
Software Maintenance and
Evolution

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 18 2

Software Maintenance (vs. Evolution)
Maintenance to repair software faults:
• Coding errors are usually relatively cheap to correct
• Design errors are more expensive as they may involve rewriting

several program components
• Requirements errors are the most expensive to repair because of

the extensive system redesign that may be necessary
Maintenance to adapt the software to a different
operating environment:
• This type of maintenance is required when some aspect of the

system’s environment such as the hardware, the platform operating
systems or other support software changes

• The application system must be modified to adapt it to cope with
these environmental changes

Maintenance to add to or modify the system’s
functionality:
• This type of maintenance is necessary when the system

requirements changes in response to organizational or business
change

• The scale of the changes required to the software is often much
grater that the other types of maintenance

Software Maintenance differs from Software Evolution

© 2004-2006 SEOC - Lecture Note 18 3

Software Maintenance
Types of Maintenance:
• Corrective:

• correcting faults in system behaviour
• caused by errors in coding, design or requirements

• Adaptive:
• due to changes in operating environment
• e.g., different hardware or Operating System

• Perfective:
• due to changes in requirements
• Often triggered by organizational, business or user learning

• Preventive:
• e.g., dealing with legacy systems

Software re-engineering is an approach to dealing
with legacy systems through re-implementation

© 2004-2006 SEOC - Lecture Note 18 4

Development vs. Maintenance
Team Stability
• After a system has been delivered, it is normal for the development

team to be broken up and people work on new projects
• The new team or the individuals responsible for system maintenance

do not understand the system or the background to system design
decisions

• A lot of the effort during maintenance process is taken up with
understanding the existing system before implementing changes to
it

Contractual Responsibility
• The contract to maintain the system is usually separate from the

system development contract
• The maintenance contract may be given to a different company

rather than the original system developer
• No incentive to write easy maintainable software
• Reducing development cost may increase maintenance cost
Staff Skills
• Maintenance staff are often relatively inexperienced and unfamiliar

with the application domain
• Maintenance has a poor image among software engineering
Program Age and Structure
• As programs age, their structure tends to be degraded by change,

so they become harder to understand and modify

© 2004-2006 SEOC - Lecture Note 18 5

Some Maintenance Statistics
Maintenance consumes 40%-80% of total costs

Typical developer’s activity (from Lients and
Swanston’s review of 487 companies):
• 48% Maintenance
• 46.1% New Development
• 5.9% other

Huge quantities of legacy code:
• US/DoD maintains more than 1.4 billion LOC (Line Of Code)

for non-combat information systems, over more that 1700
data centres. Estimated to cost $9 billion per annum.

• (in 1999) Boeing payroll system: approx 22 years old; 650K
LOC Cobol.

• Bell Northern Research’s entire operation is maintenance of
one system – telephone switching product line. 12 million LOC
(assembly and “higher-level” languages), approximately 1
million LOC revised annually.

© 2004-2006 SEOC - Lecture Note 18 6

Distribution of Maintenance Effort
Corrective (approx. 21%)
• 12.4% emergency debugging
• 9.3% routine debugging

Adaptive (approx. 25%)
• 17.3% data environment adaptation
• 6.2% changes to hardware or operating system

Perfective (approx. 50%)
• 41.8% enhancements for users
• 5.5% improve documentation
• 3.4% other

Preventive (approx. 4%)
• 4.0% improve code efficiency

© 2004-2006 SEOC - Lecture Note 18 7

Maintenance is Hard
Key design concept not captured
Systems not robust under change
Poor documentation
• of code
• of design process and rationale
• of system’s evolution

“stupid” code features may not be so stupid
• Work-arounds of artificial constraints may no longer be

documented (e.g., Operating System bugs, undocumented
features, memory limits, etc.)

Poor management attitudes (culture)
• Maintenance not “sexy”
• It is just “patchy code”
• Easier/less important than design (does not need similar

level of support – tools, modelling, documentation,
management, etc.)

© 2004-2006 SEOC - Lecture Note 18 8

Managing Maintenance

Corrective:
• Requires maintenance strategy preferably

negotiated contract between supplier and
customer(s)

• Policies for reporting and fixing errors; auditing of
process

Perfective:
• Should be treated as development (i.e.,

requirements, specification, design, testing, etc.)
• Iterative (or evolutionary) development approach

best suited
• Risks: drift, shift, creep, ooze, bloat, etc.
• When does design or development stop?
Adaptive and Preventive:
• Can anticipate, schedule, monitor and manage, etc.

