
Validation: CRC Cards

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 06 2

What are CRC Cards?

CRC: “Class-Responsibility-Collaborator”

CRC cards provide the means to validate the
class model with the use case model.
• It is a useful early check that the anticipated uses

of the system can be supported by the proposed
classes.

• It is a brainstorming technique that works with
scenario walkthroughs to stress- test a design

Responsibilities are a way to state the
rationale of the system design

© 2004-2006 SEOC - Lecture Note 06 3

Responsibility-based Modeling

Responsibility-based modeling is appropriate
for designing software classes as well as for
partitioning a system into subsystems
The underlying assumptions are:
• People can intuitively make meaningful value

judgments about the allocation of responsibilities
• the central issues surrounding how a system is

partitioned can be captured by asking what the
responsibility of each part has toward the whole

• Is it really the responsibility of this object to handle this
request?

• Is it its responsibility to keep track of all that
information?

© 2004-2006 SEOC - Lecture Note 06 4

Design by Responsibilities
Responsibility-based
Modeling allows

• The identification of the
components from which the
system is constructed

• The allocation of
responsibilities to system
components

• The identification of the
services provided by them

• The assessment how
components satisfy the
requirements as stated by
the use cases

Types of Responsibilities
• To do something (active

responsibilities)
• To provide information

(acting as a contact point)

Design Activities
1.Preparation: collection

and selection of use cases
2.Invention: (incremental)

identification of
components and
responsibilities

3.Evaluation: questions and
scenarios stress test the
design

4.Consolidation: further
assessment of the tested
components

5.Documentation: recording
identified reasons and
scenarios

© 2004-2006 SEOC - Lecture Note 06 5

Steps in Responsibility-based Design
1. Identify scenarios of use; bound

the scope of design
2. Role play the scenarios, evaluating

responsibilities
3. Name the required responsibilities

to carry a scenario toward
4. Make sure that each component

has sufficient information and
ability to carry out its
responsibility

5. Consider variations of the
scenario; check the stability of
the responsibility

6. Evaluate the components
7. Ask the volatility/stability of the

component
8. Create variations

9. Run through the variant scenarios
to investigate the stability of the
components and responsibilities

10. Simulate if possible

11. Consolidate the components by
level

12. Identify subsystems

13. Identify the different levels

14. Document the design rationale and
key scenarios

15. Decide which scenarios to
document

16. List the components being used
that already exist

17. Specify each new component

© 2004-2006 SEOC - Lecture Note 06 6

CRC Cards: How do they look like?

CRC Cards explicitly
represent multiple
objects simultaneously
• The Name if the class it

refers to.
• The Responsibilities of

the class. These should
be high level, not at the
level of individual
methods.

• The Collaborators that
help discharge a
responsibility.

Class Name

Collaborators
…

Responsibilities
…

© 2004-2006 SEOC - Lecture Note 06 7

A Design Example
A Library System

1. The library system
must keep track of
when books are
borrowed and returned

2. The system must
support librarian work

3. The library is open to
university staff and
students

© 2004-2006 SEOC - Lecture Note 06 8

CRC Cards in Design Development
1. Work using role play. Different individuals are

different objects

2. Pick a use case to building a scenario to hand
simulate

3. Start with the person who has the card with the
responsibility to initiate the use case

4. In discharging a responsibility a card owner may
only talk to collaborators for that responsibility

5. Gaps must be repaid and re-tested against the use
case

© 2004-2006 SEOC - Lecture Note 06 9

Using CRC Cards
1. Choose a coherent set of use cases

2. Put a card on the table

3. Walk through the scenario, naming cards and
responsibilities

4. Vary the situations (i.e., assumptions on the use
case), to stress test the cards

5. Add cards, push cards to the side, to let the
design evolve (that is, evaluate different design
alternatives)

6. Write down the key responsibility decisions and
interactions

© 2004-2006 SEOC - Lecture Note 06 10

A Design Example

© 2004-2006 SEOC - Lecture Note 06 11

Playing CRC Cards

© 2004-2006 SEOC - Lecture Note 06 12

Using CRC Cards: An Example
Specimen Use Cases

1. Patient admitted to ward.
When a patient arrives on a
ward, a duty nurse must
create a new record for this
patient and allocate them to
a bed.

2. Nurse handover. The senior
duty nurse at the end of
their shift must inform the
new staff of any changes
during the previous shift
(i.e., new patients, patients
discharged, changes in
patient health, changes to
bed status or allocations).

