
128 September 1997/Vol. 40, No. 9 COMMUNICATIONS OF THE ACM

W
hen discussing the risks of using computers, we
rarely mention the most basic problem: most
programmers are not well educated for the work

they do. Many have never learned the basic principles of
software design and validation. Detailed knowledge of
arcane system interfaces and languages is no substitute for
knowing how to apply fundamental design principles.

The year-2000 problem illustrates my point. Since the
late 1960s, we have known how to design programs so
that it’s easy to change the amount of storage used for
dates. Nonetheless, thousands of programmers wrote mil-
lions of lines of code that violated well-accepted design
principles. The simplest explanation: those who designed
and approved that software were incompetent!

We once had similar problems with bridges and steam
engines. Many who presented themselves as qualified to
design, and direct the construction of, those products did
not have the requisite knowledge and discipline. The
response in many jurisdictions was legislation establishing
engineering as a self-regulating profession. Under those
laws, before anyone is allowed to practice engineering,
they must be licensed by a specified professional engineer-
ing association. These associations identify a core body of
knowledge for each engineering speciality. Accreditation
committees visit universities frequently to make sure engi-
neering programs teach the required material. The records
of applicants for a license are examined to make sure they
have passed the necessary courses. After acquiring super-
vised experience, applicants must pass additional examina-
tions on the legal and ethical obligations of engineers. 

When NATO organized two famous conferences on
software engineering three decades ago, most engineers
ignored them. Electrical engineers, interested in building
computers, regarded programming as something to be
done by others—either scientists who wanted the numeri-
cal results or mathematicians interested in numerical
methods. Engineers viewed programming as a trivial task,
akin to using a calculator. To this day, many refer to pro-
gramming as a “skill,” and deny that engineering princi-
ples must be applied when building software.

The organizers of the NATO conferences saw things
differently. Knowing that the engineering profession has
always been very protective of its legal right to control
the use of the title “engineer,” they hoped the conference
title would provoke interest. They recognized that:

• Programming is neither science nor mathematics. Pro-
grammers are not adding to our body of knowledge;
they build products.

• Using science and mathematics to build products for
others is what engineers do.

• Software is a major source of problems for those who
own and use it. The problems are exactly those to be
expected when products are built by people who are
educated for other professions and believe that build-
ing things is not their “real job.”
Unfortunately, communication between engineers and

those who study software hasn’t been effective. The
majority of engineers understand very little about the sci-
ence of programming or the mathematics that one uses
to analyze a program, and most computer scientists don’t
understand what it means to be an engineer.

Today, the problems that motivated the engineering
legislation are rampant in the software field.

Over the years, engineering has split into a number of
specialities, each centered on a distinct area of engineering
science. Engineering societies must now recognize a new
branch of engineering—software engineering—and iden-
tify its core body of knowledge. Just as chemical engineer-
ing is a marriage of chemistry with classical engineering
areas such as thermodynamics, mechanics, and fluid
dynamics, software engineering should wed a subset of
computer science with the concepts and discipline taught
to other engineers.

Software engineering is often treated as a branch of com-
puter science. This is akin to regarding chemical engineer-
ing as a branch of chemistry. We need both chemists and
chemical engineers but they are very different. Chemists are
scientists; chemical engineers are engineers. Software engi-
neering and computer science have the same relationship. 

The marriage will be successful only if the engineering
societies, and computer scientists come to understand that
neither can create a software engineering profession with-
out the other. Engineers must accept that they don’t know
enough computer science. Computer scientists must recog-
nize that being an engineer is different from being a scien-
tist, and that software engineers require an education very
different from their own.

David Lorge Parnas (P. Eng.) studies and teaches software
design at McMaster University, Hamilton, Ontario, Canada.

c

Software Engineering: 
An Unconsummated Marriage 

PA
U

L 
W

A
TS

O
N

David Lorge Parnas


