, absolute, etc.)

© 2004-2006 SEOC - Lecture Note 20 12

Classifying Software Measures
Relevant software entities
• Processes are collection of software related activities
• Products are any artifacts, deliverables or documents that

result from a process activity
• Resources are entities required by a process activity
Internal attributes of a product, process or
resource are those that can be measured purely in
terms of the product, process or resource itself.
In other worlds, an internal attribute can be
measured by examining the product, process or
resource on its own, separate from its behaviour
External attributes of a product, process or
resource are those that can be measured only with
respect to how the product, process or resource
relates to its environment. Here, the behaviour of
the process, product or resource is important,
rather than the entity itself.

© 2004-2006 SEOC - Lecture Note 20 13

Determining What to Measure: GQM

Goal-Question-Metric (GQM) is an
approach to selecting and implementing
metrics

The GQM approach provides a framework
involving three steps

1. List the major goals of the development or
maintenance project

2. Derive from each goal the questions that must be
answered to determine if the goals are being met

3. Decide what metrics must be collected in order
to answer the questions adequately

© 2004-2006 SEOC - Lecture Note 20 14

Measurement and Process Improvements
Measurement enhances
visibility into the ways in
which processes, products,
resources, methods, and
technologies of software
development relate to one
another
The Software Engineering
Institute (SEI)’s Capability
Maturity Model (CMM)
consists of five maturity
levels
• Level 1: Initial
• Level 2: Repeatable
• Level 3: Defined
• Level 4: Managed
• Level 5: Optimizing

Other models: ISO 9000,
SPICE, etc.

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

Level 5
Optimizing

© 2004-2006 SEOC - Lecture Note 20 15

Software Measurement Validation

Validating a prediction system in a given
environment is the process of establishing
the accuracy of the prediction system by
empirical means. That is, by comparing model
performance with known data in the given
environment.

Validating a software measure is the
process of ensuring that the measure is a
proper numerical characterization of the
claimed attribute by showing that the
representation condition is satisfied.

© 2004-2006 SEOC - Lecture Note 20 16

Empirical Investigation
Software Engineering Investigations
1. Experiments: research in the small
2. Case Studies: research in the typical
3. Surveys: research in the large

State hypothesis and determine how much control
is needed over the variables involved

1. If control is not possible, the a formal experiment is not
possible

2. Then a case study may be a better approach
3. If the study is retrospective, then a survey may be done

State Six stage of an experiment: conception,
design, preparation, execution, analysis and
dissemination

© 2004-2006 SEOC - Lecture Note 20 17

Software Metrics Data Collection
What is Good Data?
• Correctness: Are they correct?
• Accuracy: Are they accurate?
• Precision: Are they appropriately precise?
• Consistency: Are they consistent?
• Are they associated with a particular activity or time period?
• Can they be replicated?
Software Quality Terminology
• A fault occurs when a human error results in a mistake in

some software product
• A failure is the departure of a system from its required

behaviour.
Errors -> Faults -> Failures

• NOTE: to many organizations, errors often mean faults
Faults -> Errors -> Failures

• Anomalies usually means a class of faults that are likely to
cause failures in themselves but may nevertheless eventually
cause failures indirectly

• Defects normally refer collectively to faults and failures
• Bugs refer to faults occurring in the code
• Crashes are special type of failure, where the system ceases

to function

© 2004-2006 SEOC - Lecture Note 20 18

Problem Record
Location:
where did the problem occur?
Timing:
when did it occur?
Symptom:
what was observed?
End result:
which consequences resulted?
Mechanism:
how did it occur?
Cause:
why did it occur?
Severity:
how much was the user affected?
Cost:
how much did it cost?

An example drawn from the Therac 25
Location: East Texas Cancer in Tyler, Texas, USA
Timing (1): March 21 1986, at whatever the
precise time that “Malfucntion 54” appeared on
the screen
Timing (2): total number of treatment hours on
all Therac 25 machines up to that particular time
Symptom (1): “Malfucntion 54” appeared on
screen
Symptom (2): classification of the particular
program of treatment being administrated, type
of tumor, etc.
End result: strength of beam to great by a factor
of 100
Mechanism: use of the up-arrow key while setting
up the machine led to the corruption of a
particular internal variable in the software
Cause (1): (trigger) unintentional operator action
Cause (2): (source type) unintentional design fault
Severity: critical, as injury to the patient was
fatal
Cost: effort or actual expenditure by accident
investigators

