
Activity Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 14 2

Activity Diagrams

Activity Diagrams describe
• how activities are coordinated to provide a service. 

The service can be at different levels of 
abstraction.

• The events needed to achieve some operation, 
particularly where the operation is intended to 
achieve a number of different things that require 
coordination.

• How the events in a single use case relate to one 
another. In particular, use cases where activities
may overlap and require coordination.

• How a collection of use cases coordinate to create 
a workflow for an organization.

Activity Diagrams consist of activities, 
states and transitions between activities 
and states



© 2004-2006 SEOC - Lecture Note 14 3

Activity Diagrams’ Rationale

Model business workflows
Identify candidate use cases, through the 
examination of business workflows
Identify pre- and post-conditions for use 
cases
Model workflow between/within use cases
Model complex workflows in operations on 
objects
Model in detail complex activities in a high 
level activity diagram



© 2004-2006 SEOC - Lecture Note 14 4

Activity Diagrams at a Glance
Activity Diagrams

• focus on the flow of 
activities involved in 
a single process 

• show how activities 
depend on one 
another

• capture activities 
that are made up of 
smaller actions



© 2004-2006 SEOC - Lecture Note 14 5

Activity Diagram Basics

Activities and Actions

Transitions and Activity Edges

Tokens and Activity Nodes

Control Nodes
• Initial and Final Nodes
• Forks and Joins
• Decision and Merge Points

States

Swimlanes



© 2004-2006 SEOC - Lecture Note 14 6

Activities and Actions
An Activity is the process 
being modeled
Activities are the vertices of 
the diagram. This is like a 
state where the criterion for 
leaving the state is the 
completion of the activity.
An Activity is a unit of work 
that needs to be carried out
Any Activity takes time

An Action is a step in the 
overall activity
The work can be documented 
as Actions in the activity
There are four ways in which 
an action can be triggered
• On Entry: as soon as the 

activity starts
• Do: during lifetime of the 

activity
• On Event: in response to an 

event
• On Exit: just before the 

activity completes



© 2004-2006 SEOC - Lecture Note 14 7

Transitions or Activity Edges
A Transition is the movement 
from one activity to another, 
the change from one state to 
another, or the movement 
between a state and an 
activity in either direction

Transitions: unlabelled 
arrows from one activity to 
the next. 

Transitions take place when 
one activity is complete and 
the next can commence

The flow of an activity is 
shown using arrowed lines 
called edges or paths

Control-flow Transitions
indicate the order of action 
states

Object-flow Transitions
indicate that an action state 
inputs or outputs an object

Time could be a factor in an 
activity

Time events are drawn with 
an hourglass symbol



© 2004-2006 SEOC - Lecture Note 14 8

Tokens and Activity Nodes
Conceptually, UML 
models information 
moving along an edge as 
a token (e.g., real data, 
an object or focus of 
control)
Each edge may have 
• a weight associated with 

it that indicates how 
many tokens must be 
available before the 
tokens are presented to 
the target action

• a guard condition

UML 2.0 defines several 
types of activity nodes 
to model different 
types of information 
flow
• Parameters nodes
• Object nodes
• (input or output) Pins –

special notation for 
object nodes 

• Exception pins, value pins 



© 2004-2006 SEOC - Lecture Note 14 9

Initial and Final Nodes

An initial node is the starting point for an 
activity
Two types of final nodes: activity final and 
flow final
Activity final nodes terminate the entire 
activity
Flow final nodes terminate a path through 
an activity, but not the entire activity
It is possible to have multiple initial nodes 
and final nodes



© 2004-2006 SEOC - Lecture Note 14 10

Forks and Joins
A transition can be split into 
multiple paths and multiple paths 
combined into a single 
transitions by using a 
synchronization bar
A synchronization may have 
many in-arcs from activities and 
a number of out-arcs to 
activities
A fork is where the paths split
On an occurrence of the 
transition all the activities with 
arcs from the transition are 
initiated
A fork node splits the current 
flow through an activity into 
multiple concurrent flows

In a detailed design model, you 
can use forks to represent 
multiple processes or multiple 
threads in a program 
A join is where the paths meet
The bar represents 
synchronization of the 
completion of those activities 
with arcs into the transition
A join synchronizes multiple 
flows of an activity back to a 
single flow of execution