© 2004-2006 SEOC - Lecture Note 18 9

Maintenance Management Case Study [1/3]

Spring Mills Inc.: early 1970’s
• Programming shop runs 24 hours a day, 6 days a

week
• 3000+ programs in production
• Approx. 700 new programs per year

1972, John Mooney assessed operation as:
• Overworked programmers operating under stress
• New systems typically over budget and late
• No designated maintenance staff
• Approx. 75 maintenance requests per week
• Non maintenance strategy or planning
• Developers time: 30% maintenance; 45% new

development; 10% special; 14% admin

© 2004-2006 SEOC - Lecture Note 18 10

Maintenance Management Case Study [2/3]

1973, Mooney reorganizes shop and creates
maintenance team
Management strategy: requests logged,
classified, evaluated, prioritised and
assigned
Team responsibilities: fast; good
programming standards; regression testing
of modified programs
• Numerous incentives, including financial
• Team responsible for all existing programs
• New programs “signed over” to team when error-

and change-free for 90 days - Sign-over activity
becomes significant project landmark

© 2004-2006 SEOC - Lecture Note 18 11

Maintenance Management Case Study [3/3]

Outcomes:
• Maintenance team becomes “highly skilled, elite corps of

multi-lingual experts”
• Deep understanding of company’s systems – particularly

troublesome dependencies
• Offer services as “system auditors” or “consultants” on

difficult problems
• De facto quality assurance stakeholders

Leads to overall development time:
• 20% Maintenance; 57.9 new development; 21.3% special and

admin

Previously, developers time:
• 30% Maintenance; 45% new development; 24% special and

admin

Everybody happy…

© 2004-2006 SEOC - Lecture Note 18 12

Preventive Maintenance
Accounts 4% of maintenance requests
• Pareto Principle applies: 20% of causes responsible for 80%

of effect. Proposed by Dr. Jodeph Juran (of Total
Management fame), after Wilfredo Pareto – C19th economist
and sociologist.

• Legacy systems increasing problem
Software Migration approaches:
• Redevelopment: rebuilt system from scratch. Easier problem

(initially) but costly and very high risk
• Transformation: to (typically) new language/paradigm

• Restructuring: e.g., refactoring
• Re-engineering typically reverse-engineering followed by

forward-engineering
• Design recapture recreates design abstractions from code,

documentation, personal experience, general problem and domain
knowledge

• Encapsulation: “Software Wrapping” – wrap up existing code
as components

© 2004-2006 SEOC - Lecture Note 18 13

Software Wrapping Case Study [1/3]

Sparkasse: German savings and loan organization

7 regional computing centres; client-server batch
processing on conventional mainframe system; code
(variously) in Assembrer, PL/1, Cobol and natural

Legacy host systems highly integrated

Desired to introduce OO and components

Wrapping approach taken
• Reuse S/W by encapsulating and controlling access via API’s

(Application Program Interfaces)
• Reuse existing S/W without moving it to new environment
• Legacy S/W remains, with minor changes. In native

environment – yet is accessible to newer distributed OO
components

© 2004-2006 SEOC - Lecture Note 18 14

Software Wrapping Case Study [2/3]

1997: Wrapping pilot-project undertaken

5 encapsulated levels
• Job: remotely invoked batch-type job control

procedures
• Transaction: client-server transactions
• Program: remotely invoked batch program
• Module: native code modules (easiest to wrap –

already “component-ish”)
• Procedure: individual procedure within legacy code

(hardest to wrap)

© 2004-2006 SEOC - Lecture Note 18 15

Software Wrapping Case Study [3/3]

Adaption of all subprograms necessary
Server to host communication weakest link
Character conversion, ASCII to EBCDIC, common
Constant translation and re-translation
Testing time-consuming due to high number of
dependencies
5-step, bottom-up testing strategy
1. Test adapted program in controlled test-harness
2. Test wrapper software with driver for client and stub for

wrapper code
3. Test wrapper and wrapped code
4. Integration testing: complete client-server transaction
5. System test: multiple translations to test re-entrancy of

wrapper and wrapped code

© 2004-2006 SEOC - Lecture Note 18 16

Maintenance Prediction
Maintenance Prediction
• Whether a system change should be accepted depends, to

some extent, on the maintainability of the system
components affected by that change

• Implementing system changes tends to degrade the system
structure and hence reduce its maintainability

• Maintenance costs depend on the number of changes, and the
cost of change implementation depend on the maintainability
of the system components

Predicting Changes
• Evaluation of the relationship between a system and its

environment
• The number and complexity of system interfaces
• The number of inherently volatile system requirements
• The business processes in which the system is sued
Measuring Maintainability
• Number of requests for corrective maintenance
• Average time required for impact analysis
• Average time taken to implement a change request
• Number of outstanding change requests

© 2004-2006 SEOC - Lecture Note 18 17

System re-engineering
Re-engineering a software system has two
advantages over more radical approaches to
systems evolution
• Reduced risk
• Reduced cost

A re-engineering process may involve
• Source code translation
• Reverse engineering
• Program structure improvement
• Program modularisation
• Data re-engineering

Factors affecting re-engineering costs
• The quality of the software to be re-engineered
• The tool support available for re-engineering
• The extent of data conversion required
• The availability of expert staff

