
Software Design

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 04 2

Software Design
Software Design: the process of defining the architecture,
components, interfaces and other characteristics of a system or
component. [IEEE standard glossary]

• The Link to Requirements
• Key Design techniques and issues
• Structure and architecture

• the main elements of software that need to be managed
• design in the large and design in the small

• Design notations
• Design quality and evaluation

Design: 1. The process of defining the software architecture,
components, modules, interfaces, and data for a software system to
satisfy specified requirements. 2. The results of the design process.
[IEEE Software]
Software Design: The use of scientific principles, technical
information, and imagination in the definition of a software
system to perform prespecified functions with maximum
economy and efficiency. [IEEE Software]

• Design is a pervasive activity
• often there is no definitive solution
• solutions are highly context dependent
• No “magic bullet” in general

© 2004-2006 SEOC - Lecture Note 04 3

The Link to Requirements
Design links requirements to “implementable
specifications”

Traceability - retaining the link from requirements
to components
• By allocating a particular requirement to a particular

component as we decompose, e.g., in VolBank, we might
require a log

• By decomposing requirements into more refined
requirements on particular components, e.g., a particular
function in VolBank might be realized across several
components

• Some requirements (e.g., usability) are harder to decompose,
e.g., it takes 30 minutes to become competent in using the
system

We might require traceability back from the design

© 2004-2006 SEOC - Lecture Note 04 4

Traceability
There are four basic types of traceability:

• Pre-traceability (e.g., requirements-sources, requirements-
rationale, etc.)
1. Forward-to requirements traceability links other documents

preceding requirements (e.g., users document)
2. Backward-from requirements traceability links requirements

to their sources (e.g., rationale)
• Post-traceability (e.g., requirements-architecture,

requirements-design, requirements-interface, etc.)
3. Forward-from requirements traceability links requirements to

design and implementation
4. Backward-to requirements traceability links design and

implementation back to requirements.

To manage requirements, you need to maintain
traceability information (e.g., Traceability Tables)

• Requirements Management Tools support traceability
practice (e.g., IBM Rational RequisitePro or Telelogic
DOORS)

© 2004-2006 SEOC - Lecture Note 04 5

Key Design Techniques
Abstraction
• ignoring detail to get the high level structure right

Decomposition and Modularization
• big systems are composed from small components

Encapsulation/information hiding
• the ability to hide detail (linked to abstraction)

Defined interfaces
• separable from implementation

Evaluation of structure:
• Coupling: How interlinked a component is
• Cohesion: How coherent a component is

© 2004-2006 SEOC - Lecture Note 04 6

Key Issues in Software Design

Concurrency
• Often there is significant

interaction that needs
management

• What are the main
concurrent activities?

• How do we manage their
interaction?

• VolBank: matching and
specifying skills and
needs goes on
concurrently

Workflow and event
handling
• What are the activities

inside a workflow?
• How do we handle events?

Distribution
• How is the system

distributed over physical
(and virtual) systems?

Error handling and recovery
• Action when a physical

component fails (e.g., the
database server)

• How to handle exceptional
circumstances in the world

• VolBank: a volunteer fails to
appear

Persistence of data:
• Does data need to persist

across uses of the system,
how complex?

• How much of the state of
the process?

Can you think through some
of these issues for VolBank?

© 2004-2006 SEOC - Lecture Note 04 7

A Design Process

Main activity in design:
• decomposing system (components) into smaller more manageable components
• definitions of components that are easily codable

Usually a two stage process: Architectural Design and Detailed Design
• Architectural Design (or High-level Design)

• What are the components and how do they relate?
• How does the system architecture deal with issues that pervade the system?

• Detailed Design deals with the function and characteristics of components
and how they relate to the overall architecture.

Architectur al
design

Abstract
specification

Inter face
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Inter face
specification

Component
specification

Data
structure

specification

Algorithm
specification

Requirements
specification

Design activities

Design products [Sommerville, 2004]

© 2004-2006 SEOC - Lecture Note 04 8

Architectural Design and UML

[Kruchten, Obbink, Stafford 2006]

© 2004-2006 SEOC - Lecture Note 04 9

Architecture and Structure
Architectural structures and viewpoints
• attempt to deal with facets separately, e.g., physical view,

functional (or logical) view, security view, etc.

Architectural styles, for example:
• Three-tier architecture for a distributed system (interface,

middleware, back-end database)
• Blackboard
• Layered architectures
• Model-View-Controller
• Time-triggered

Design patterns
• small-scale patterns to guide the designer

Families and frameworks
• component set and ways of plugging together
• software product lines

© 2004-2006 SEOC - Lecture Note 04 10

Architectural Design
Advantages:
• Stakeholder Communication
• System Analysis
• Large-scale reuse
Design Strategies
• Function Oriented: sees the design of the functions as

primary
• Data Oriented: sees the data as the primary structured

element and drives design from there
• Object Oriented: sees objects as the primary element of

design
There is no clear distinction between Sub-systems
and modules. Intuitively,
• Sub-systems are independent and composed of modules, have

defined interfaces for communication with other sub-
systems

• Modules are system components and provide/make use of
service(s) to/provided by other modules

© 2004-2006 SEOC - Lecture Note 04 11

Architecture Models

Architecture Models that may be
developed may include:

1. A static structural model that shows the sub-
systems or components that are to be developed
as separate units.

2. A dynamic process model that shows how the
system is organized into processes at run-time.
This may be different from the static model.

