
The

With the advantage of
more than 25 years’ hindsight,
this twenty-first century author
looks askance at the “misis” in
software practice and expresses
deep concern fir a Cris in
software research.

Research
Crisis
ROBERT L. GLASS, Computing Trends

computing and software research are ’ using only one of them. Even though
certainly glad we’ve been able to put we now understand how terribly limit-
the “research crisis” behind us. ’ ing that approach was, it is easy to see,

What was this crisis? It was the in retrospect, why computer scientists
realization that occurred, right around , could not see the error in their ways.
the turn of the century, that research Before I continue, I think i t is
in computing and software - as it was worth spending a moment or two
then focused - was all too often both elaborating on the term research crisis.
arrogant and narrow. ’ There is a fine irony to it, and the

It was arrogant because many corn- story makes good telling.
puting researchers of that era were ~ To understand this research crisis,
doing research in a topic they thought it is important that we confront and
they understood, but didn’t. I t is deal with a prior “software crisis.”
amazing that, in retrospect, those ’ I t has been about 50 years now
computer scientists simply didn’t since the software community coined
know what they didn’t know. , the term sojhuare crisis. It was invented

It was narrow because, of all the a t a conference predominantly attend-
possible research models twentieth , ed by theorists rather than practition-
century computer scientists might ers, but still, a t the outset, almost

4 2 07407459/94/$04 W 0 1994 IEEE N O V E M B E R 1 9 9 4

everyone agreed there was some validi-
ty to the term. What did “software cri-
sis” mean? It is hard to believe, now,
but what it meant way back then was
that the practice of software was in cri-
sis - that it was characterized by pro-
jects that were “always over budget,
behind schedule, and unreliable.”

With the advantage of hindsight,
we can look back on the last century as
a time of wonder. Of all the dramatic
changes that took place in the world,
computing and software gave rise to
the name “computing era” that we
now recognize as the proper character-
ization of the last half of the twentieth
century. Oh, there were software pro-
ject failures, of course. Some of them
were even catastrophic - runaway
described the worst of them. But their
existence provided only anecdotal evi-
dence, certainly not solid data, to sup-
port the claims of crisis. In fact, the
issue of solid data became the shoal on
which the claims of crisis foundered, as
we will see later in this story.

Software crisis indeed! W e may
look back on that earlier time as archa-
ic and ignorant, perhaps, but certainly
not as a crisis. It was the beginning, in
fact, of the Golden Age of Computing
Practice that persists today.

Nevertheless, the notion of soft-
ware crisis reached a fever pitch of
intensity in the 1980s and 1990s.
Researchers began nearly every paper
on software engineering by invoking

1 the software crisis as a reason for lis-
tening to whatever new theoretical
notion they were advocating. Re-

~ searchers at the time didn’t realize that
what many of them were doing would
later be characterized, derisively, as
advocacy research. But the software crisis
was in fact the platform on which most
of this advocacy research was founded.

SOFTWARE CRISIS DISCREDITED

At the time, researchers frequently
cited both the anecdotal evidence
referred to earlier and a government
study from the US General Account-

I E E E S O F T W A R E

ing Office on the problems of building
software, as support for their claims of
xisis.

In most cases, this GAO study was
the only real, nonanecdotal data cited,
and almost every researcher cited it. It
seemed to say that most software pro-
jects failed, and that most money spent
on software was wasted.

Fortunately, cooler heads began to
prevail. One researcher, then a voice
crying in the wilderness, brought an
end to the use of the
term software crisis.

Bruce Blum, arguably
one of the few research-
ers of the time who actu-
ally read the study (most
researchers apparently
copied the data from
some other researcher’s
paper without going
back to the source), dis-
covered the data was
being misunderstood
and misused.’ The study,
an analysis of govern-
ment software projects,

resentment by software practitioners
of software theorists and software the-
ory. Most people in a profession would
be offended, of course, by the notion
that their projects and products were
constantly characterized as “behind
schedule, over budget, and unreliable.”
Ironically, computing researchers
never understood how offensive their
software-crisis campaign had been to
practitioners. It is fair to say, in the
enlightened year 2020, that those old

resentments still linger,
and Dartlv because of

I I

CRISIS, INDEED! them, new theory still
has a difficult time pene-

But back to the 1990s.
New government studies
and open-minded com-
puting researchers both

IGNoRANCEf began pointing out that
BUT ALSO THE serious problems existed

DAWN OF THE in the 1990s model of
software research. In the

GOLDEN AGE early 1990s, for example,
a couple of government

OF PRACTICE* studies concluded that

THE TWENTIETH trating current practice.