© 2004-2006 SEOC - Lecture Note 20 19

Analyzing Software Measurement Data
Describe a set of attribute values using box plot statistics
(based on median and quartiles) rather than on mean and
variance
Inspect a scatter plot visually when investigating the
relationship between two variables
Use robust correlation coefficients to confirm whether or
not a relationship exists between two attributes
Use robust regression in the presence of atypical values to
identify a linear relationship between two attributes, or
remove the atypical values before analysis
Always check the residuals by plotting them against the
dependent variable
Carefully transform non-linear relationships
Use principal components analysis to investigate the
dimensionality of data sets with large numbers of correlated
attributes

© 2004-2006 SEOC - Lecture Note 20 20

Measuring Internal Product Attributes
Examples of Internal Attributes
• Size (e.g., length, functionality, complexity, reuse, etc.) or

Structure

Simple measurements of size fail adequately to
reflect other attributes, e.g., effort, productivity
and cost

Example of Length: Line Of Code (LOC)

Examples of Complexity: problem, algorithmic,
structural or cognitive

Types of structural measures: control-flow, data-
flow and data
• The structure of a module is related to the difficulty in

testing it

© 2004-2006 SEOC - Lecture Note 20 21

Examples of Object-Oriented Metrics
1. Weighted Methods per Class (WMC): is intended to relate

to the notion of complexity
2. Depth of Inheritance Tree (DIT): is the length of the

maximum path from the node to the root of the inheritance
tree

3. Number of Children (NOC): relates to a node (class) of the
inheritance tree. It is the number of immediate successors
of the class.

4. Coupling Between Object classes (CBO): is the number of
other classes to which the class is coupled

5. Response For Class (RFC): is the number of local methods
plus the number of methods called by the local methods

6. Lack of Cohesion Metric (LCOM): is defined as the number
of disjointsets of local methods

© 2004-2006 SEOC - Lecture Note 20 22

Measuring External Product Attributes
Modelling Software Quality
The ISO 9126 standard quality model:
functionality, reliability, efficiency, usability,
maintainability and portability
Note: Safety is a system property, not a software
quality characteristic
An example: Usability of a software product is the
extent to which the product is convenient and
practical to use
Another example: Usability is the probability that
the operator of a system will not experience a user
interface problem during a given period of
operation under a given operational profile

© 2004-2006 SEOC - Lecture Note 20 23

Software Reliability
The software reliability problem
• Hardware reliability is concerned with component failures due to

physical wear – such failures are probabilistic in nature
• The key distinction between software reliability and hardware

reliability is the difference between intellectual failure (usually due
to design faults) and physical failure.

Reliability is defined in terms of failures, therefore it is
impossible to measure before development is complete
• However, carefully collected data on inter-failure times allow the

prediction of software reliability
Software Reliability Growth Models estimate the reliability
growth
• None can guarantee accurate predictions on all data sets in all

environments
Limitations: unfortunately, software reliability growth models
work effectively only if the software’s future operational
environment is similar to the one in which the data was
collected

© 2004-2006 SEOC - Lecture Note 20 24

Beyond Software
Resource Measurement:
• Productivity:

• Distinguish between
productivity of a process
from the productivity of
the resources

• Should also take into
account of the quality of
the output

• Team
• Team Structure, size,

communication density
• Tools

Making process prediction
• Problems of estimations

methods: local data
definition, calibration,
independent estimation
group, reduce input
subjectivity, preliminary
estimates and re-estimation,
alternative size measures
for cost estimation, locally
developed cost models

A General Prediction Process

© 2004-2006 SEOC - Lecture Note 20 25

Reading/Activity

Please read
• Chapter 11 on Software Quality of the SWEBOW.
• J. Bøegh, S. De Panfilis, B. Kitchenham and A.

Pasquini, A Method for Software Quality Planning,
Control, and Evaluation. In IEEE Software,
March/April 1999, pp. 69-77.

References

N. E. Fenton and S. L. Pfleeger. Software
Metrics: A Rigorous and Practical Approach.
Second Edition, International Thomson
Computer Press, 1996.

© 2004-2006 SEOC - Lecture Note 20 26

Summary

Software Quality
• Software fundamentals
• Process and product quality
• Software quality management process
• Quality planning
• Quality assurance and standards

Software Metrics

