
Reuse and Components

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 19 2

Reuse in Software Engineering

Software Engineering is concerned with processes, techniques 
and tools which enable us to build “good” systems

Object-Orientation is a methodology, technique, process, suite 
of design and programming languages and tools with which we 
may build good systems

Components are units of reuse and replacement



© 2004-2006 SEOC - Lecture Note 19 3

ESA’s Ariane 5: Flight 501
June 4th 1996, Arine 5, veered off flight path, 
broke up and exploded less that 40 seconds into its 
maiden flight
Inquiry board report July 1996
• Sequence of events: nominal behaviour up to H0+36; failure 

of backup Inertial Reference System, (SRI), followed 
immediately by failure of active system; boosters and main 
engine swivel to extreme position, causing abrupt veer; 
launcher (correctly) self-destructs

• Both SRI’s recovered and analysed
• Active SRI had failed due to software exception (out-of-

range error), On board Computer had interpreted diagnostic 
report as navigational data

Root? Error causes
• “hardware failure” mentality – reliance on backups
• Alignment function (Ariane 4) obsolete in Ariane 5
• Consequences of reuse not sufficiently explored
• Exception handling incomplete (decision and justification 

obscured from external review)
• V&V inadequate
• Cooperation amongst Ariane 5 partners inadequante



© 2004-2006 SEOC - Lecture Note 19 4

Examples of Types of reuse

Application system reuse: the whole of an 
application system may be reused by 
incorporating it without change into other 
systems

Component reuse: components of an 
application ranging in size from sub-systems 
to single objects may be reused

Object and function reuse: Software 
components that implement a single 
function, such as a mathematical function or 
an object class, may be reused



© 2004-2006 SEOC - Lecture Note 19 5

Benefits of Software Reuse
Increased dependability: Reused software, which has been tried and 
tested in working systems, should be more dependable than new software 
because its design and implementation faults have already been found and 
fixed.
Reduced process risk: The cost of existing software is already known, while 
the costs of development are always a matter of judgment. This is an 
important factor for project management because it reduces the margin of 
error in project cost estimation. This is particularly true when relatively 
large software components such as subsystems are reused.
Effective use of specialists: Instead doing the same work over and over, 
these application specialists can develop reusable software that
encapsulates their knowledge.
Standards compliance: Some standards, such as user interface standards, 
can be implemented as a set of standard reusable components. For example, 
if menus in a user interface are implemented using reusable using reusable 
components, all applications present the same menu formats to users. The 
use of standard user interfaces improves dependability because users are 
less likely to make mistakes when presented with a familiar interface.
Accelerated development: Bringing a system to market as early as possible 
is often more important than overall development costs. Reusing software 
can speed up system production because both development and validation 
time should be reduced.



© 2004-2006 SEOC - Lecture Note 19 6

Problems with reuse
Increased maintenance costs: If the source code of a reused software 
system or component is not available the maintenance costs may be 
increased because the reused elements of the system may become 
increasingly incompatible with system changes.
Lack of tool support: CASE toolsets may not support development with 
reuse. It may be difficult or impossible to integrate these tools with a 
component library. The software process assumed by these tools may not 
take reuse into account.
Not-invented-here syndrome: Some software engineers prefer to rewrite 
components because they believe they can improve on them. This ids partly 
to do with trust and partly to do with the fact that writing original 
software is seen as more challenging than reusing other people’s software.
Creating and maintaining a component library: Populating a reusable 
component library and ensuring the software developers can use this library 
can be expensive. Our current techniques for classifying, cataloguing and 
retrieving software components are immature.
Finding, understanding and adapting reusable components: Software 
components have to be discovered in a library understood and, sometimes, 
adapted to work in a new environment. Engineers must be reasonably 
confident of finding a component in the library before they will make 
include a component search as part of their normal development process.



