
REPORTS 

SOFTWARE ASPECTS OF STRATEGIC 
DEFENSE SYSTEMS 

A former member of the SD10 Panel on Computing in Support of Battle 
Management explains why he believes the “star wars” effort will not 
achieve its stated goals. 

DAVID LORGE PARNAS 

On 28 lune 2985, David Large Parnas, a respected computer 
scientist who has consulted extensively on United States 
defense projects, resigned from the Panel on Computing in 
Support of Battle Management, convened by the Strategic 
Defense lnitiattve Organization (SDIO). With his letter of 
resignation, he submitted eight short essays explaining why 
he believed the software required by the Strategic Defense 
Initiative would not be trustworthy. Excerpts from Dr. Par- 
nas’s letter and the accompanying papers have appeared 
widely in the p.yess. The Editors of American Scientist be- 
lieved that it would be useful to the scientific community to 
publish these essa,ys in their entirety to stimulate scientific 
discussion of the feasibility of the project. As part of the 
activity of the Forum on Risks to the Public in the use of 
computer systems the Editors of Communications are 
pleased to reprint these essays.” 

This report comprises eight short papers that were com- 
pleted while I was a member of the Panel on Comput- 
ing in Support of Battle Management, convened by the 
Strategic Defense Initiative Organization (SDIO). SD10 
is part of the Office of the U.S. Secretary of Defense. 
The panel was, asked to identify the computer science 
problems that would have to be solved before an effec- 
tive antiballistic missile (ABM) system could be de- 
ployed. It is clear to everyone that computers must play 
a critical role in the systems that SD10 is considering. 
The essays that constitute this report were written to 
organize my thoughts on these topics and were submit- 
ted to SD10 wj th my resignation from the panel. 

- 
j Reprinted by perrnissicm of Anwricar~ Sciewfisf. journal of Sigma Xi: 
Software Aspects c,f Strategic Defense Systems. David Large Parnas. Vol. 
73. No. 5. pp. 432-440 

Cc 1985 ACM OflOl-0782/85/120o-1326 750 

My conclusions are not based on political or policy 
judgments. Unlike many other academic critics of the 
SD1 effort, I have not, in the past, objected to defense 
efforts or defense-sponsored research. I have been 
deeply involved in such research and have consulted 
extensively on defense projects. My conclusions are 
based on more than 20 years of research on software 
engineering, including more than 8 years of work on 
real-time software used in military aircraft. They are 
based on familiarity with both operational military soft- 
ware and computer science research. My conclusions 
are based on characteristics peculiar to this particular 
effort, not objections to weapons development in 
general. 

I am publishing the papers that accompanied my let- 
ter of resignation so that interested people can under- 
stand why many computer scientists believe that sys- 
tems of the sort being considered by the SD10 cannot 
be built. These essays address the software engineering 
aspects of SD10 and the organization of engineering 
research. They avoid political issues: those have been 
widely discussed elsewhere, and I have nothing to add. 

In these essays I have attempted to avoid technical 
jargon, and readers need not be computer programmers 
to understand them. They may be read in any order. 

The individual essays explain: 
1. The fundamental technological differences be- 

tween software engineering and other areas of engi- 
neering and why software is unreliable: 

2. The properties of the proposed SD1 software that 
make it unattainable: 

3. Why the techniques commonly used to build mili- 
tary software are inadequate for this job; 

4. The nature of research in software engineering, 
and why the improvements that it can effect will not be 

1326 Communications of the ACM December 1985 Volume 28 Number 12 



sufficient to allow construction of a truly reliable stra- 
tegic defense system: 

5. Why I do not expect research in artificial intelli- 
gence to help in building reliable military software; 

6. Why I do not expect research in automatic pro- 
gramming to bring about the substantial improvements 
that are needed; 

7. Why program verification (mathematical proofs of 
correctness) cannot give us a reliable strategic defense 
battle-management system; 

8. Why military funding of research in software and 
other aspects of computing science is inefficient and 
ineffective. This essay responds to the proposal that 
SD10 should be funded even if the ABM system cannot 
be produced, because the program will produce good 
research. 