NHS Trust Manager

Hospital
…

Initialize system
Check free beds
…

© 2004-2006 SEOC - Lecture Note 06 13

Using CRC Cards: An Example continued

Nurse

Record,Bed
Record
Bed
Bed, Record
…

Admit patients
Update patient records
Reserve beds
Discharge patients
…

Record

Nurse
…

Is_updated
… Bed

Nurse, Record
Nurse
…

Is_allocated
Is_reserved
…

© 2004-2006 SEOC - Lecture Note 06 14

What CRC Card help with

Check use case can be achieved

Check associations are correct

Check generalizations are correct

Detect omitted classes

Detect opportunities to refactor the class
model. That is: to move responsibilities
about (and operations in the class model)
without altering the overall responsibility of
the system

© 2004-2006 SEOC - Lecture Note 06 15

CRC Cards and Quality
Too many responsibilities
• This indicates low cohesion in the system
• Each class should have at most three or four responsibilities
• Classes with more responsibilities should be split if possible

Too many collaborators
• This indicates high coupling
• It may be the division of the responsibilities amongst the

classes is wrong

CRC Cards
• provide a good, early, measure of the quality of the system

(design). Solving problems now is better that later.
• are flexible – use them to record changes during validation

© 2004-2006 SEOC - Lecture Note 06 16

Principles for Refactoring
Do not do both refactoring and adding
functionality at the same time
• Put a clear separation between the two when you are working
• You might swap between them in short steps, e.g., half an

hour refactoring, an hour adding new function, half an hour
refactoring what you just added

Make sure you have good tests before you begin
refactoring
• Run the tests as often as possible; that way you will know

quickly if your changes have broken anything
Take short deliberate steps
• Moving a field from one class to another, fusing two similar

methods into a super class
• Refactoring often involves many localized changes that result

in a large scale change
• If you keep your steps small, and test after each step, you

will avoid prolonged debugging

© 2004-2006 SEOC - Lecture Note 06 17

When to Refactor?

When you are adding a function to your
design (program) and you find the old design
(code) getting in the way
• When that starts becoming a problem, stop adding

the new function and instead refactor the old
design (code)

When you are looking at design (code) and
having difficulty understanding it
• Refactoring is a good way of helping you

understand the design (code) and preserving that
understanding for the future

© 2004-2006 SEOC - Lecture Note 06 18

OO Design using CRC Cards

Use a team of (ideally) 5-6 people, including
developers, 2 or 3 domain experts, and an
“object-oriented technology facilitator”

1. Review quality of class model
2. Identify opportunities for refactoring
3. Identify (new) classes that support system

implementation
4. Further detail: sub-responsibilities of class

responsibilities, attributes, object
creation, destruction and lifetimes, data
passed, etc.

© 2004-2006 SEOC - Lecture Note 06 19

OO Analysis using CRC Cards

Similar team, but replace some domain experts
with developers. However, always include at
least one domain expert

1. Session focuses on a part of requirements
2. Identify classes (e.g., noun-phrase

analysis)
3. Construct CRC cards for these and assign

to members
4. Add responsibilities to classes
5. Role-play scenarios to identify

collaborators

© 2004-2006 SEOC - Lecture Note 06 20

Common Domain Modeling Mistakes

Overlay specific noun-phrase analysis
Counter-intuitive or incomprehensible class
and association names
Assigning multiplicities to associations too
soon
Addressing implementation issues too early
• Presuming a specific implementation strategy
• Committing to implementation constructs
• Tackling implementation issues (e.g., integrating

legacy systems)
Optimizing for reuse before checking use
cases achieved

© 2004-2006 SEOC - Lecture Note 06 21

Summary

We should try to check the completeness of
the class model (early assurance the model
is correct)
CRC Cards are a simple way of doing this
CRC Cards support responsibility-based
modeling and design
CRC Cards identify errors and omissions
They also give an early indication of quality
Use the experience of simulating the system
to refactor if this necessary

© 2004-2006 SEOC - Lecture Note 06 22

Reading/Activity

Kent Beck and Ward Cunningham. A
Laboratory for Teaching Object-Oriented
Thinking. In Proceedings of OOPSLA ’89.

Other CRC-related resources by Cunningham
• A CRC Description of HotDraw
• How Do Teams Shape Objects? How Do Objects

Shape Teams?
• CRC-Card Experience Connects Developers and

Customers to Essence of the Problem
Alistair Cockburn’s papers
• Using CRC Cards
• Responsibility- based Modeling

