
Class Diagrams

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 05 2

Class Diagrams

support architectural design
• Provide a structural view of systems

Represent the basics of Object-Oriented
systems
• identify what classes there are, how they

interrelate and how they interact
• Capture the static structure of Object-Oriented

systems - how systems are structured rather than
how they behave

Constrain interactions and collaborations
that support functional requirements
• Link to Requirements

© 2004-2006 SEOC - Lecture Note 05 3

Class Diagram Rationale
Desirable to build systems quickly and cheaply (and
to meet requirements)
• All required behaviour can be realized simply from objects in

the classes of the system
• The system consists of a collection of objects in the

implemented classes (e.g., there may be a GUI coordinate
human interaction with the other parts of the system)

Desirable to make the system easy to maintain and
modify
• The classes should be derived from the (user) domain – avoid

abstract object
• Classes provide limited support to capture system behaviour

- avoid to capture non-functional requirements of the system
as classes

© 2004-2006 SEOC - Lecture Note 05 4

Class Diagrams in the Life Cycle
They can be used throughout the
development life cycle
Class diagrams carry different information
depending on the phase of the development
process and the level of detail being
considered
• The contents of a class diagram will reflect this

change in emphasis during the development process
• Initially, class diagrams reflect the problem

domain, which is familiar to end-users
• As development progresses, class diagrams move

towards the implementation domain, which is
familiar to software engineers

© 2004-2006 SEOC - Lecture Note 05 5

Class Diagrams at a Glance
Class Diagram Basics
Classes
• Basic Class Components
• Attributes and

Operations
Class Relationships
• Associations
• Generalizations
• Aggregations and

Compositions

Construction involves
1. Modeling classes
2. Modeling relationships

between classes and
3. Refining and elaborate

as necessary

© 2004-2006 SEOC - Lecture Note 05 6

Classes and Objects
Classes represent groups
of objects all with similar
roles in the system
• Structural features define

what objects of the class
know

• Behavioral features define
what objects of the class
can do

Classes may
• inherit attributes and

services from other classes
• be used to create objects

Objects are
• entities in a software

system which represent
instances of real-world and
system entities

• instances of classes
Objects derive from:
• Things: tangible, real-world

objects, etc.
• Roles: classes of actors in

systems, e.g., students,
managers, nurses, etc.

• Events: admission,
registration, matriculation,
etc.

• Interactions: meetings,
tutorials, etc.

© 2004-2006 SEOC - Lecture Note 05 7

Classes and Objects
An object is an entity that
has a state and a defined set
of operations which operate
on that state
The state is represented as
a set of object attributes
The operations associated
with the object provide
services to other objects,
which request these services
when some functionality is
required

Objects are created
according to some class
definition
A class definition
• serves as a template for

objects
• includes declarations of all

the attributes and
operations which should be
associated with an object of
that class

Note that the level of detail
known or displayed for
attributes and operations
depends on the phase of the
development process

© 2004-2006 SEOC - Lecture Note 05 8

Employee

name: string
address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string
Department: Dept
manager: Employee
Salary: integer
status: {current, left, retired}
taxCode: integer
. . .

join ()
leave ()
retire ()
changeDetails ()

Basic Class Compartments
Name
Attributes
• represent the state of an

object of the class
• are descriptions of the

structural or static features
of a class

Operations
• define the way in which

objects may interact
• are descriptions of

behavioral or dynamic
features of a class

Name

Attributes

Operations

© 2004-2006 SEOC - Lecture Note 05 9

Attributes
Visibility / name : type multiplicity = default {property strings and constraints}

Visibility
• public (+), protected (#), package(~), private (-)
/ derived attribute
Name
Type is the data type of the attribute or the data returned
by the operation
Multiplicity specifies how many instances of the attribute’s
type are referenced by this attribute
• [n..m] - n to m instances; 0..1 - zero or one instance; 0..* or * -

no limit on the number of instances (including none). 1 - exactly one
instance; 1..* at least one instance

Property strings
• readOnly, union, subset <attribute-name>, redefines <attribute-

name> composite
Constraints

© 2004-2006 SEOC - Lecture Note 05 10

Attributes

Attributes by relationship allow the
definition of complex attributes

Visibility
• public (+), protected (#), package (~), private (-)
• From More accessible to Less Accessible
• Java allows access to protected parts of a class to

any class in the same package

© 2004-2006 SEOC - Lecture Note 05 11

Operations
visibility name (parameters) : return-type {properties}

(Parameters)
direction parameter_name : type [multiplicity] = default_value {properties}

direction
• in, inout, out or return
Operation constraints
• preconditions, postconditions, body conditions, query

operations, exceptions
Static operations
• Specify beheviour for the class itself
• Invoked directly on the class
Methods are implementations of an operations
• Abstract classes provide operation signatures, but no

implementations

© 2004-2006 SEOC - Lecture Note 05 12

Class Relationships

Dependency: objects of one class work briefly with objects of
another class

Association: objects of one class work with objects of another
class for some prolonged amount of time

Aggregation: one class owns but share a reference to objects of
other class

Composition: one class contains objects of another class

Inheritance (Generalization): one class is a type of another
class

© 2004-2006 SEOC - Lecture Note 05 13

Dependency and Association
Dependency between two
classes means that one class
uses, or has knowledge of,
another class
• a transient relationship