Why software is unreliable 

I. Introduction 
People familiar with both software engineering and 
older engineering disciplines observe that the state of 
the art in software is significantly behind that in other 
areas of engineering. When most engineering products 
have been completed, tested. and sold, it is reasonable 
to expect that the product design is correct and that it 
will work reliably. With software products, it is usual to 
find that the software has major “bugs” and does not 
work reliably for some users. These problems may per- 
sist for several versions and sometimes worsen as the 
software is “improved.” While most products come with 
an express or implied warranty, software products often 

The requirements of a strategic defense system 

In March 1983, President Reagan said, “I call upon 
the scientific community, who gave us nuclear 
weapons, to turn their great talents to the cause of 
mankind and world peace; to give us the means of 
rendering these nuclear weapons impotent and 
obsolete.” 

To satisfy this request the software must per- 
form the following functions: 

-Rapid and reliable warning of attack 
-Determination of the source of the attack 
-Determination of the likely targets of the 

attack 
-Determination of the missile trajectories 
-Coordinated interception of the missiles or 

warheads during boost, midcourse, and termi- 
nal phases, including assignment of responsi- 
bility for targets to individual sensors or 
weapons 

-Discrimination between decoys and warheads 
-Detailed control of individual weapons 
-Evaluation of the effectiveness of each at- 

tempt to destroy a target. 

carry a specific disclaimer of warranty. The lay public, 
familiar with only a few incidents of software failure, 
may regard them as exceptions caused by inept pro- 
grammers. Those of us who are software professionals 
know better: the most competent programmers in the 
world cannot avoid such problems. This section dis- 
cusses one reason for this situation. 

II. System types 
Engineering products can be classified as discrete state 
systems, analog systems, or hybrid systems. 

Discrete state or digital systems are made from com- 
ponents with a finite number of stable states. They are 
designed in such a way that the behavior of the system 
when not in a stable state is not significant. 

Continuous or analog systems are made from compo- 
nents that. within a broad operating range, have an 
infinite number of stable states and whose behavior can 
be adequately described by continuous functions. 

Hybrid systems are mixtures of the two types of com- 
ponents. For example, we may have an electrical cir- 
cuit containing, in addition to analog components, a 
few components whose descriptive equations have dis- 
continuities (e.g., diodes). Each of these components has 
a small number of discrete operating states. Within 
these states its behavior can be described by continu- 
ous functions. 

III. Mathematical tools 
Analog systems form the core of the traditional areas of 
engineering. The mathematics of continuous functions 
is well understood. When we say that a system is de- 
scribed by continuous functions we are saying that it 
can contain no hidden surprises. Small changes in in- 
puts will always cause correspondingly small changes 
in outputs. An engineer who ensures, through careful 
design, that the system components are always operat- 
ing within their normal operating range can use a 
mathematical analysis to ensure that there are no sur- 
prises. When combined with testing to ensure that the 
components are within their operating range, this leads 
to reliable systems. 

Before the advent of digital computers, when discrete 
state systems were built, the number of states in such 
systems was relatively small. With a small number of 
states. exhaustive testing was possible. Such testing 
compensated for the lack of mathematical tools corre- 
sponding to those used in analog systems design. The 
engineers of such systems still had systematic methods 
that allowed them to obtain a complete understanding 
of their system’s behavior. 

The design of many hybrid systems can be verified 
by a combination of the two methods. We can then 
identify a finite number of operating states for the com- 
ponents with discrete behavior. Within those states, the 
system’s behavior can be described by continuous func- 
tions. Usually the number of states that must be distin- 
guished is small. For each of those states, the tools of 
continuous mathematics can be applied to analyze the 
behavior of the system. 

December 1985 Volume 28 Number 12 Communications of the ACM 1327 



Computer Risks Forum 

With the advent of digital computers, we found the 
first discrete s,tate systems with very large numbers of 
states. However, to manufacture such systems it was 
necessary to construct them using many copies of very 
small digital subsystems. Each of those small subsys- 
tems could be analyzed and tested exhaustively. Be- 
cause of the repetitive structure, exhaustive testing was 
not necessary to obtain correct and reliable hardware. 
Although design errors are found in computer hard- 
ware, they are considered exceptional. They usually 
occur in those parts of the computer that are not repeti- 
tive structures. 

