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Administration
= SEOC webpage

http://www.inf.ed.ac.uk/teaching/courses/seoc/

= Course Resources

- Lecture Notes and References
- Software: ArgoUML, Eclipse and Java

= Tutorials begin in week 3;

Frequency: once a week
* Maximum 12 people per tutorial group

= Coursework:

in small teams (approx 3-4 people)
* two deliverables equally weighted
- 1st deliverable: Monday, 30th October

- 2nd deliverable: Monday, 4™ December

= Assessment:
25% coursework; 75% degree examination
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Software Engineering

= Software Engineering is an
that is concerned with
from the early stages of system
specification to maintaining the system after it has
gone into use. [Sommerville 2007]

= The right software delivered defect free, on time

and on cost, every time. [Software Engineering Institute
(SEI)]

= Software Engineering studies

*+ How to make software that is “fit for purpose”

 good enough (functionally, non-functionally), meets constraints
of the environment, law, ethics and work practice

+ How to meet time and financial constraints on delivery

We still fail too often
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Faults, Errors and Failures

= How does Software Engineering relate to Faults, Errors and
Failures?

Design faults, Errors trigger failures, Software (system) fails, etc.
= Some Definitions...

Failure is the nonperformance or inability of the system or
component to perform its intended function for a specified time
under specified environmental conditions [Levenson 1995]

Error is a design flaw or deviation from a desired or intended state
[Levenson 1995]

Failure is an event that occurs when the delivered service deviates
from correct service [AviZienis et al.]

A fault is active when it causes an error [Avizienis et al.]

An error is the part of the total state of the system that may lead
to its subsequent service failure. [Avizienis et al.]

= Warnings: slightly different use of faults, errors and failures
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The Pathology of Failure
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= Relationship between Faults, Errors and Failures

propagation causation

activation )
. —= fault - =TOr > fajlure —————— fault —= ...

= The fundamental chain of dependability threats
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An Example: Patriot Missile

= Accident Scenario: On February 25, 1991,
during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabig,
failed to track and intercept an incoming
Iragi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers
and injuring around 100 other people.

= A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile
Defense: Software Problem Led to System
Failure at Dhahran, Saudi Arabia reported on the
cause of the failure.
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http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot Missile continued...

= Fault: inaccurate calculation of the time since boot due to computer
arithmetic errors.

The time in tenths of second as measured by the system's internal clock was
multiplied by 1/10 to produce the time in seconds.

This calculation was ferfor'med using a 24 bit fixed point register. In
particular, the value 1/10, which has a non-terminating binary expansion, was
chopped at 24 bits after the radix point.

= Error: The small chopping error, when multiplied by the large
humber giving the time in tenths of a second, lead to a s(i)gnifican‘r
error. Indeed, the Patriot battery had been up around 100 hours,

and an easy calculation shows that the resulting time error due to
the magnified chopping error was about 0.34 seconds.

the binary expansion of 1/10 is
0.0001100110011001100110011001100....

Now the 24 bit register in the Patriot stored instead
0.00011001100110011001100 introducing an error of

0.OC?OQOOIOOOOOOOOOOOOOOOOOI 1001100... binary, or about 0.000000095
ecimal.

Mul‘r(ijpléing by the number of tenths of a second in 100 hours gives
0.000000095x%100x60x60x10=0.34.
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Patriot Missile continued...
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about 1,676 meters per
second, and so travels more
than 500 meters in this time.

= This was far enough that the
incoming Scud was outside
the "“range gate" that the |

Patriot tracked.

= Tronically, the fact that the | = S "o
bad time calculation had been | Tneorrect Caleusge
improved in some parts of s
the code, but not adll,
contributed to the problem,
since it meant that the
inaccuracies did not cancel.
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Patriot Missile ..conclusions

= Containing coding errors is very hard

+ seemingly insignificant errors result in major
changes in behaviour

= Original fix suggested a change in
procedures

* reboot every 30 hours - impractical in operation

= Patriot is atypical

- coding bugs rarely cause accidents alone

= Maintenance failure
» failure of coding standards and traceability
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Other lessons from (medical device) failures
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= Design, traceability, change impact analysis, configuration management,

input data validation, faulf folerance, etc.

Detection

= (Code) inspections, (unit or integration) testing, etc.
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Software Engineering

We will study the following
areas:

Software .Recﬁuir‘ements: the
activities involved in gaining an
accurate idea of what the Users
of the system want it to do.

Software Design: the design of
a system to meet the
requirements.

Software Construction: the
realisation of the design as a
program.

Software Testing: the process
of checking the code meets the
design.

Software Configuration,
Operation an aintenance:
major cost in the lifetime of
systems.

= These are the essential
activities

= How we deploy effort and

arrange these activities is part

of Software Engineering
Processes
© 2004-2006

(Rational) Unified Process - RUP

Workflows

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Cenfiguration
& Change Mgmt

Project Management
Environment
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Models Supporting SE

UML provides a range of graphical notations
that capture various aspects of the
engineering process

Provides a common notation for various
different facets of systems

Provides the basis for a range of
consistency  checks,  validation  and
verification procedures

Provides a common set of languages and
notations that are the basis for creating
tools
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UML: Use Case Diagrams
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UML: Class Diagrams

/Cap'rur'e the static
structure of systems
associations between

\Customer Order classes
name 1 0..*| date k /
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e association — calcSubTotal()
| caleTax()
abstract class - 1.% 1| calcTotal( )
—— caleTotalWeight( )
Payment R
amount }
— generalization \, —
N aggregation
\J [ .
role name -, line item |\1-- multiplicity
OrderDetail Item 44— class name
Cash Check Credit quantity shippingWeight b attributes
SN description
cashTendered | |name number taxStatus DERC . .
bankiD type calcSubTotal( ) 0.2 C getPriceForQuantity( )
authorized( )| |expDate caleWeight() getTax() <} operations
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UML: Sequence and Collaboration Diagrams
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UML: Statechart Diagrams

Capture state change in
objects of the system
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UML: Activity Diagrams
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UML: Other Diagrams
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