Software Engineering
with Objects and Components

Massimo Felici
Room 1402, JCMB, KB
0131 650 5899

mfelici@inf.ed.ac.uk

Administration
= SEOC webpage

http://www.inf.ed.ac.uk/teaching/courses/seoc/

= Course Resources

- Lecture Notes and References
- Software: ArgoUML, Eclipse and Java

= Tutorials begin in week 3;

Frequency: once a week
* Maximum 12 people per tutorial group

= Coursework:

in small teams (approx 3-4 people)
* two deliverables equally weighted
- 1st deliverable: Monday, 30th October

- 2nd deliverable: Monday, 4™ December

= Assessment:
25% coursework; 75% degree examination

© 2004-2006 SEOC - Lecture Note 01

Software Engineering

= Software Engineering is an
that is concerned with
from the early stages of system
specification to maintaining the system after it has
gone into use. [Sommerville 2007]

= The right software delivered defect free, on time

and on cost, every time. [Software Engineering Institute
(SEI)]

= Software Engineering studies

*+ How to make software that is “fit for purpose”

 good enough (functionally, non-functionally), meets constraints
of the environment, law, ethics and work practice

+ How to meet time and financial constraints on delivery

We still fail too often

© 2004-2006 SEOC - Lecture Note 01 3

Faults, Errors and Failures

= How does Software Engineering relate to Faults, Errors and
Failures?

Design faults, Errors trigger failures, Software (system) fails, etc.
= Some Definitions...

Failure is the nonperformance or inability of the system or
component to perform its intended function for a specified time
under specified environmental conditions [Levenson 1995]

Error is a design flaw or deviation from a desired or intended state
[Levenson 1995]

Failure is an event that occurs when the delivered service deviates
from correct service [AviZienis et al.]

A fault is active when it causes an error [Avizienis et al.]

An error is the part of the total state of the system that may lead
to its subsequent service failure. [Avizienis et al.]

= Warnings: slightly different use of faults, errors and failures

© 2004-2006 SEOC - Lecture Note 01 4

The Pathology of Failure

Senvice Senvic
Com & Componen 14=] ~EMVICE
Py P Interfac P Interface
(intemaly I I
\Domant
\Fault/w‘ B |
(G JFropag I £l Extemal g fimput) e el
—Z E [-
S/ N O Faut e |
- I I
o
Tl

Service

= Relationship between Faults, Errors and Failures

propagation causation

activation)
. —= fault - =TOr > fajlure —————— fault —= ...

= The fundamental chain of dependability threats

© 2004-2006 SEOC - Lecture Note 01

An Example: Patriot Missile

= Accident Scenario: On February 25, 1991,
during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabig,
failed to track and intercept an incoming
Iragi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers
and injuring around 100 other people.

= A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile
Defense: Software Problem Led to System
Failure at Dhahran, Saudi Arabia reported on the
cause of the failure.

© 2004-2006 SEOC - Lecture Note 01 6

http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot Missile continued...

= Fault: inaccurate calculation of the time since boot due to computer
arithmetic errors.

The time in tenths of second as measured by the system's internal clock was
multiplied by 1/10 to produce the time in seconds.

This calculation was ferfor'med using a 24 bit fixed point register. In
particular, the value 1/10, which has a non-terminating binary expansion, was
chopped at 24 bits after the radix point.

= Error: The small chopping error, when multiplied by the large
humber giving the time in tenths of a second, lead to a s(i)gnifican‘r
error. Indeed, the Patriot battery had been up around 100 hours,

and an easy calculation shows that the resulting time error due to
the magnified chopping error was about 0.34 seconds.

the binary expansion of 1/10 is
0.0001100110011001100110011001100....

Now the 24 bit register in the Patriot stored instead
0.00011001100110011001100 introducing an error of

0.OC?OQOOIOOOOOOOOOOOOOOOOOI 1001100... binary, or about 0.000000095
ecimal.

Mul‘r(ijpléing by the number of tenths of a second in 100 hours gives
0.000000095x%100x60x60x10=0.34.

© 2004-2006 SEOC - Lecture Note 01 7

Patriot Missile continued...

Elgure 4z €nleviated Rangs Gata Lilsr Appraximatoly & Haore

» Failure: A Scud travels at [o y

PurStn of Bzam Pracassoo

about 1,676 meters per
second, and so travels more
than 500 meters in this time.

= This was far enough that the
incoming Scud was outside
the "“range gate" that the |

Patriot tracked.

= Tronically, the fact that the | = S "o
bad time calculation had been | Tneorrect Caleusge
improved in some parts of s
the code, but not adll,
contributed to the problem,
since it meant that the
inaccuracies did not cancel.