Software sy:jtems are discrete state systems that do 
not have the repetitive structure found in computer 
circuitry. There is seldom a good reason to construct 
software as highly repetitive structures. The number of 
states in software systems is orders of magnitude larger 
than the number of states in the nonrepetitive parts of 
computers. The mathematical functions that describe 
the behavior of these systems are not continuous func- 
tions, and traditional engineering mathematics does not 
help in their verification. This difference clearly con- 
tributes to the relative unreliability of software systems 
and the apparent lack of competence of software engi- 
neers. It is a fundamental difference that will not disap- 
pear with improved technology. 

IV. How can we understand software? 
To ameliorate the problems caused by this fundamental 
difference in technology two techniques arse available: 
(1) the building of software as highly organized collec- 
tions of small programs and (2) the use of mathematical 
logic to replace continuous mathematics. 

Dividing software into modules and building each 
module of so-called “structured” programs clearly 
helps. When properly done, each component deals with 
a small number of cases and can be completely ana- 
lyzed. However, real software systems have many such 
components, and there is no repetitive structure to sim- 
plify the analysis. Even in highly structured systems, 
surprises and Iunreliability occur because the human 
mind is not able to fully comprehend the many condi- 
tions that can arise because of the interaction of these 
components. Moreover, finding the right structure has 
proved to be very difficult. Well-structured real soft- 
ware systems (are still rare. 

Logic is a branch of mathematics that can deal with 
functions that are not continuous. Many reljearchers 
believe that it can play the role in software engineering 
that continuous mathematics plays in mechanical and 
electrical engineering. Unfortunately, this has not yet 
been verified in practice. The large number of states 
ant1 lack of regularity in the software result in ex- 
tremely complex mathematical expressions. Disciplined 
use of these expressions is beyond the computational 
capacity of both the human programmer and current 
computer systems. There is progress in this area, but it 
is very slow, and we are far from being able to handle 
even small software systems. With current techniques 

the mathematical expressions describing a program are 
often notably harder to understand than the program 
itself. 

V. The education of programmers 
Worsening the differences between software and other 
areas of teclinology is a personnel problem. Most de- 
signers in traditional engineering disciplines have been 
educated to understand the mathematical tools that are 
available to them. Most programmers cannot even be- 
gin to use the meager tools that are available to soft- 
ware engineers. 

Why the SD1 software system 
will he untrustworthy 

I. Introduction 
In March 1983, the President called for an intensive 
and comprehensive effort to define a long-term re- 
search program with the ultimate goal of eliminating 
the threat posed by nuclear ballistic missiles. He asked 
us, as members of the scientific community, to provide 
the means of rendering these nuclear weapons impo- 
tent and obsolete. To accomplish this goal we would 
need a software system so well-developed that we 
could have extremely high confidence that the system 
would work correctly when called upon. In this section, 
I will present some of the characteristics of the required 
battle-management software and then discuss their im- 
plications on the feasibility of achieving that confi- 
dence. 

II. Characteristics of the proposed battle-management 
software system 

1. The system will be required to identify, track, and 
direct weapons toward targets whose ballistic charac- 
teristics cannot be known with certainty before the mo- 
ment of battle. It must distinguish these targets from 
decoys whose characteristics are also unknown. 

2. The computing will be done by a network of com- 
puters connected to sensors, weapons, and each other, 
by channels whose behavior, at the time the system is 
invoked, cannot be predicted because of possible coun- 
termeasures by an attacker. The actual subset of system 
components that will be available at the time that the 
system is put into service, and throughout the period of 
service, cannot be predicted for the same reason. 

3. It will be impossible to test the system under real- 
istic conditions prior to its actual use. 

4. The service period of the system will be so short 
that there will be little possibility of human interven- 
tion and no possibility of debugging and modification of 
the program during that period of service. 

5. Like many other military programs, there are abso- 
lute real-time deadlines for the computation. The com- 
putation will consist primarily of periodic processes, 
but the number of those processes that will be required, 
and the computational requirements of each process, 
cannot be predicted in advance because they depend 

1328 Communications #of the ACM December 1985 Volume 28 Number 12 



Computer Risks Forum 

on target characteristics. The resources available for 
computation cannot be predicted in advance. We can- 
not even predict the “worst case” with any confidence. 

