
Sequence Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 12 2

What are Sequence Diagrams?
Sequence Diagrams are interaction diagrams that
detail how operations are carried out
• Interaction diagrams model important runtime interactions

between the parts that make up the system

Sequence Diagrams
• capture the interaction between objects in the context of a

collaboration
• show object instances that play the roles defined in a

collaboration
• don’t show the structural relationships between objects
• show the order of the interaction visually by using the

vertical axis of the diagram to represent time what
messages are sent and when

© 2004-2006 SEOC - Lecture Note 12 3

What Do Sequence Diagrams Model?
Model high-level interaction
between active objects in a
system
Model the interaction between
object instances within a
collaboration that realizes a
use case
Model the interaction between
objects within a collaboration
that realizes an operation
Either model generic
interactions (showing all
possible paths through the
interaction) or specific
instances of a interaction
(showing just one path through
the interaction

Capture the interaction that
takes place in a collaboration
that either realizes a use case
or an operation (instance
diagrams or generic diagrams)
Capture high-level interactions
between user of the system and
the system, between the system
and other systems, or between
subsystems (sometimes known as
system sequence diagrams)

© 2004-2006 SEOC - Lecture Note 12 4

Sequence Diagrams at a Glance
Sequence Diagrams

show elements as they
interact over time,
showing interactions

or interaction
instances

© 2004-2006 SEOC - Lecture Note 12 5

Participants in a Sequence Diagram
A sequence diagram is
made up of a collection
of participants

Participants - the
system parts that
interact each other
during the sequence

Classes or Objects:
each object (class) in
the interaction is
represented by its
named icon along the top
of the diagram

In UML 1.x,
participants were
usually software objects
(instances of classes) in
object- oriented
programming sense

In UML 2.0, as general
modeling language,
participants are also at
the level of system
parts

© 2004-2006 SEOC - Lecture Note 12 6

Time in a Sequence Diagram
Sequence diagrams are
organized according to time
Each participant has a
corresponding lifeline
Lifelines: each vertical dotted
line is a lifeline, representing
the time that an object exists
Activations: an activation (shown
as tall, thin rectangle on a
lifeline) represents the period
during which an element is
performing an operation. The
top and the bottom of the of
the rectangle are aligned with
the initiation and the
completion time respectively

Notes
• Time in a sequence diagram is all

a about ordering, not duration
• The vertical space in an

interaction diagram is not
relevant for the duration of the
interaction

© 2004-2006 SEOC - Lecture Note 12 7

Sequence Diagrams’ Dimensions
Objects
• The horizontal axis shows

the elements that are
involved in the interaction

• Conventionally, the
objects involved in the
operation are listed from
left to right according to
when they take part in
the message sequence

• However, the elements on
the horizontal axis may
appear in any order

Time
• The vertical axis

represents time
proceedings (or
progressing) down the
page

Objects

Tim
e

© 2004-2006 SEOC - Lecture Note 12 8

Events, Signals and Messages
An Event is any point in an
interaction where something
occurs
Signals and Messages are
similar concepts
• Messages on a sequence

diagram are specified using
an arrow from the
participant (message caller)
that wants to pass the
message to the participant
(message receiver) that is to
receive the message

• Messages: a message (or
stimulus) is represented as
an arrow going from the
sender to the top of the
activation bar of the
message on the receiver's
lifeline

© 2004-2006 SEOC - Lecture Note 12 9

Types of Messages
Reflexive Communications: similar to a reflexive association or link,
an element may communicate with itself where communication is
sent from the element to itself. Sending messages to itself means
an object has two activations simultaneously.
Repetitions: involve repeating a set of messages or stimuli within a
generic-form interaction. Messages are grouped together in a
rectangle. The expression in square brackets, [], is a condition. The
asterisk “*” means iteration.
Conditionality: branching results in a choice of two different
messages (or operation calls) being sent to the same object, the
lifeline of the object splits with two activations. The separate
lifelines merge back together after the completion of different
actions in response to the different messages.
Return Values: often worthwhile to label the return value because
it may be used later in the interaction

© 2004-2006 SEOC - Lecture Note 12 10

Creation and Destruction Messages
Element Creation: when an
element is created during an
interaction, the communication
that creates the element is
shown with its arrowhead to
the element

Element Destruction: When an
element is destroyed during an
interaction, the communication
that destroys the element is
shown with its arrowhead to
the element’s lifeline where the
destruction is marked with a
large X symbol

© 2004-2006 SEOC - Lecture Note 12 11

Timing
Sequence Diagrams easily
deal with Timing information
Constraints: are usually used
to show timing constraints on
messages. They can apply to
the timing of one message or
intervals between messages.
• Label the points of issue and

return for a message. Use
these labels in expressing
timing constraints.

• This technique also works
for message sending that
takes time (so arrows are
sloping down).

Durations. The duration
of activations or the
time between messages
can be show with
construction marks.
• Metric information in the

diagram contribute to
representing timing, but
this is not recommended
(why not?)

• Although if the line
representing the message
is horizontal, it is unclear
whether it applies to the
time the message is sent
or received

© 2004-2006 SEOC - Lecture Note 12 12

A Sequence Diagram with Timing

© 2004-2006 SEOC - Lecture Note 12 13

Sequence Fragments
UML 2.0 introduces
Sequence (or Interaction)
Fragments

A sequence fragment is
represented as a box, called
a combined fragment, which
encloses a portion of the
interactions within a
sequence diagram

The fragment operator (in
the top left cornet) indicates
the type of fragment

Fragment types: ref, assert,
loop, break, alt, opt, neg

Sequence fragments
make it easier to create
and maintain accurate
sequence diagrams

fragment
operator The sequence

fragment box

© 2004-2006 SEOC - Lecture Note 12 14

How to Produce Sequence Diagrams

1. Decide on Context: Identify behavior (or
use case) to be specified

2. Identify structural elements:
1. Model objects (classes)
2. Model lifelines
3. Model activations
4. Model messages
5. Model Timing constraints

3. Refine and elaborate as required

© 2004-2006 SEOC - Lecture Note 12 15

How do interaction diagrams help?

Check use cases: this is the main
emphasized aspect

Check class can provide an operation:
shows how a class realizes some operation
by interacting with other objects

Describe design pattern: parameterizing by
class provides a scheme for a generic
interaction (part of Software Architecture)

Describe how to use a component: captures
how components can interact

© 2004-2006 SEOC - Lecture Note 12 16

Summary

Sequence Diagrams
• capture some elements of the dynamics of systems
• Support a number of different activities
• Describe interaction in some detail, including

timing

Dimensions: Objects and Time

Basics: Objects, Lifelines, Activations,
Messages, etc.

Timing