© 2004-2006 SEOC - Lecture Note 01 8

Patriot Missile ..conclusions

= Containing coding errors is very hard

+ seemingly insignificant errors result in major
changes in behaviour

= Original fix suggested a change in
procedures

* reboot every 30 hours - impractical in operation

= Patriot is atypical

- coding bugs rarely cause accidents alone

= Maintenance failure
» failure of coding standards and traceability

© 2004-2006 SEOC - Lecture Note 01 9

Other lessons from (medical device) failures

FGilUf'eS OSehavior -22%

HData - 1%
1% -31%
m10%

1% ODisplay -8%

O22% QOFunction -29%

3%
0 1% — B General - 0%
.'IcDInput -4%
19%
% I:IEII:IDutput - 19%
4% OCQuality -1%
m0% J 029% B FResponse -

3%
W Service -10%

OSystem -1%
OTiming -1%
B User instruct -

1%

Prevention

Faults

Ocalculation -24%
M change impact -6%
ocMm -1%

Odata - 5%

Wfault tolerance-1%
Qinitialization -2%
Minterface -2%
Olegic - 43%
Womission -3%
Mother -3%

a anlity assurance -

a re:quirem ents -4%

Wtiming - 3%

= Design, traceability, change impact analysis, configuration management,

input data validation, faulf folerance, etc.

Detection

= (Code) inspections, (unit or integration) testing, etc.

© 2004-2006 SEOC - Lecture Note 01

Software Engineering

We will study the following
areas:

Software .Recﬁuir‘ements: the
activities involved in gaining an
accurate idea of what the Users
of the system want it to do.

Software Design: the design of
a system to meet the
requirements.

Software Construction: the
realisation of the design as a
program.

Software Testing: the process
of checking the code meets the
design.

Software Configuration,
Operation an aintenance:
major cost in the lifetime of
systems.

= These are the essential
activities

= How we deploy effort and

arrange these activities is part

of Software Engineering
Processes
© 2004-2006

(Rational) Unified Process - RUP

Workflows

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Cenfiguration
& Change Mgmt

Project Management
Environment

SEOC - Lecture Note 01

Phases
‘ Inoaptiun” Elaboration H Construction ” Transition |

: : o

S S b= i

Const || Const | Const || Tran || Tran
| imital || Eab #1 | Hab #2] Const | Const | GO | Tion [Ty

Iterations

Models Supporting SE

UML provides a range of graphical notations
that capture various aspects of the
engineering process

Provides a common notation for various
different facets of systems

Provides the basis for a range of
consistency checks, validation and
verification procedures

Provides a common set of languages and
notations that are the basis for creating
tools

© 2004-2006 SEOC - Lecture Note 01 12

UML: Use Case Diagrams

-~ communication Used to support requirements
actor "% Y Capture and analysis

Fatient

K‘“‘— - Use case

£
' % scheduler
Show the actors A

Involvement in
System activities %

Coctor

X

Clerk

Fay Bill

© 2004-2006 SEOC - Lecture Note 01 13

UML: Class Diagrams

/Cap'rur'e the static
structure of systems
associations between

\Customer Order classes
name 1 0..*| date k /
address /.. status
e association — calcSubTotal()
| caleTax()
abstract class - 1.% 1| calcTotal()
—— caleTotalWeight()
Payment R
amount }
— generalization \, —
N aggregation
\J [.
role name -, line item |\1-- multiplicity
OrderDetail Item 44— class name
Cash Check Credit quantity shippingWeight b attributes
SN description
cashTendered | |name number taxStatus DERC . .
bankiD type calcSubTotal() 0.2 C getPriceForQuantity()
authorized()| |expDate caleWeight() getTax() <} operations

© 2004-2006 SEOC - Lecture Note 01 14

UML: Sequence and Collaboration Diagrams

. aChain aHotel
object » HotelChain Hotel

window
Uzerlnterface

I
I
|
|
rnakeResarationiyoild | popemecenvationvoid

[
|
|
|
|
e L i

4‘\% Wfie&:ﬁun
MEessage
*[far each day] isRoom:=availabled:hoolean

aReservation

isRoom] Reszervation

\ /)‘ aNotice
— Confirmation
~ creaton? | [goal

activation bar T—

| condicion Capture how objects
R interact to achieve a

note w\ u

If & room is availahble for |
each day of the stay, make |
a regervation and send a |
|
|