6. The weapon system will include a large variety of 
sensors and weapons, most of which will themselves 
require a large and complex software system. The suite 
of weapons and sensors is likely to grow during devel- 
opment and after deployment. The characteristics of 
weapons and sensors are not yet known and are likely 
to remain fluid for many years after deployment. The 
result is that the overall battle-management software 
system will have to integrate a software system signifi- 
cantly larger than has ever been attempted before. The 
components of that system will be subject to independ- 
ent modification. 

III. Implications of these problem characteristics 
Each of these characteristics has clear implications on 
the feasibility of building battle-management software 
that will meet the President’s requirements. 

1. Fire-control software cannot be written without 
making assumptions about the characteristics of enemy 
weapons and targets. This information is used in deter- 
mining the recognition algorithms, the sampling pe- 
riods, and the noise-filtering techniques. If the system 
is developed without the knowledge of these character- 
istics, or with the knowledge that the enemy can 
change some of them on the day of battle, there are 
likely to be subtle but fatal errors in the software. 

2. Although there has been some real progress in the 
area of “fail-soft” computer software, I have seen no 
success except in situations where (a) the likely failures 
can be predicted on the basis of past history, (b) the 
component failures are unlikely and are statistically in- 
dependent, (c) the system has excess capacity, (d) the 
real-time deadlines, if any, are soft, i.e., they can be 
missed without long-term effects. None of these is true 
for the required battle-management software. 

3. No large-scale software system has ever been in- 
stalled without extensive testing under realistic condi- 
tions. For example, in operational software for military 
aircraft, even minor modifications require extensive 
ground testing followed by flight testing in which battle 
conditions can be closely approximated. Even with 
these tests. bugs can and do show up in battle condi- 
tions The inability to test a strategic defense system 
under field conditions before we actually need it will 
mean that no knowledgeable person would have much 
faith in the system. 

4. It is not unusual for software modifications to be 
made in the field. Programmers are transported by heli- 
copter to Navy ships: debugging notes can be found on 
the walls of trucks carrying computers that were used 
in Vietnam. It is only through such modifications that 
software becomes reliable. Such opportunities will not 
be available in the 36-66 minute war to be fought by a 
strategic defense battle-management system. 

5. Programs of this type must meet hard real-time 
deadlines reliably. In theory, this can be done either by 

scheduling at runtime or by preruntime scheduling. In 
practice, efficiency and predictability require some pre- 
runtime scheduling. Schedules for the worst-case load 
are often built into the program. Unless one can work 
out worst-case real-time schedules in advance, one can 
have no confidence that the system will meet its dead- 
lines when its service is required. 

6. All of our experience indicates that the difficulties 
in building software increase with the size of the sys- 
tem, with the number of independently modifiable sub- 
systems, and with the number of interfaces that must 
be defined. Problems worsen when interfaces may 
change. The consequent modifications increase the 
complexity of the software and the difficulty of making 
a change correctly. 

IV. Conclusion 
All of the cost estimates indicate that this will be the 
most massive software project ever attempted. The sys- 
tem has numerous technical characteristics that will 
make it more difficult than previous systems, inde- 
pendent of size. Because of the extreme demands on 
the system and our inability to test it, we will never be 
able to believe, with any confidence, that we have suc- 
ceeded. Nuclear weapons will remain a potent threat. 

Why conventional software development 
does not produce reliable programs 

I. What is the conventional method? 
The easiest way to describe the programming method 
used in most projects today was given to me by a 
teacher who was explaining how he teaches program- 
ming. “Think like a computer,” he said. He instructed 
his students to begin by thinking about what the com- 
puter had to do first and to write that down. They 
would then think about what the computer had to do 
next and continue in that way until they had described 
the last thing the computer would do. This, in fact, is 
the way I was taught to program. Most of today’s text- 
books demonstrate the same method, although it has 
been improved by allowing us to describe the com- 
puter’s “thoughts” in larger steps and later to refine 
those large steps to a sequence of smaller steps. 

