
Software Engineering
with Objects and Components

Massimo Felici

Room 1402, JCMB, KB

0131 650 5899

mfelici@inf.ed.ac.uk

© 2004-2006 SEOC - Lecture Note 01 2

Administration
SEOC webpage
http://www.inf.ed.ac.uk/teaching/courses/seoc/
Course Resources
• Lecture Notes and References
• Software: ArgoUML, Eclipse and Java
Tutorials begin in week 3;
• Frequency: once a week
• Maximum 12 people per tutorial group
Coursework:
• in small teams (approx 3-4 people)
• two deliverables equally weighted

• 1st deliverable: Monday, 30th October
• 2nd deliverable: Monday, 4th December

Assessment:
• 25% coursework; 75% degree examination

© 2004-2006 SEOC - Lecture Note 01 3

Software Engineering

Software Engineering is an engineering discipline
that is concerned with all aspects of software
production from the early stages of system
specification to maintaining the system after it has
gone into use. [Sommerville 2007]

The right software delivered defect free, on time
and on cost, every time. [Software Engineering Institute
(SEI)]

Software Engineering studies
• How to make software that is “fit for purpose”

• good enough (functionally, non-functionally), meets constraints
of the environment, law, ethics and work practice

• How to meet time and financial constraints on delivery
We still fail too often

© 2004-2006 SEOC - Lecture Note 01 4

Faults, Errors and Failures

How does Software Engineering relate to Faults, Errors and
Failures?
• Design faults, Errors trigger failures, Software (system) fails, etc.

Some Definitions…
• Failure is the nonperformance or inability of the system or

component to perform its intended function for a specified time
under specified environmental conditions [Levenson 1995]

• Error is a design flaw or deviation from a desired or intended state
[Levenson 1995]

• Failure is an event that occurs when the delivered service deviates
from correct service [Avižienis et al.]

• A fault is active when it causes an error [Avižienis et al.]
• An error is the part of the total state of the system that may lead

to its subsequent service failure. [Avižienis et al.]
Warnings: slightly different use of faults, errors and failures

© 2004-2006 SEOC - Lecture Note 01 5

The Pathology of Failure

Relationship between Faults, Errors and Failures

The fundamental chain of dependability threats

© 2004-2006 SEOC - Lecture Note 01 6

An Example: Patriot Missile

Accident Scenario: On February 25, 1991,
during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia,
failed to track and intercept an incoming
Iraqi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers
and injuring around 100 other people.
A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile
Defense: Software Problem Led to System
Failure at Dhahran, Saudi Arabia reported on the
cause of the failure.

http://www.fas.org/spp/starwars/gao/im92026.htm

© 2004-2006 SEOC - Lecture Note 01 7

Patriot Missile continued…

Fault: inaccurate calculation of the time since boot due to computer
arithmetic errors.
• The time in tenths of second as measured by the system's internal clock was

multiplied by 1/10 to produce the time in seconds.
• This calculation was performed using a 24 bit fixed point register. In

particular, the value 1/10, which has a non-terminating binary expansion, was
chopped at 24 bits after the radix point.

Error: The small chopping error, when multiplied by the large
number giving the time in tenths of a second, lead to a significant
error. Indeed, the Patriot battery had been up around 100 hours,
and an easy calculation shows that the resulting time error due to
the magnified chopping error was about 0.34 seconds.
• the binary expansion of 1/10 is
0.0001100110011001100110011001100....
• Now the 24 bit register in the Patriot stored instead
0.00011001100110011001100 introducing an error of
0.0000000000000000000000011001100... binary, or about 0.000000095

decimal.
• Multiplying by the number of tenths of a second in 100 hours gives

0.000000095×100×60×60×10=0.34.

© 2004-2006 SEOC - Lecture Note 01 8

Patriot Missile continued…

Failure: A Scud travels at
about 1,676 meters per
second, and so travels more
than 500 meters in this time.

This was far enough that the
incoming Scud was outside
the "range gate" that the
Patriot tracked.

Ironically, the fact that the
bad time calculation had been
improved in some parts of
the code, but not all,
contributed to the problem,
since it meant that the
inaccuracies did not cancel.

Incorrect Calculation

Correct Calculation

© 2004-2006 SEOC - Lecture Note 01 9

Patriot Missile …conclusions

Containing coding errors is very hard
• seemingly insignificant errors result in major

changes in behaviour

Original fix suggested a change in
procedures
• reboot every 30 hours – impractical in operation

Patriot is atypical
• coding bugs rarely cause accidents alone

Maintenance failure
• failure of coding standards and traceability

© 2004-2006 SEOC - Lecture Note 01 10

Other lessons from (medical device) failures

Prevention
Design, traceability, change impact analysis, configuration management,
input data validation, fault tolerance, etc.