A TIME OF

examined only -projects
that were in trouble
when it was conducted. Given that, the
study’s conclusion that most such pro-
jects failed, and most money spent on
them was wasted, was interesting -
“troubled projects frequently fail” -
but hardly a basis for blackening the
reputation of all software practice.

Even after the Blum revelation, a
few computing researchers continued,
for their own self-serving reasons, to
use the GAO data and cry “software
crisis,” knowing that the data was
being misused. But eventually common
sense and ethics prevailed, and the
notion of a software crisis slowly died
away. Furthering its demise was
Michiel van Genuchten’s data, which
presented findings from other re-
searchers to the effect that typical soft-
ware overruns were 33-36 percent over
budget and 22 percent behind schedule,
clearly a problem but hardly a crisis. 2

One lingering aftereffect of this so-
called crisis, however, was a deep

research was ignoring
practice almost entirely

and, in addition, ignoring the notion
of practical application. There was a
flurry of opposition to those reports,
as researchers mired in the old ways
resisted change (the very thing they
accused practitioners of!), but eventu-
ally most computing researchers
began to realize that theirs was truly a
troubled endeavor. A flurry of criti-
cisms stirred the pot: Software-engi-
neering research was described as
increasing in quantity but not in quali-
ty, laclung in evaluation, “becoming
less credible,” having a “gaping hole”
in its “generally accepted methods,”
and in need of a “paradigm shift ...
from purely theoretical and building-
oriented to experimental” 3

Later, in an exchange of letters to
the editor, both a letter-writer and the
authors of the article addressed by the
letter-writer agreed that, “software
research is in a sad state,” and that,
“Without a scientific method, tech-

4 3

nobabble, lemmingineering, and fads
run rampant.”4

At the time, it seemed natural to
shift the crisis from practice to re-
search. This was not done in a spirit of
meanness, but rather in the original
fundraising spirit of the term. Re-
searchers proclaimed a “research cri-
sis” to obtain funds for newer and bet-
ter ways of doing research, just as their
forerunners had used the practitioner
“software crisis” as a way of obtaining
funding to investigate the problems
that crisis implied. For quite a long
time, cries of “research crisis” were as
prevalent in the computing literature
as mentions of its predecessor had
been. As I mentioned at the beginning
of this essay, that notion, like the earli-
er crisis that preceded it, has died out.
But it was a long time in

D

the dying.

FOCUS ON RESEARCH

Back to those twin
notions of arrogant and
narrow that character-
ized twentieth century
computing and software
research. What was that
all about?

Let’s start with arro-
gant. Remember the

gant was that the typical researcher
had never worked in software practice
and had no basis for assuming that his
or her idea would really work there.
Most researchers had a mental model
of software practice as an enterprise in
crisis, one that did a bad job of what-
ever it undertook. There seemed to be
an underlying assumption in most
research that any change was better
than the status quo.

The problem got so bad, in fact,
that the software consortia and institu-
tions of the time were sometimes char-
acterized as “arrogant and ignorant.”
This charge was unfair to many of
them, of course, but there was enough
truth to it that the notion stuck. It is
difficult for a research-and-develop-
ment institution to be effective when

its people are seen as ar-

THE ONLY
RESEARCH
MODEL IN
USE WAS AN
ANALYTICAL
METHOD
DEVOID OF
EMPIRICAL
EVALUATION.

- -
rogant and ignorant.
That problem nearly des-
troyed the effectiveness
of those institutions be-
fore they managed to over-
come it. But that is an-
other story.

What about the word
narrow? Basically, there
was only one research
model used in most twen-
tieth century computing.
I have already character-
ized that model as advo-

term advocacy research?
Well, in the early - per-
haps even primitive - model of com-
puting research employed up to the
end of the twentieth century, much
research consisted of a model that
some characterized as “conceive an
idea, analyze the idea, advocate the idea.”
At the conclusion of many research
papers was a discussion of the implica-
tions for practice, which usually con-
cluded with the claim that the idea
should be transferred to practice as
quickly as possible. Or words to that
effect. Colin Potts referred to this as
the “research-then-eansfer” approach,
contrasting it with what he called the
“industry-as-laboratory” approach.5

What made advocacy research arro-

cacy research, but that is
not entirely fair. Still, it

wasn’t until the early 1990s that one
software researcher published materi-
al on possible research models,6 iden-
tifymg these:

+ The scientific method. Observe the
world, propose a model or theory of
behavior, measure and analyze, vali-
date hypotheses of the model or theo-
ry, and if possible repeat.

