
Software Construction

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC Lecture Note 16 2

Introduction
Software Construction lies between design and
test and is often part of an iterative

“design -> construct -> test”
cycle at the heart of most development processes

Process is one of going from a design to
implemented code

Code is generally much more complex than the
design and will require a myriad of detailed design
or implementation activities

Very sensitive to the platform and the need to
“work around” problems

© 2004-2006 SEOC Lecture Note 16 3

Main Activities
Managing Complexity: programmed systems are
always much more complex than the corresponding
design – this involves approaches to coping with
that complexity
Managing Change: the environment changes and the
platform and components change regularly – this
involves developing systems that are resilient to
anticipated change
Facilitating Validation and Verification: the final
code will be subject to test, review, walkthroughs –
the structure of the code is an essential influence
on ease of validation
Standards Compliance: important to ensure the
capacity to interwork and sometimes an essential to
a product

© 2004-2006 SEOC Lecture Note 16 4

Managing Complexity

Avoid complexity: by forcing a redesign to
remove the complexity from the system
Automate complexity: use tools to carry out
complex, error-prone, tasks that are well
understood, encapsulate complexity in
manageable components
Localize complexity: use structuring and
hiding to contain complexity inside
manageable boundaries. Conceptual tools like
coupling and cohesion are useful in
identifying and managing locality.

© 2004-2006 SEOC Lecture Note 16 5

Managing Change

Both the Environment changes and the
platform and components evolve (some
systems just freeze the system and
undertake limited maintenance).
Main management approaches:
• Attempt to generalize the interface to

components so the component is capable of easy
adaptation

• Experiment to attempt to identify variability and
likely directions for change in the environment

• Exploit locality- attempt to generate designs with
low coupling so change in components and
environments have limited impact on the overall
system

© 2004-2006 SEOC Lecture Note 16 6

Facilitating Validation

There are a variety of ways of validating
systems and

Approaches in the code can be helpful
• Manual inspection: comments, structure for

reading, documentation
• Test: code structure to allow good unit test and

sensible interfaces so that integration test and
the creation of “stubs” and “drivers” is easy

• Analysis tools: use of restricted languages or
structure within an existing language (e.g.,
SPARKAda, C#, etc.)

© 2004-2006 SEOC Lecture Note 16 7

Complying with Standards
Standards which (e.g., programming languages,
communication methods, platforms, tools, etc.)
directly affect construction issues

External standards are often crucial in
determining the saleability of products, e.g.:
• XML, POSIX, CORBA, COM, DCOM, and so on in order to

ensure interoperability
• Quality standards, e.g., Capability Maturity Model (CMM) or

ISO 9001 can be crucial in gaining contracts

Internal standards contribute towards
organization or project work practice and
knowledge

© 2004-2006 SEOC Lecture Note 16 8

Managing Construction
Construction Models. Software development models (e.g.,
waterfall, spiral, V-model, evolutionary prototyping, extreme
programming, etc.) differently emphasize construction (e.g.,
linear or iterative models, risk-oriented models, etc.)
• The underlying hypotheses constrain the software construction
Construction Planning. Construction methods affect the
project’s ability to reduce complexity, anticipate changes and
construct for verification
• Construction planning also defines the order in which (planned

processes produce) deliverables (e.g., requirements, design,
software, etc.) are created and integrated)

Construction Measurement. Quantitative approaches support
the monitoring and the assessment of construction activities
and deliverables

© 2004-2006 SEOC Lecture Note 16 9

Construction Languages
Software Construction:
• Produces the highest volume of configuration items that

need to be managed in software projects
• Relies on tools and methods
Configuration languages: used to configure parts of
the platform and many of the components used in
building systems
Toolkit languages: based around a particular toolkit
– oriented to generating a particular component or
configuration of components
Scripting languages: often used to capture
elements of workflow
Programming languages: general purpose, oriented
to creating new functionality from scratch

© 2004-2006 SEOC Lecture Note 16 10

Summary

Software Construction
• Managing Complexity
• Managing Changes
• Facilitating Validation
• Complying with Standards

Managing Construction

Construction Languages

Reference
• Chapter 4 of the SWEBOK on Software

Construction.