«— deletion _'_‘F-,_
X : ——— lifeling ——»

| canfirmatian,

window:Userinterface

~ message

¥
%1 A makeReservationdy aid

aChain:HotelChain
« object

%1 .1 makeReservationdvoid

~ sequence number

iteration <« self link

aHotel:Hotel 11"1 2[isRoom] —= |aReservation:Reservation

aNotice:Confirmation

1.1.1.1:*[for each day] isRoom:=available(:hoolean —=

© 2004-2006 SEOC - Lecture Note 01

15

UML: Statechart Diagrams

Capture state change in
objects of the system

initial state

ICursarta 35M

& " Rejecting :
- Getting G5

CanceliQuit
— RetryiClear S50, PIM entries

event guard activity
5

¥
Fress Hey[kevt ta b]IDispEv ke

[notvalidliDisplay errar message subimit \
—¥ Fress shift-tabh OR move cursar to

- transition —
S5 fieldiCursarto 35K

Fress tabh OF mowve cursor to PIM
fieldfCursar to PIM

_— state

final state
/ " Geting FIN

/
i - - -
@5 Validating “|
alidiStart transaction | J0VAI08E BN and P'NJ submit —
" 7 action

Fress kev[key I= shift-tabl\Cisplay dot

© 2004-2006 SEOC - Lecture Note 01 16

UML: Activity Diagrams

swimlane

———— II."

~ v T~
Custarmer ATM Machine “Bank
«—— start
Insert card
g activity
Enter pin % Authorize ~guard expression
branch -, ,L,
T ——— [valid PIR] s | [Irwalid PR
C A
-
{_ Check account balance :}
[balanee == amaunt] \l/ [halance = amaunt]
k
j{f far
I { Debitaccount
(Take maoney from slot __} join

v

Show balance

mErge Ty

Eject card

i« end

Capture
the workflow
in a situation

© 2004-2006

SEOC - Lecture Note 01

17

UML: Other Diagrams

—

u_|———=

—

i
\)
Vo
package =-——

[Package}

instance name —-

Accounting =~ —— — —— %~ — — | Bank
M, \
: - \S dependency
! |
Ordering |— — — —>{ Shipping \'.I
o v
.]
| v
CustomerDB StockDB
~ .l:/___,--- class name
mathStat:Department

Bank Serer Real Estate Server
P p— Mortaage Application Listing —<Strages
CustomerDB — —=| MultipleL istings
)
|
_______ 4 \- component
interface ~~ IMortyageApplication Listing
=
t -~
| node]
: T dependency
f — - connection
| aPc -~ ol
TCRAP Buyerinterface TCRIRP

[Component and Deploymem‘}

Department

-degree String[]={"graduate" "undergraduate” "hoth"} 0.x

statistics:Department

math:Department

appliedMath:Department

mathEd:Department

© 2004-2006

subdepartment

1

 Object |

SEOC - Lecture Note 01 18

References

= Software Engineering

Ian Sommerville. Software Engineering. 8th Edition, Addison-
Wesley, 2007.

SWEBOK - Guide to the Software Engineering Body of Knowledge.
2004 Version, IEEE.

Bertrand Meyer. Software Engineering in the Academy. IEEE
Computer, May 2001, pp. 28-35.

. Dependablllfy

A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts
and taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1(1):11-33, 2004.
Nancy 6. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995

Neil Story. Safety-Critical Computer Systems. Addison-Wesley,
1996.

© 2004-2006 SEOC - Lecture Note 01 19

http://www.inf.ed.ac.uk/teaching/courses/seoc1/2004_2005/resources/meyer_teaching.pdf

References

O'rher' Case Studies

The Ariane 5 Launcher Failure

The London Ambulance fiasco

Airbus Flight Control System

Medical Devices: The Therac-25

Lessons from 342 Medical Device Failures

A Collection of Software Bugs by Prof. Thomas Hackle

UML

UML, Schaum's Outline Series, Simon Bennett, John Skelton and Ken Lunn, McGraw-

Hill, 2001, ISBN 0-07-709673-8.

Online TuTorials
Practical UML: A Hands-On Introduction for Developers
Introduction to OMG's Unified Modeling Language (UML)

R. Miles, K. Hamilton. UML 2.0. O'Reilly 2006.

D. Pilone, N. Pitman. UML 2.0 in a nutshell. O'Reilly 2005.

James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language
Reference Manual. Second Edition, Addison-Wesley, 2004.

Perdita Stevens and Rob Pooley. Using UML: Software Engineering with Objects and
Components. Addison-Wesley, 2000.

© 2004-2006 SEOC - Lecture Note 01 20

http://homepages.inf.ed.ac.uk/mfelici/UML

	Software Engineering �with Objects and Components
	Administration
	Software Engineering
	Faults, Errors and Failures
	The Pathology of Failure
	An Example: Patriot Missile
	Patriot Missile continued…
	Patriot Missile continued…
	Patriot Missile …conclusions
	Other lessons from (medical device) failures
	Software Engineering
	Models Supporting SE
	UML: Use Case Diagrams
	UML: Class Diagrams
	UML: Sequence and Collaboration Diagrams
	UML: Statechart Diagrams
	UML: Activity Diagrams
	UML: Other Diagrams
	References
	References