+ The engineering method. Observe
existing solutions, propose better solu-
tions, build or develop, measure and
analyze, repeat until no further im-
provements are possible.

+ The empirical method. Propose a
model, develop statistical or other
methods, apply to case studies, mea-

sure and analyze, validate the model,
repeat.

+ The analytical method. Propose a
formal theory or set of axioms, devel-
op a theory, derive results, and if pos-
sible compare with empirical observa-
tions.

Then, a few years later, another
paper also addressed the issue,’ break-
ing research down into four phases:

+ The informational phase. Gather or
aggregate information via reflection,
literature survey, people/organization-
a1 survey, or poll.

+ The propositional phase. Propose
and/or build a hypothesis, method or
algorithm, model, theory, or solution.

+ The analytical phase. Analyze and
explore a proposal, leading to a de-
monstration and/or the formulation of
a principle or theory.

+ The evaluative phase. Evaluate a
proposal or analpc finding by means
of experimentation (controlled) or
observation (uncontrolled, such as a
case study or protocol analysis), per-
haps leading to a substantiated model,
principle, or theory.

Once those papers were absorbed
by the field, the conclusion was
inevitable. Almost no computing
research to that time had used the sci-
entific method (It begins with
“observe the world.” No one was do-
ing even that first step, let alone for-
mulating and validating hypotheses);
there was just as little use of the engi-
neering-research method (almost no
one was “observing existing solu-
tions”); and there was a fringe group
using the empirical method, but judg-
ing by the academic-tenure success of
many of its proponents, their research
was not admired by their more tradi-
tional colleagues.

Furthermore, almost no computing
research to that time had an evaluative
phase. Information may have been
gathered, propositions may have been
made, and analysis may have been con-
ducted. But, typically, the research
ended there.

In other words, the only research
model commonly in use in that unen-

4 4 N O V E M B E R 1 9 9 4

lightened era was the analytical
method, the one we have characterized
unfavorably as advocacy research.
Most research involved proposing for-
mal methods for building software (the
propositional phase), fairly deep and
often mathematical analysis of those
methods (the analyucal phase), deriva-
tion of a theory of the applicability of
those methods (more analytical phase),
and no, repeat, no “compare with
empirical observations” (the evaluative
phase). Probably the first paper to
publicly notice this deficiency was
Norman Fenton’s. 8

Perhaps the analytical method
might have been somewhat more
acceptable had it employed the last
part of its definition (its evaluative
phase, “if possible compare with
empirical observations”), but it rarely
did. It was as if there were a disdain for
anything connected with practice.
Establishing pilot studies to try out
ideas in a realistic setting and evaluate
their success, incredibly enough, was
not done. Researchers seemed to
believe that was a task that practice
should do, much like the old “exercise
left for the student.” One leading com-
puting-research journal of the early
1990s devoted a special issue to
researchers giving practitioners advice
on how to evaluate new research ideas,
as if to say, “That’s your job, not
ours.” N o one seemed to notice the
irony.

I t was the publication of Walter
Tichy’s position statement on experi-
mental software engineering research
that finally provided the solid data to
demonstrate how widespread the
research crisis was.9 In that article,
Tichy studied several of the leading
computing and software-research jour-
nals of the time, characterizing the
papers contained therein as to how
much they involved
+ theory,
+ design,
+ quantitative evaluation, and
+ hypothesis testing.