© 2004-2006 SEOC - Lecture Note 14 11

Decision and Merge Points
A Decision Point shows where the exit transition 
from a state or activity may branch in alternative 
directions depending on a condition
A Decision involves selecting one control-flow 
transition out of many control-flow transitions 
based on a condition
Each branched edge contains a guard condition
Guard Expressions (inside []) label the transitions 
coming out of a branch
A merge brings together alternate flows into a 
single output flow – note that it does not 
synchronize multiple concurrent flows



© 2004-2006 SEOC - Lecture Note 14 12

States
A state in an activity diagram is 
a point where some event needs 
to take place before activity can 
continue
Activities and States are similar
• States carry out actions as 

activities do
• Activities need to complete 

their actions before exiting
• States are used to imply waiting, 

not doing
It is possible to show an object 
changing states as it flows 
through an activity

Start and End states
The Start state is the entry 
point to a flow.
There can be several End states. 
Multiple End states can be used 
to indicated different follow-on 
processes from a particular 
process
Start and End states can have 
actions too
Mal-formed diagrams: it is 
possible to form ill-formed 
diagrams that require multiple 
activations of activities or can 
allow deadlock



© 2004-2006 SEOC - Lecture Note 14 13

Swimlanes
Swimlanes (or activity 
partitions) indicate where 
activities take place. 
Swimlanes can also be used 
to identify areas at the 
technology level where 
activities are carried out
Swimlanes allow the partition 
an activity diagram so that 
parts of it appear in the 
swimlane relevant to that 
element in the partition

Partitions may be 
constructed on the basis of: 
• the class and actor doing 

the activity 
• Partitioning by class and 

actor can help to identify 
new associations that have 
not been documented in the 
Class model

• the use case the activity 
belongs to

• Partitioning by use cases
can help document how use 
cases interact



© 2004-2006 SEOC - Lecture Note 14 14

Sending and Receiving Signals
In activity diagrams, signals represent interactions 
with external participants
Signals are messages that can be sent or received
A receive signal has the effect of waking up an 
action in your activity diagram
Send signals are signals sent to external 
participants
Note that combining send and receive signals 
results in behavior similar to synchronous call, or a 
call that waits for a response
• It is common to combine send and receive signals in activity 

diagrams, because you often need a response to the signal 
you sent



© 2004-2006 SEOC - Lecture Note 14 15

Advanced Activity Modeling
Connectors
UML 2.0 provides supports 
for modeling Exception 
Handling
It is possible to show that an 
action, or set of actions, 
executes over a collection of 
input data by placing the 
action in an expansion region
(<<parallel>>, <<iterative>> or 
<<stream>>)
UML 2.0 defines a construct 
to mode looping in activity 
diagrams. A loop node has 
three subregions: setup, 
body and test

An action is said to be 
streaming if it can produce 
output while it is processing 
input
Interruptible activity region
UML 2.0 introduces a new 
type of activity node, called 
the central buffer node, 
that provides a place to 
specify queuing functionality 
for data passing between 
object nodes
A data store node is a 
special type of central 
buffer node that copies all 
data that passes through it



© 2004-2006 SEOC - Lecture Note 14 16

How to construct Activity Diagrams
Activity Diagrams for Business Modeling
1. Finding business actors and use cases

2. Identifying key scenarios of business use cases

3. Combining the scenarios to produce comprehensive 
workflows described using activity diagrams

4. Where appropriate, mapping activities to business 
areas and recording this using swimlines

5. Refining complicated high level activities similarly, 
nested activity diagrams



© 2004-2006 SEOC - Lecture Note 14 17

How to construct Activity Diagrams
Activity Diagrams for Use Case Modeling
1. Finding system Actors, Classes and use cases
2. Identifying key scenarios of system use cases
3. Combining the scenarios to produce 

comprehensive workflows described using activity 
diagrams

4. Where significant object behavior is triggered by 
a workflow, adding object flows to the diagrams

5. Where workflows cross technology boundaries, 
using swimlines to map the activities

6. Refining complicated high level activities similarly, 
nested activity diagrams



© 2004-2006 SEOC - Lecture Note 14 18

Summary

Activity Diagrams are good for describing 
synchronization and concurrency between 
activities

Activity diagrams are useful for capturing 
detailed activities, but they can also capture 
elements of the high level workflow the 
system is intended to support

Partitioning can be helpful in investigating 
responsibilities for interactions and 
associations between objects and actors