© 2004-2006 SEOC - Lecture Note 18 18

Legacy System Evolution

Four strategic options
1. Scarp the system completely
2. Leave the system unchanged and continue with regular

maintenance
3. Re-engineer the system to improve its maintainability
4. Replace all or part of the system with a new system
Legacy System Assessment
• Low quality, low business value
• Low quality, high business value
• High quality, low business value
• High quality, high business value
Assessing the business value of the system
• The use of the systems
• The business processes that are supported
• The system dependability
• The system outputs

© 2004-2006 SEOC - Lecture Note 18 19

Environmental Assessment
Supplier stability: Is the supplier is still in existence? Is the
supplier financially stable and likely to continue in existence? If the
supplier is no longer in business, does someone else maintain the
systems?
Failure rate: Does the hardware have a high rate of reported
failures? Does the support software crash and force system
restarts?
Age: How old is the hardware and software?
Performance: Is the performance of the system adequate? Do
performance problems have a significant effect on system users?
Support requirements: What local support is required by the
hardware and software?
Maintenance costs: What are the costs of hardware maintenance
and support software licences?
Interoperability: Are there problems interfacing the system to
other systems? Can compilers, for example, be used with current
versions of the operating system? Is hardware emulation required?

© 2004-2006 SEOC - Lecture Note 18 20

Application Assessment
Understandability: How difficult is it to understand the source
code of the current system? How complex are the control
structures that are used?
Documentation: What system documentation is available? Is the
documentation complete, consistent and current?
Data: Is there an explicit data model for the system? Is the data
used by the system up-to-date and consistent?
Performance: Is the performance of the application adequate? Do
performance problems have a significant effect on system users?
Programming language: Are modern compilers available for the
programming language used to develop the system? Is the
programming language still used for new system development?
Configuration management: Are all versions of all parts of the
system managed by a configuration management system?
Test data: Does test data for the system exist? Is there a record
of regression tests carried out when new features have been added
to the system?
Personnel skills: Are there people available who have the skills to
maintain the application?

© 2004-2006 SEOC - Lecture Note 18 21

Lehman’s laws on Software Evolution
Continuing change: A program that is used in a real-world
environment necessarily must change or become progressively
less useful in that environment.
Increasing complexity: As an evolving program changes, its
structure tends to become more complex. Extra resources
must be devoted to preserving and simplifying the structure.
Large program evolution: Program evolution is a self-
regulating process. System attributes such as size, time
between releases and the number of reported errors is
approximately invariant for each system release.
Organizational stability: Over a program’s lifetime, its rate
development is approximately constant and independent of
the resources devoted to system development.

© 2004-2006 SEOC - Lecture Note 18 22

Lehman’s laws on Software Evolution continued

Conservation of familiarity: Over the lifetime of a
system, the incremental change in each releases is
approximately constant.
Continuing growth: The functionality offered by
systems has to continually increase to maintain user
satisfaction
Declining quality: The quality of systems will appear
to be declining unless they are adapted to changes
in their operational environment.
Feedback system: Evolution processes incorporate
multi-agent, multi-loop feedback systems and you
have to treat them as feedback systems to achieve
significant product improvement.

© 2004-2006 SEOC - Lecture Note 18 23

Reading/Activity

Please read: Manny Lehman, Software’s
Future: Managing Evolution. In IEEE
Software, January-February 1998, pp. 40-
44.

Please read: Lutz and Mikulski, Operational
anomalies as a cause of safety-critical
requirements evolution. In the Journal of
System and Software 65(2):155-161, 2003.

© 2004-2006 SEOC - Lecture Note 18 24

Summary
Maintenance
• Important, difficult and costly
• Can, and should, be managed
• Has a bad reputation, but can and should be challenging and rewarding

Legacy systems a significant increasing problem
• Number of approaches to dealing with legacy systems
• Many involve transformation to OO and/or component based paradigms (e.g.,

Abstraction / high cohesion and Encapsulation / low coupling)
• The business value of a legacy system and the quality of the application

software and its environment should be assessed to determine whether the
system should be replaced, transformed or maintained

Software development and evolution should be a single,
integrated, iterative process
Looking at system evolution (in the long-term) provides insights
on software evolution
The cost of software maintenance generally exceed the
software development costs
The process of software evolution is driven by request for
changes
Software re-engineering is concerned with re-structuring and
re-documenting software

	Software Maintenance and Evolution
	Software Maintenance (vs. Evolution)
	Software Maintenance
	Development vs. Maintenance
	Some Maintenance Statistics
	Distribution of Maintenance Effort
	Maintenance is Hard
	Managing Maintenance
	Maintenance Management Case Study [1/3]
	Maintenance Management Case Study [2/3]
	Maintenance Management Case Study [3/3]
	Preventive Maintenance
	Software Wrapping Case Study [1/3]
	Software Wrapping Case Study [2/3]
	Software Wrapping Case Study [3/3]
	Maintenance Prediction
	System re-engineering
	Legacy System Evolution
	Environmental Assessment
	Application Assessment
	Lehman’s laws on Software Evolution
	Lehman’s laws on Software Evolution continued
	Reading/Activity
	Summary