In what the author called “alarm-
ing” findings, few if any papers con-

I E E E S O F T W A R E

tained any hypothesis testing, and less
than 20 percent contained quantitative
evaluation. T h e paper concluded,
“Computer scientists may produce too
many designs and not enough quanti-
tative results,” and, “The
balance between theory
and experiment in Com-
puter Science seems
skewed.” It was a combi-
nation of the govern-
ment research commit-
tees emphasizing reality-
focused research and
articles like Tichy’s posi-
tion paper, which showed
how prevalent the prob-
lem was, that finally
caused the research com-
munity to address its
Droblems. This. in turn.

analytical in nature.
But why did computing research

get stuck there? Here, the explanation
is somewhat more complicated. There
are several reasons:

+ Mathematicians at
many academic institu-

THE RESEARCH tions long ago divided
themselves into two

CRISIS BEGAN warring camps: those
TO ABATE WHEN who did applied re-

search, studying ways
GOVERNMENT of using mathematics in
COMMITTEES other fields, and those

who did pure research,
BEGAN TO studying mathematics

EMPHASIZE A for the sake of its own
improvement. Both dis-

REAL-WORLD ciplines are vitally need-
ed, of course, but as

FOCUS. often happens when
helped the research cri-
sis begin to abate and, eventually, go
away.

SOFTWARE RESEARCH‘S
MATHEMATICS CONNECTION

Why did computing and software
research start - and continue - to
use such a narrow approach? With
respect to how it got started, the an-
swer is easy:

Computing and software a t most
academic institutions were spawned
in a mathematics department. Mathe-
matics is a peculiar discipline. There
are no physical artifacts for mathe-
maticians to study, as there are in
the more scientific disciplines, for
example, and thus mathematical re-
search takes on an entirely different
flavor from other academic research.
Of the research models mentioned
above, the only one that makes much
sense is the last one. Mathematics, in
other words, is rarely into scientific
or engineering or empirical research.
Analytical research is the only ap-
proach that it tends to employ. It is no
accident that the origins of computing
research were the same as the mathe-
matical research that gave it birth:

humans and politics get
into the act, these two groups began to
dislike and, eventually, to disdain one
another. Johnny-come-lately comput-
ing people, born into this conflict, nat-
urally chose up sides. Most of them
favored the “pure” side, perhaps
because that was the side that often
had more academic “respectability”
and political power. Whereas applied
mathematicians and computing
researchers might have broadened
their research approach, pure mathe-
maticians could not and did not need
to, and “pure” computer scientists sim-
ply emulated that outlook.

+ The artifacts of computing and
software are expensive and time-con-
suming to build (much more so than,
for example, new mathematical con-
cepts). Software research that involved
concept evaluation in a somewhat
realistic setting would be very expen-
sive in terms of both time and money.
T h e money to do so was typically
unavailable in research settings, and
most researchers were not motivated
to try to solve this problem.

There is an irony to that reason, of
course. At the same time that software
practitioners were taking the position
that it was too expensive to try out new
ideas from research, researchers were

4 5

taking the position that it was too
expensive to test the value of their new
ideas with respect to practice. Software
progress was in fact stuck in place by a
funding problem that almost no one
even recognized!

+ During the early days of comput-
ing and software theory and practice,
the field moved forward so rapidly that
almost all new ideas were good ideas.
For the field to wait until these new
ideas were evaluated would have dra-
matically slowed down that early
progress in the field. Progress began to
slow in the 1970s, and continued to do
so in the 1980s, despite a growth spurt
triggered by the advent of the ubiqui-
tous microcomputer. Yet once
progress slowed, no one stepped back
to reanalyze the field’s approaches
to it to see that a new model was now
needed. Long past the

of what the research field needed to
achieve. That model was a consortium
involving academe (the University of
Maryland Computer Science Depart-
ment); industry (Computer Sciences
Corporation); and government (NASA-
Goddard, the sponsoring body), which
together had formed the Software
Engineering Laboratory. T h e SEL
does engineering and empirical re-
search using all the research phases,
including - especially - evaluation.

Researchers the world over began
to study that model, and emulate it in
other settings and for other application
domains (the SEL was focused on
flight dynamics problems). It took
years, of course, but that is how the
research crisis disappeared.

What happens in computing and
software research and practice in the

year 2020? It took a long
time that it made sense,
researchers continued to NOW, IN THE
expect practice to em-
brace their new ideas
with open arms.

THE RESEARCH
AND PRACTICE

But that was then and I COMMUNITIES
2020 VISION

in computing and soft- I EACH EVEN OTHER. RESPECT
this is now. As I men-
tioned a t the outset, we

time to get here, but we
have been able to achieve
three things:

Software practice and re-
search work together. Re-
searchers have given up
on the “arrogant and nar-
row” approaches to soft-
ware research, and have
come to realize that the
only way to tell if their
new ideas have value is

ware research are cer-
tainly glad we’ve been
able to put the research crisis behind

How did the change happen? The
first necessary phase, of course, was
acknowledging that there was a prob-
lem. Some of the papers mentioned
earlier in our story were instrumental
in making that happen; the gradual
accumulation of enough researchers
expressing the same view began to
swing the field toward less arrogant
and narrow, more realistic approaches.
Progress was slow, of course, as i t
always is when fundamental human
viewpoints must be changed. It helped
that there had been in existence for
nearly two decades an excellent model

us.