Detection
(Code) inspections, (unit or integration) testing, etc.

Failures Faults

© 2004-2006 SEOC - Lecture Note 01 11

Software Engineering

We will study the following
areas:
• Software Requirements: the

activities involved in gaining an
accurate idea of what the users
of the system want it to do.

• Software Design: the design of
a system to meet the
requirements.

• Software Construction: the
realisation of the design as a
program.

• Software Testing: the process
of checking the code meets the
design.

• Software Configuration,
Operation and Maintenance:
major cost in the lifetime of
systems.

These are the essential
activities
How we deploy effort and
arrange these activities is part
of Software Engineering
Processes

(Rational) Unified Process - RUP

© 2004-2006 SEOC - Lecture Note 01 12

Models Supporting SE

UML provides a range of graphical notations
that capture various aspects of the
engineering process
Provides a common notation for various
different facets of systems
Provides the basis for a range of
consistency checks, validation and
verification procedures
Provides a common set of languages and
notations that are the basis for creating
tools

© 2004-2006 SEOC - Lecture Note 01 13

UML: Use Case Diagrams

Used to support requirements
Capture and analysis

Show the actors’
Involvement in
System activities

© 2004-2006 SEOC - Lecture Note 01 14

UML: Class Diagrams
Capture the static
structure of systems
associations between
classes

© 2004-2006 SEOC - Lecture Note 01 15

UML: Sequence and Collaboration Diagrams

Capture how objects
interact to achieve a
goal

© 2004-2006 SEOC - Lecture Note 01 16

UML: Statechart Diagrams

Capture state change in
objects of the system

© 2004-2006 SEOC - Lecture Note 01 17

UML: Activity Diagrams

Capture
the workflow
in a situation

© 2004-2006 SEOC - Lecture Note 01 18

UML: Other Diagrams

Component and Deployment
Package

Object

© 2004-2006 SEOC - Lecture Note 01 19

References

Software Engineering
• Ian Sommerville. Software Engineering. 8th Edition, Addison-

Wesley, 2007.
• SWEBOK - Guide to the Software Engineering Body of Knowledge.

2004 Version, IEEE.
• Bertrand Meyer. Software Engineering in the Academy. IEEE

Computer, May 2001, pp. 28-35.
Dependability
• A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. Basic Concepts

and taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1(1):11-33, 2004.

• Nancy G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995

• Neil Story. Safety-Critical Computer Systems. Addison-Wesley,
1996.

http://www.inf.ed.ac.uk/teaching/courses/seoc1/2004_2005/resources/meyer_teaching.pdf

© 2004-2006 SEOC - Lecture Note 01 20

References

Other Case Studies
• The Ariane 5 Launcher Failure
• The London Ambulance fiasco
• Airbus Flight Control System
• Medical Devices: The Therac-25
• Lessons from 342 Medical Device Failures
• A Collection of Software Bugs by Prof. Thomas Hackle

UML
• UML, Schaum’s Outline Series, Simon Bennett, John Skelton and Ken Lunn, McGraw-

Hill, 2001, ISBN 0-07-709673-8.
• Online Tutorials

• Practical UML: A Hands-On Introduction for Developers
• Introduction to OMG's Unified Modeling Language (UML)

• R. Miles, K. Hamilton. UML 2.0. O’Reilly 2006.
• D. Pilone, N. Pitman. UML 2.0 in a nutshell. O’Reilly 2005.
• James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language

Reference Manual. Second Edition, Addison-Wesley, 2004.
• Perdita Stevens and Rob Pooley. Using UML: Software Engineering with Objects and

Components. Addison-Wesley, 2000.

http://homepages.inf.ed.ac.uk/mfelici/UML

	Software Engineering �with Objects and Components
	Administration
	Software Engineering
	Faults, Errors and Failures
	The Pathology of Failure
	An Example: Patriot Missile
	Patriot Missile continued…
	Patriot Missile continued…
	Patriot Missile …conclusions
	Other lessons from (medical device) failures
	Software Engineering
	Models Supporting SE
	UML: Use Case Diagrams
	UML: Class Diagrams
	UML: Sequence and Collaboration Diagrams
	UML: Statechart Diagrams
	UML: Activity Diagrams
	UML: Other Diagrams
	References
	References