3. An interface model that defines the services
offered by each sub-system through their public
interface.

4. A relationship model that shows relationships
such as data flow between the sub-systems.

© 2004-2006 SEOC - Lecture Note 04 12

Quality Analysis and Evaluation

The system architecture affects the quality
attributes of a system
Quality attributes:
• Performance, security, availability,… modifiability,

portability, reusability, testability, maintainability,
etc.

Quality analysis:
• reviewing techniques, static analysis, simulation,

performance analysis, prototyping
Measures (metrics):
• Defined measure on the design
• Predictive, but usually very dependent on the

process in use

© 2004-2006 SEOC - Lecture Note 04 13

Architectural Design: Key Points

The software architecture is the fundamental
framework for structuring the system

Different architectural models (e.g., system
organizational models, modular decomposition
models and control models) may be developed

Design decisions enhance system attributes
• Performance, e.g., localize operations to minimize sub-system

communication
• Security, e.g., use a layered architecture with critical assets

in inner layers
• Safety, e.g., isolate safety-critical components
• Availability, e.g., include redundant components in the

architecture
• Maintainability, e.g., use fine-grain self-contained

components

© 2004-2006 SEOC - Lecture Note 04 14

What are the Architect’s Duties?
Get it Defined, documented and
communicated
• Act as the emissary of the

architecture
• Maintain morale

Make sure
• everyone is using it (correctly)
• management understands it
• the software and system

architectures are in
synchronization

• the right modeling is being
done, to know that quality
attributes are going to be met

• the architecture is not only the
right one for operations, but
also for deployment and
maintenance

Identify
• architecture timely stages that

support the overall organization
progress

• suitable tools and design
environments

• (and interact) with
stakeholders

Resolve
• disputes and make tradeoffs
• technical problems

Manage risk identification and
risk mitigation strategies
associated with the
architecture
• understand and plan for

evolution

© 2004-2006 SEOC - Lecture Note 04 15

Comparing Architecture Design Notations

Modeling Components:
• Interface, Types, Semantics, Constraints,

Evolution, Non-functional Properties

Modeling Connectors:
• Interface, Types, Semantics, Constraints,

Evolution, Non-functional Properties

Modeling Configurations:
• Understandable Specifications, Compositionality

(and Conposability), Refinement and Traceability,
Heterogeneity, Scalability, Evolvability, Dynamism,
Constraints, Non-functional Properties

© 2004-2006 SEOC - Lecture Note 04 16

UML Design Notations

Static Notations:
• Component diagrams
• Class and object diagrams
• Deployment diagrams
• CRC Cards

Dynamic Notations:
• Activity diagrams
• Collaboration diagrams
• Statecharts
• Sequence diagrams

© 2004-2006 SEOC - Lecture Note 04 17

VolBank: Example

Suppose we consider two requirements:
• That a request for a volunteer should produce a

list of volunteers with appropriate skills.
• The system shall ensure the safety of both

volunteers and the people and organizations who
host volunteers.

• This may decompose into many more specific
requirements:

– That the organization has made reasonable efforts to
ensure a volunteer is bona fide.

» That we have a confirmed address for the
individual: i.e., the original address is correct, and
only the volunteer can effect a change in address.

© 2004-2006 SEOC - Lecture Note 04 18

Summary

Design is a complex matter

Design links requirements to construction,
essential to ensure traceability

Generally two stages:
• Architecture Design (or High-level Design)
• Detailed Design

Many notations and procedures to support
design

More domain-specificity for easier design
task

© 2004-2006 SEOC - Lecture Note 04 19

Reading/Activity

Traceability
• M. Jarke. Requirements Tracing. Communications of the

ACM, Vol. 41, No. 12, December 1998.
• B. Ramesh. Factors Influencing Requirements Traceability

Practice. Communications of the ACM, Vol. 41, No. 12,
December 1998.

Software Design
• Chapter 3 – Software Design - of the SWEBOK for an

overview of the work on design.
• P. Kruchten. Software Design in a Postmodern Era. IEEE

Software 2005.
• M. Fowler. The State of Design. IEEE Software 2005.
• Software Engineering Glossary. Software Design - Part 1,

Part 2 and Part 3. IEEE Software 2004.

© 2004-2006 SEOC - Lecture Note 04 20

Reading/Activity

Software Architecture
• G. Booch. On Architecture. IEEE Software, March/April 2006.
• G. Booch. The Accidental Architecture. IEEE Software, May/June

2006.
• M. Shaw, P. Clements. The Golden Age of Software Architecture.

IEEE Software, March/April 2006.
• P. Kruchten, H. Obbink, J. Stafford. The Past, Present and Future

of Software Architecture. IEEE Software, March/April 2006.
• D. Garlan, M. Shaw. An Introduction to Software Architecture.

CMU/SEI-94-TR-21, 1994.
• N. Medvidovic, R.N. Taylor. A Classification and Comparison

Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, Vol. 26, No. 1, January 2000.

• R. Wieringa. A Survey of Structured and Object-Oriented
Software Specification Methods and Techniques. ACM Computing
Surveys, Vol 30, No. 4, December 1998.

	Software Design
	Software Design
	The Link to Requirements
	Traceability
	Key Design Techniques
	Key Issues in Software Design
	A Design Process
	Architectural Design and UML
	Architecture and Structure
	Architectural Design
	Architecture Models
	Quality Analysis and Evaluation
	Architectural Design: Key Points
	What are the Architect’s Duties?
	Comparing Architecture Design Notations
	UML Design Notations
	VolBank: Example
	Summary
	Reading/Activity
	Reading/Activity