11. Why this method leads to confusion 
This intuitively appealing method works well-on 
problems too small to matter. We think that it works 
because it worked for the first program that we wrote. 
One can follow the method with programs that have 
neither branches nor loops. As soon as our thinking 
reaches a point where the action of the computer must 
depend on conditions that are not known until the pro- 
gram is running, we must deviate from the method by 
labeling one or more of the actions and remembering 
how we would get there. As soon as we introduce loops 
into the program, there are many ways of getting to 
some of the points and we must remember all of those 

December 1985 Volume 28 Number 12 Communications of the ACM 1329 



Computer Risks Forum 

ways. As we progress through the algorithm, we recog- 
nize the need for information about earlier events and 
add variables to our data structure. We now have to 
start remembering what data mean and under what 
circumstances data are meaningful. 

As we continue in our attempt to “think like a com- 
puter,” the amount we have to remember grows and 
grows. The simple rules defining how we got to certain 
points in a program become more complex as we 
branch there from other points. The simple rules defin- 
ing what the data mean become more complex as we 
find other uses for existing variables and acid new vari- 
ables. Eventually, we make an error. Sometimes we 
note that error: sometimes it is not found until we test. 
Sometimes the error is not very important; it happens 
only on rare or unforeseen occasions. In that case, we 
find it when the program is in use. Often, because one 
needs to remember so much about the meaning of each 
label and each variable, new problems are created 
when old problems are corrected. 

III. What is the effect of concurrency on this method? 
In many of our computer systems there are several 
sources of information and several outputs that must be 
controlled. This leads to a computer that might be 
thought of as doing many things at once. If the se- 
quence of external events cannot be predicted in ad- 
vance, the sequence of actions taken by the computer is 
also not predic:table. The computer may be doing only 
one thing at a time, but as one attempts to “think like a 
computer,” one finds many more points where the ac- 
tion must be c’onditional on what happened. in the past. 
Any attempt to design these programs by thinking 
things through in the order that the compu-ter will exe- 
cute them leads to confusion and results in systems 
that nobody can understand completely. 

IV. What is the effect of multiprocessing? 
When there is more than one computer in a system, the 
software not only appears to be doing more than one 
thing at a time, it really is doing many things at once. 
There is no sequential program that one can study. Any 
attempt to “think like the computer system” is ob- 
viously hopeless. There are so many possibilities to 
consider that only extensive testing can begin to sort 
things out. Even after such testing, we have incidents 
such as one that happened on a space shuttle flight 
several years ago. The wrong combination of sequences 
occurred and prevented the flight from starting. 

V. Do professional programmers really use this 
approach? 
Yes. I have had occasion to study lots of practical soft- 
ware and to discuss programs with lots of professional 
programmers. In recent years many programmers have 
tried to improve their working methods using a variety 
of software design approaches. However, when they get 
down to writing executable programs, they revert to 
the conventional way of thinking. I have yet to find a 
substantial program in practical use whose structure 

was not based on the expected execution sequence. 
I would be happy to be shown some. 

Other methods are discussed in advanced courses, a 
few good textbooks, and scientific meetings, but most 
programmers continue to use the basic approach of 
thinking things out in the order that the computer will 
execute them. This is most noticeable in the mainte- 
nance (deficiency correction) phase of programming. 

VI. How do we get away with this inadequate 
approach? 
It should be clear that writing and understanding very 
large real-time programs by “thinking like a computer” 
will be beyond our intellectual capabilities. How can it 
be that we have so much software that is reliable 
enough for us to use it? The answer is simple; program- 
ming is a trial and error craft. People write programs 
without any expectation that they will be right the first 
time. They spend at least as much time testing and 
correcting errors as they spent writing the initial pro- 
gram. Large concerns have separate groups of testers to 
do quality assurance. Programmers cannot be trusted to 
test their own programs adequately. Software is re- 
leased for use, not when it is known to be correct, but 
when the rate of discovering new errors slows down to 
one that management considers acceptable. Users learn 
to expect errors and are often told how to avoid the 
bugs until the program is improved. 

VII. Conclusion 
The military software that we depend on every day is 
not likely to be correct. The methods that are in use in 
the industry today are not adequate for building large 
real-time software systems that must be reliable when 
first used. A drastic change in methods is needed. 

