
Component Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk



© 2004-2006 SEOC - Lecture Note 10 2

Component Diagrams

A component is an encapsulated, reusable, 
and replaceable part of your software

Component Diagrams
• Model physical software components and the 

relationships between them
• show the structure of the code itself
• Model source code and relationships between files
• Model the structure of software releases
• Specify the files that are compiled into an 

executable



© 2004-2006 SEOC - Lecture Note 10 3

Components
A Component is a physical 
piece of a system, such as a 
compiled object file, piece of 
source code, shared library 
or Enterprise Java Bean 
(EJB)

Components have:
• Interfaces
• Context Dependencies

• Implementation-specific: 
shown on diagram

• Use-context: may be 
described elsewhere – for 
example, documentation, 
use-cases, interaction 
diagrams, etc.

Note that notation has 
changed in UML 2.0

Component Name



© 2004-2006 SEOC - Lecture Note 10 4

New Component Notation
UML 1.x UML 2.0

[Agile Modeling, Introduction to the Diagrams of UML 2.0]



© 2004-2006 SEOC - Lecture Note 10 5

Component Modelling
Component Diagrams
can show how 
subsystems relate and 
which interfaces are 
implemented by which 
component

A Component Diagram 
shows one or more 
interfaces and their 
relationships to other 
components

An example of Component 
Diagram

AirlineSystem.jar

ReservationSystem.jar
{class-path= common.jar,
version=3.2}

Common.jar



© 2004-2006 SEOC - Lecture Note 10 6

Provided and Required Interfaces

A provided interface of a component is an 
interface that the component realizes

A required interface of a component is an 
interface that the component needs to 
function



© 2004-2006 SEOC - Lecture Note 10 7

Components Diagrams
A Component Diagram 
shows the dependencies
among software 
components, including 
source code, binary code 
and executable 
components. 

Some components exist 
at compile time, some 
exist at link time, and 
some exist at run time; 
some exist at more that 
one time.

An Example of Component 
Diagram



© 2004-2006 SEOC - Lecture Note 10 8

Dependencies
Reside Dependencies: A reside dependency from a 
component to any UML element indicates that the component 
is a client of the element, which is considered itself a 
supplier, and that the element resides in the component.
Use Dependencies: A use dependency from a client 
component to a supplier component indicates that the client 
component uses or depends on the supplier component. A use 
dependency from a client component to a supplier 
component’s interface indicates that the client component 
uses or depends on the interface provided by the supplier 
component.
Deploy Dependency: A deploy component from a client 
component to a supplier node indicates that the client 
components is deployed on the supplier node



© 2004-2006 SEOC - Lecture Note 10 9

Hot to produce component diagrams

Component Diagrams

1. Decide on the purpose of the diagram

2. Add Components to the diagram, grouping 
them within other components if 
appropriate

3. Add other elements to the diagram, such 
as classes, objects and interfaces

4. Add the dependencies between the 
elements of the diagram


	Component Diagrams
	Component Diagrams
	Components
	New Component Notation
	Component Modelling
	Provided and Required Interfaces
	Components Diagrams
	Dependencies
	Hot to produce component diagrams