Associations
• an attribute of an object is

an associated object
• a method relies on an

associated object
• an instance of one class must

know about the other in
order to perform its work

• Passing messages and
receiving responses

Associations may be
annotated with information
• Name, Multiplicity, Role

Name, Ends, Navigation

© 2004-2006 SEOC - Lecture Note 05 14

Aggregation and Composition
Aggregation
• Is a stronger version of

association
• is used to indicate that, as

well as having attributes of
its own, an instance of one
class may consist of, or
include, instances of another
class

• are associations in which one
class belongs to a collection

The java code
implementation for an
aggregation (composition)
relationship is exactly the
same as the implementation
for an association
relationship; it results in the
introduction of an attribute.

Compositions
• imply coincident lifetime. A

coincident lifetime means
that when the whole end of
the association is created
(deleted), the part
components are created
(deleted).

© 2004-2006 SEOC - Lecture Note 05 15

Generalization (Inheritance)
an inheritance link indicating one
class is a superclass of the other,
the subclass

• An object of a subclass to be used
as a member of the superclass

• The behavior of the two specific
classes on receiving the same
message should be similar

Checking Generalizations
• If class A is a generalization of a

class B, then “Every B is an A”
Design by Contract

• A subclass must keep to the
contract of the superclass by:
ensuring operations observe the pre
and post conditions on the methods
and that the class invariant is
maintained

Implementing Generalizations
• Java: creating the subclass by

extending the super class
• Inheritance increases system

coupling
• Modifying the superclass methods

may require changes in many
subclasses

• Restrict inheritance to conceptual
modeling

• Avoid using inheritance when some
other association is more
appropriate

© 2004-2006 SEOC - Lecture Note 05 16

More on Classes

Abstract Classes provide the definition, but
not the implementation
Interfaces are collections of operations
that have no corresponding method
implementations
• Safer than Abstract classes – avoid many problems

associated with multiple inheritance
• Java allows a class to implement any number of

interface, but a class inherit from only one regular
or abstract class

Templates – or parameterized classes –
allow us to postpone the decision as to which
classes a class will work with

© 2004-2006 SEOC - Lecture Note 05 17

Modeling by Class Diagrams

Class Diagrams (models)
• from a conceptual viewpoint, reflect the

requirements of a problem domain
• From a specification (or implementation)

viewpoint, reflect the intended design or
implementation, respectively, of a software system

Producing class diagrams involve the
following iterative activities:
• Find classes and associations (directly from the

use cases)
• Identify attributes and operations and allocate to

classes
• Identify generalization structures

© 2004-2006 SEOC - Lecture Note 05 18

How to build a class diagram
Design is driven by criterion of completeness either
of data or responsibility
• Data Driven Design identifies all the data and see it is

covered by some collection of objects of the classes of the
system

• Responsibility Driven Design identifies all the
responsibilities of the system and see they are covered by a
collection of objects of the classes of the system

Noun identification
• Identify noun phrases: look at the use cases and identify a

noun phrase. Do this systematically and do not eliminate
possibilities

• Eliminate inappropriate candidates: those which are
redundant, vague, outside system scope, an attribute of the
system, etc.

Validate the model…

© 2004-2006 SEOC - Lecture Note 05 19

Common Domain Modeling Mistakes

Overly specific noun-phrase analysis
Counter-intuitive or incomprehensible class
and association names
Assigning multiplicities to associations too
soon
Addressing implementation issues too early:
• Presuming a specific implementation strategy
• Committing to implementation constructs
• Tackling implementation issues

Optimizing for reuse before checking use
cases achieved

© 2004-2006 SEOC - Lecture Note 05 20

Class and Object Pitfalls

Confusing basic class relationships (i.e., is-a,
has-a, is-implemented-using)

Poor use of inheritance
• Violating encapsulation and/or increasing coupling
• Base classes do too much or too little
• Not preserving base class invariants
• Confusing interface inheritance with

implementation inheritance
• Using multiple inheritance to invert is-a

© 2004-2006 SEOC - Lecture Note 05 21

Summary

Class Diagrams in the life cycle
Class Diagram Rationale
Classes
• Basic Class Components
• Attributes and Operations

Class Relationships
• Dependency, Association, Aggregation, Composition

and Generalization (Inheritance)
Modeling by Class Diagrams
• How to build a class diagram
• Common domain modeling mistakes
• Class and Object Pitfalls

© 2004-2006 SEOC - Lecture Note 05 22

Reading/Activity

Please review the use of ArgoUML in the
generation of UML diagrams
• http://argouml.tigris.org/tours

	Class Diagrams
	Class Diagrams
	Class Diagram Rationale
	Class Diagrams in the Life Cycle
	Class Diagrams at a Glance
	Classes and Objects
	Classes and Objects
	Basic Class Compartments
	Attributes
	Attributes
	Operations
	Class Relationships
	Dependency and Association
	Aggregation and Composition
	Generalization (Inheritance)
	More on Classes
	Modeling by Class Diagrams
	How to build a class diagram
	Common Domain Modeling Mistakes
	Class and Object Pitfalls
	Summary
	Reading/Activity