The limits of software engineering methods 

I. What is software engineering research? 
We have known for 25 years that our programming 
methods are inadequate for large projects. Research in 
software engineering, programming methodology, soft- 
ware design, etc., looks for better tools and methods. 
The common thrust of results in these fields is to re- 
duce the amount that a programmer must remember 
when checking and changing a program. 

Two main lines of research are (1) structured pro- 
gramming and the use of formal program semantics and 
(2) the use of formally specified abstract interfaces to 
hide information about one module (work assignment) 
from the programmers who are working on other parts. 
A third idea, less well understood but no less impor- 
tant, is the use of cooperating sequential processes to 
help deal with the complexities arising from concur- 
rency and multiprogramming. By the late 1970s the 
basic ideas in software engineering were considered 
“motherhood” in the academic community. Nonethe- 
less, examinations of real programs revealed that actual 
programming practice, especially for military systems. 

1330 Communications of the ACM December 1985 Volume 28 Number 12 



Computer Risks Forum 

had not been changed much by the publication of the 
academic proposals. 

The gap between theory and practice was large and 
growing. Those espousing structured approaches to soft- 
ware were certain that it would be easy to apply their 
ideas to the problems that they faced in their daily 
work. They doubted that programs organized according 
to the principles espoused by academics could ever 
meet the performance constraints on “real” systems. 
Even those who claimed to believe in these principles 
were not able to apply them consistently. 

In 1977 the management of the Naval Research Labo- 
ratory in Washington, D.C., and the Naval Weapons 
Center in China Lake, California, decided that some- 
thing should be done to close the gap. They asked one 
of the academics who had faith in the new approach 
(myself) to demonstrate the applicability of those meth- 
ods by building, for the sake of comparison, a second 
version of a Navy real-time program. The project, now 
known as the Software Cost Reduction project @CR), 
was expected to take two to four years. It is still going 
Oil. 

The project has made two things clear: (1) much of 
what the academics proposed can be done: (2) good 
software engineering is far from easy. The methods re- 
duce, but do not eliminate, errors. They reduce, but do 
not eliminate, the need for testing. 

II. What should we do and what can we do? 
The SCR work has been based on the following pre- 
cepts. 

1. The software requirements should be nailed down 
with a complete. black-box requirements document be- 
fore software design is begun. 

2. The system should be divided into modules using 
information-hiding (abstraction) before writing the pro- 
gram begins. 

3. Each module should have a precise, black-box, 
formal specification before writing the program begins. 

4. Formal methods should be used to give precise 
documentation. 

5. Real-time systems should be built as a set of coop- 
erating sequential processes, each with a specified pe- 
riod and deadline. 

6. Programs should be written using the ideas of 
structured programming as taught by Harlan Mills. 

We have demonstrated that the first four of these 
precepts can be applied to military software by doing it. 
The documents that we have written have served as 
models for others. We have evidence that the models 
provide a most effective means of technology transfer. 

We have not yet proved that these methods lead to 
reliable code that meets the space and time constraints. 
We have found that every one of these precepts is eas- 
ier to pronounce than to carry out. Those who think 
that software design will become easy, and that errors 
will disappear, have not attacked substantial problems. 

III. What makes software engineering hard? 
We can write software requirements documents that 
are complete and precise. We understand the mathe- 

matical model behind such documents and can follow a 
systematic procedure to document all necessary re- 
quirements decisions. Unfortunately, it is hard to make 
the decisions that must be made to write such a docu- 
ment. We often do not know how to make those deci- 
sions until we can play with the system. Only when we 
have built a similar system before is it easy.to deter- 
mine the requirements in advance. It is worth doing, 
but it is not easy. 

We know how to decompose complex systems into 
modules when we know the set of design decisions that 
must be made in the implementation. Each of these 
must be assigned to a single module. We can do that 
when we are building a system that resembles a system 
we built before. When we are solving a totally new 
problem, we will overlook difficult design decisions. 
The result will be a structure that does not fully sepa- 
rate concerns and minimize complexity. 

We know how to specify abstract interfaces for mod- 
ules. We have a set of standard notations for use in that 
task. Unfortunately, it is very hard to find the right 
interface. The interface should be an abstraction of the 
set of all alternative designs. We can find that abstrac- 
tion only when we understand the alternative designs. 
For example. it has proved unexpectedly hard to design 
an abstract interface that hides the mathematical model 
of the earth’s shape. We have no previous experience 
with such models and no one has designed such an 
abstraction before. 