© 2004-2006 SEOC - Lecture Note 19 7

Planning Reuse: Key Factors

The development schedule for the software

The expected software lifetime

The background, skills and experience of the 
development team

The criticality of the software and its non-
functional requirements

The application domain

The platform on which the system will run



© 2004-2006 SEOC - Lecture Note 19 8

Approaches Supporting Software Reuse
Design Patterns
Component-based Development
Application Frameworks
Legacy system wrapping
Service-oriented systems
Application product lines
COTS (Commercial-Off-The-Shelf) integration
Configurable vertical applications
Program libraries
Program generators
Aspect-oriented software development



© 2004-2006 SEOC - Lecture Note 19 9

Types of Reuse

Knowledge reuse
• Artificial reuse
• Pattern reuse

Software reuse
• Code reuse
• Inheritance reuse
• Template reuse
• Components
• Framework reuse



© 2004-2006 SEOC - Lecture Note 19 10

Reuse of Knowledge: Artifact Reuse

Reuse of use cases, standards, design 
guidelines, domain-specific knowledge

Pluses: consistency between projects, 
reduced management burden, global 
comparators of quality and knowledge

Minuses: overheads, constraints on 
innovation (coder versus manager)



© 2004-2006 SEOC - Lecture Note 19 11

Reuse of Knowledge: Patterns
“A Pattern is a named nugget of insight that conveys the 
essence of a proven solution to a recurring problem within 
a certain context amidst competing concerns.”
“Patters and Pattern Languages are ways to describe best 
practices, good designs, and capture experience in a way 
that it is possible for others to reuse this experience.”
Reuse of publicly documented approaches to solving problems 
(e.g., class diagrams)
Origin of Patterns:
• Ward Cunningham & Kent Beck: pattern language for OO novice 

programmers, 1987
• Jim Coplien: C++ programming idioms, 1991
• E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: 

Elements of Reusable Object-Oriented Software, 1994
Plusses: long life-span, applicable beyond current 
programming languages, applicable beyond OO?
Minuses: no immediate solution, no actual code, knowledge 
hard to capture/reuse



© 2004-2006 SEOC - Lecture Note 19 12

Types of Software Reuse: Code Reuse

Reuse of (visible) source code – code reuse 
versus code salvage

Pluses: reduces written code, reduces 
development and maintenance costs

Minuses: can increase coupling, substantial 
initial investment



© 2004-2006 SEOC - Lecture Note 19 13

Types of Software Reuse: Inheritance

Using inheritance to reuse code behaviour

Pluses: takes advantage of existing 
behaviour, decrease development time and 
cost

Minuses: can conflict with component reuse, 
can lead to fragile class hierarchy – difficult 
to maintain and enhance



© 2004-2006 SEOC - Lecture Note 19 14

Types of Software Reuse: Template Reuse

Reuse of common data format/layout (e.g., 
document templates, web-page templates, 
etc.)

Pluses: increase consistency and quality, 
decrease data entry time

Minuses: needs to be simple, easy to use, 
consistent among groups



© 2004-2006 SEOC - Lecture Note 19 15

Types of Software Reuse: Component
Analogy to electronic circuits: software “plug-ins”
Reuse of prebuilt, fully encapsulated “components”; typically 
self-sufficient and provide only one concept (high cohesion)
A Definition of Component: “A software component is a 
unit of composition with contractually specified interfaces 
and explicit context dependencies only. A software 
component can be deployed independently and is subject to 
composition by third parties.” ECOOP ’96 (European 
Workshop on Component-Oriented Programming)
Pluses: greater scope for reuse, common platforms (e.g., 
JVM) more widespread, third party component development
Minuses: development time, genericity, need large libraries to 
be useful



© 2004-2006 SEOC - Lecture Note 19 16

Types of Software Reuse: Framework

Collection of basic functionality of common 
technical or business domain (generic 
“circuit boards”) for components
Pluses: supports CBD, can account for 80% 
of code
Minuses: substantial complexity, leading to 
long learning process, platform specific, 
framework compatibility issues leading to 
vendor specificity, implement easy 80%
cf. software architecture, product line 
architectures, domain component reuse, 
domain specific programming,…



© 2004-2006 SEOC - Lecture Note 19 17

Reuse: The Success Stories
EDS (Electronic Data Systems) early 1990s

Smalltalk programmers given the same 
specifications and test suites as earlier team who 
produced PL/1 system

PL/1
• 265,000 SLOC (Source Line of Code)
• 152 staff months
• 19 months to develop

Smalltalk
• 22 SLOC
• 10 staff months
• 3.5 months to develop



© 2004-2006 SEOC - Lecture Note 19 18

Reuse: The Success Stories

NASA SEL (Software Engineering 
Laboratory)

Routinely 75% or higher reuse

Development time reduce by 90%
• 58,000 hours for application development
• Recently, with reuse, reduced to approx. 6,000



© 2004-2006 SEOC - Lecture Note 19 19

Whatever Happened to Reuse?