4 6

t o t ry them out in a
practical setting. There

is a real “development” focus as well
as a research one in most “research-
and-development” organizations and
projects, both in academe and in
industry. T h e “industry-as-labora-
tory” research concept advocated so
long ago5 has finally come to fruition!

In fact, researchers and practition-
ers tend to move back and forth freely
between their previously isolated turfs.
Top practitioners move to the world
of academe and help ensure that
research and pedagogy there reflect
reality. Top researchers move to the
world of industry to try out their ideas
in a setting that can be truly evaluative.
Sabbaticals and leaves of absence are

often exchanged. Perhaps best of all,
practitioners and researchers tend to
even like and respect each other!

Good research results make it into prac-
tice. There is, of course, the lingering
mistrust of theory that built up during
the era of the “software crisis,” but
most of those effects can be overcome
when a researcher is working along-
side a practitioner, being open to ad-
justing and improving ideas in
order to make them useful in practice.
Both researchers and practitioners
have come to understand the time and
money cost of the learning curve, real-
izing that the adoption of any new
idea has an initial price to be paid
before any payoff is achieved. Mod-
ifying or getting rid of the schedule-
driven approach to building soft-
ware has freed practitioners to try new
ideas, to undertake the risks necessary
to making progress. The era of boast-
ful claims of “breakthroughs” has
long since disappeared, replaced by
a healthy understanding of the real-
ities of technology transfer. Slowly but
surely, ways of building software are
improving. We still have a lot to learn,
of course, but a t least we understand
what that really means now.

Bad research ideas get discarded fairly
quickly. Now that research ideas must
meet the test of practical usage, we no
longer have the situation that pre-
vailed in the twentieth century when a
new research idea would be conceiv-
ed, analyzed by researcher after re-
searcher, advocated thoroughly, and
never used in practice. The early feed-
back that researchers now get as to the
value of their new ideas is invalu-
able. Research, as a result, tends to
move forward to embrace and study
new ideas, not get stuck regurgitating
old ones. For example, nearly 50 years
ago, the research topic of formal veri-
fication (also called proof of correct-
ness) was conceived. Its advocates per-
sisted for over 30 years in pushing that
particular wheelbarrow uphill, paying
no attention either to the disinterest

N O V E M B E R 1994

and disclaimers of practitioners who
saw more cost than benefit in its use
or to the warnings of fellow research-
ers, published every five years or so in
the literature, and angrily refuted each
time they appeared! (For example,
Fenton proclaimed “There is no hard
evidence to show that:

+ formal methods have been used
cost-effectively on a realistic, safety-
critical system development,

+ the use of formal methods can
deliver reliability more cost-effectively
than, say, traditional structured meth-
ods with enhanced testing,

+ either developers or users can
ever be trained in sufficient numbers
to make proper use of formal methods)? 10

It is still possible to pursue a re-
search idea past its point of value even

II

today, of course, but at least we now
have a mechanism in place for shed-
ding bad ideas.

t is often true that we humans make I more progress out of our failures
than our successes. Perhaps, in spite of
the pain of the research crisis, in the
long term something good has come
of it. Certainly we are glad now that
we understand the value of practice
and theory moving forward hand in
hand. Both researchers and practition-
ers, working together, can see a future
in which the wisdom of each group is
understood and appreciated by the
other. And that, in human terms, may
be the biggest success of all, in the year
2020.