EDS experience not repeated
• Common arguments: wrong language, “not invented 

here” syndrome, lack of management support
• Numbers inflated?

NASA success hard to transfer: domain and 
economics
• Specialised problem domain (spacecraft flight 

dynamics)
• Very high initial investment

• 36,000 hours of domain analysis
• 40,000 hours to develop components
• Design of reusable asses library starts 1992
• First application using library in 1995
• SEL estimates library development costs recouped by 4th

mission



© 2004-2006 SEOC - Lecture Note 19 20

Reuse Pitfalls
Underestimating the difficulty 
of reuse
• Software must be more general
• Similarities among projects 

often small
• Much of what is reused is 

already provided by OS
• Universe in constant flux 

(hardware, software, 
environment, requirements, 
expectations, etc.)

Having or setting unrealistic
expectations
• OO reuse overly “hyped”
• “Software is not built from 

LegoTM blocks” – Alexander Ran
• Reuse domain may be unrealistic
• Expectations for reuse outstrip 

skills of developers
Not investing in reuse
• Reuse costs: time and money in 

development, analysis, design, 
implementation, testing,…

Being too focused on code reuse
• Focus on code reuse as end, not 

means
• “Lines of code reused” metric 

meaningless
• Design reuse often neglected in 

favour of code reuse
• Too little abstraction at 

framework level
Generalising after the fact
• Design often migrate from 

general to specific during 
development

• System not designed with reuse 
in mind (cf. code reuse versus 
code salvage)

Allowing too many connections
• Coupling unavoidable, but must 

be very low to permit reuse
• Circular dependencies also 

problematic – where to break 
the chains?



© 2004-2006 SEOC - Lecture Note 19 21

Difficulties with Component Development

Economic
• Small business do not have long term stability and 

freedom required

Where is the third party component 
market?
• Effort in (re)using components
• Cross-platform and cross-vendor compatibility
• Many common concepts, few common components
• Some success: user interfaces, data management, 

thread management, data sharing between 
applications

• Most successful: GUIs and data handling (e.g., 
Abstract Data Types)



© 2004-2006 SEOC - Lecture Note 19 22

Components in Java
JavaBeans
• Visual composition of components
• Builder introspection of Bean features (properties, methods, 

events)
• Composition of Beans into applets, applications or other 

Beans
ADTs: java.util.* library
GUIs: The Java Foundation Classes (JFC)
• History: AWT (“Abstract Window Toolkit”, 1995), JFC (1997 

– Swing)
• All Components are JavaBeans
• Lightweight UI framework

• Peerless emulation versus layered (“peer”) toolkit model
• Cross platform (no native code)

• Pluggable look and feel
• No framework lock-in (“easily” compatible with 3rd party 

ccomponents)
• Subclasses are fully customisable and extendible (according 

to Sun)



© 2004-2006 SEOC - Lecture Note 19 23

Reading/Activity

William N. Robinson and Hang G. Woo, 
Finding Reusable UML Sequence Diagrams 
Automatically. In IEEE Software, 
September/October 2004.

Tiffany Winn and Paul Calder, Is This a 
Pattern?. In IEEE Software, 
January/February 2002.



© 2004-2006 SEOC - Lecture Note 19 24

Summary
Many types of reuse – of both knowledge and 
software
• Each has pluses and minuses

Component reuse is a form of software reuse
• Encapsulation, high cohesion, specified interfaces explicit 

context dependencies
• Component development requires significant time and effort
• As does component reuse
• Compnent reuse has been successful for interfaces and data 

handling

Employing reuse requires management

Java (potentially) supports cross-platform 
component reuse
• JFC and java.util.* classes exemplify this


	Reuse and Components
	Reuse in Software Engineering
	ESA’s Ariane 5: Flight 501
	Examples of Types of reuse
	Benefits of Software Reuse
	Problems with reuse
	Planning Reuse: Key Factors
	Approaches Supporting Software Reuse
	Types of Reuse
	Reuse of Knowledge: Artifact Reuse
	Reuse of Knowledge: Patterns
	Types of Software Reuse: Code Reuse
	Types of Software Reuse: Inheritance
	Types of Software Reuse: Template Reuse
	Types of Software Reuse: Component
	Types of Software Reuse: Framework
	Reuse: The Success Stories
	Reuse: The Success Stories
	Whatever Happened to Reuse?
	Reuse Pitfalls
	Difficulties with Component Development
	Components in Java
	Reading/Activity
	Summary