REFERENCES:
1. B.I. Blum, “Some Very Famous Staustics,” The &&are Practztzoner, March 1991.
2. M. van Genuchten, “Why is Software Late! An Empirical Study of Reasons for Delay in Software

Development,” ZEEE Trans. Software Eng., June 1991, pp. 582-590.
3. W. F. Tichy, N. Haberman, and L. Prechelt, “Future Directions in Software Engineering,

Summary of the 1992 Dagstuhl Workshop,” &@are Eng. Notes, Jan. 1993.
4. E.V. LaBudde, “Why is Requirements Engineering Underused?” ZEEE Sojiware, Mar. 1994, pp.6-9;

response by P. Hsia, A. Davis, and D. Kung.
5. C. Potts, “Software Engineering Research Revisited,” ZEEE Sojware, Sept. 1993, pp. 19-28.
6. W. R. Adrion, “Research Methodology in Software Engineering, Summary of the Dagstuhl

Workshop on Future Directions in Software Engineering,” Sojwure Eng. Notes, Jan. 1993.
7 . R. L. Glass, “A Structure-Based Critique of Contemporary Computing Research,”?. Systems and

Sojware, Jan. 1995, to appear.
8. N. Fenton, “How Effective Are Software Engineering Methods?”J. Systmsand Sojiware, Aug. 1993.
9. W. F. Tichy, et al., “Experimental Evaluation in Computer Science: A Quantitative Study,” (draft),

7. Systm and So&are, Jan. 1995, to appear.
10. N. Fenton, S. L. Pfleeger, and R.L. Glass, “Science and Substance: A Challenge to the

Software Engineering Community,” IEEE Sojware, July 1994, pp. 86-95.

Robert L. Glass is publisher of The Software Practztzoner, editor of theJournal of
Systems and Software, a regular columnist for Managing System Development, and a
someume mSihng professor of software engneering at Linkoping University. He
IS interested in all facets of software engneering, especially in quality and mainte-
nance He has written 17 books and more than 30 papers on compuung and soft-
ware.

Madison. He is a member of the IEEE, the IEEE Computer Society, and ACM
Glass received an MSc in mathemaucs from the University of Wisconsin at

Address questions about this article to Glass at Computing Trends, 350 Dalkeith Ave., Los Angeles, CA 1 1 90049.

I’

I E E E S O F T W A R E

Free report from Peter Coad reveals
amazing industry breakthrough!

“Object modeling and C++
programming, side-by-
side, always up-to-date.”
Big CASE tool vendors caught with
their pants down!

w model and all of your C++ code continu-
ously up-to-date, all the time, throughout your
development effort?
Consider the possibilities

In one window, you see a n object model, with
automatic, semi-automatic, and manual
layout modes plus corn lete view manage-
ment. Side-bi-side, in tEe other window, you
see fully-parsed C++ code. You edit one
window or the other. Press a key. Both
windows agree with each other. Together.
Su pose tha t you are working on a project
wit% some existing code. (That’s no surprise,
who’d consider developin in C++ without
some off-the-shelf c lasse8) You read the code
in. Hit a button. And seconds later, you see
a n object model, automatically laid out and
ready for you to study side-by-side with the
C++ code itself. Together.
Or suppose you are building software with
other people (that’s no sur rise either). You
collaborate with others an$ develo software
with a lot less hassle, because the Fully
integrated configuration management feature
helps you keep i t all ... Together.
The name of this product? It’s earned the
name.. .

ha t if you could have your OONOOD

Together/C++
conhnuowly uptoclate

Object modeling and C++ programming

Key features:
Continuously up-to-date object modeling & C + t
programming
Automatic semi-automatic, and manual layout of
object models
Object modeling view management, including view
control by C++ construct, regular expression,
proximity, layer, or directory
Fully flexible documentation generation, version
control, and SQL generation

“State-of-the-art application development.”

“You’ve really hit the nail on the head when it
comes to reverse engineering existing C++
code, No other tool comes close to the power
and capability of Together/C++.”

-- Russell Rudduck, Perot Systems
Money-back gurantee. Purchase Together/
C++ and try i t out risk-free for 30 days. If for
an reason you aren’t satisfied, return i t for a
fulT refund. (No hassles, no hard feelings
either.)We’re tha t confident about Together/
C++. You see To ether/C++ has already
helped software fevelopers deliver better
systems, with success stories in tele-
communications, insurance and natural
resource managment.
How to order. Order Together/C++ by
purchase order, check, or credit card, or for
more information, please contact:

-- ComputerworldlGermany

Obiect International. Inc Outside of Sorth Amenca. contact

10034~13iO@com userve.com
c 1991 Oh KI &I I Inc

Together. , , “ , ‘ i : ~ ~ ~ ~ ~ s e a g ~ ~ r , Int‘l. Inc

e-mad object4acm org

lEEEl194

http://userve.com