The common thread in all these observations is that, 
even with sound software design principles, we need 
broad experience with similar systems to design good, 
reliable software. 

IV. Will new programming languages make much 
difference? 
Because of the very large improvements in productivity 
that were noted when compiler languages were intro- 
duced, many continue to look for another improvement 
by introducing better languages. Better notation always 
helps, but we cannot expect new languages to provide 
the same magnitude of improvement that we got from 
the first introduction of such languages. Our experience 
in SCR has not shown the lack of a language to be a 
major problem. 

Programming languages are now sufficiently flexible 
that we can use almost any of them for almost any task. 
We should seek simplifications in programming lan- 
guages. but we cannot expect that this will make a big 
difference. 

V. What about programming environments? 
The success of UNIX@ as a programming development 
tool has made it clear that the environment in which 
we work does make a difference. The flexibility of 
UNIX@ has allowed us to eliminate many of the time- 
consuming housekeeping tasks involved in producing 
large programs. Consequently. there is extensive re- 
search in programming environments. Here, too, I ex- 
pect small improvements can be made by basing tools 
on improved notations but no big breakthroughs. Prob- 

December 1985 Volume 28 Number 12 Commur~ications of the ACM 1331 



Computer Risks Forum 

lems with our programming environment h(ave not 
been a major impediment in our SCR work. 

VI. Why software engineering research will not make 
the SD1 goals attainable 
Although 1 believe that further research on software 
engineering methods can lead to substantial improve- 
ments in our ability to build large real-time software 
systems, this work will not overcome the difficulties 
inherent in the plans for battle-management computing 
for SDI. Software engineering methods do not eliminate 
errors. They do not eliminate the basic differences be- 
tween software technology and other areas of engineer- 
ing. They do not eliminate the need for extensive test- 
ing under field conditions or the need for opportunities 
to revise the system while it is in use. h4ost important, 
we have learned that the successful application of these 
methods depends on experience accumulat’ed while 
building and maintaining similar systems. There is no 
body of experilence for SD1 battle management, 

VII. Conclusion 
1 am not a modest man. I believe that I have as sound 
and broad an understanding of the problems of software 
engineering as anyone that 1 know. If you gave me the 
job of building the system, and all the resources that I 
wanted, I could not do it. I don’t expect the next 20 
years of research to change that fact. 

Artificial intelligence and the Strategic Defense 
Initiative 

I. Introduction 
One of the technologies being considered for use in the 
SD1 battle-management software is artificial intelli- 
gence (AI). Researches in AI have often made big 
claims, and it is natural to believe that one should use 
this technology for a problem as difficult as SD1 battle 
management. In this section, I argue that one cannot 
expect much help from AI in building reliable battle- 
management software. 

II. What is artificial intelligence? 
Two quite different definitions of AI are in common use 
today. 

AI-l: The use of computers to solve problems that 
previously could be solved only by applying human 
intelligence. 

AI-2: The use of a specific set of programrning tech- 
inques known as heuristic or rule-based programming. 
In this approach human experts are studied to deter- 
mine what heuristics or rules of thumb they use in 
solving problems. Usually they are asked fo:r their rules. 
These rules are then encoded as input to a program 
that attempts to behave in accordance with them. In 
other words, the program is designed to solve a problem 
the way that humans seem to solve it. 

It should be :noted that the first definition defines AI 

as a set of problems, the second defines AI as a set of 
techniques. The first definition has a sliding meaning, 
In the Middle Ages, it was thought that arithmetic re- 
quired intelligence. Now we recognize it as a mechani- 
cal act. Something can fit the definition of Al-l today, 
but. once we see how the program works and under- 
stand the problem, we will not think of it as AI any- 
more. 

It is quite possible for a program to meet one defini- 
tion and not the other. If we build a speech-recognition 
program that uses Bayesian mathematics rather than 
heuristics, it is Al-l but not AI-Z. If we write a rule- 
based program to generate parsers for precedence gram- 
mars using heuristics, it will be AI-2 but not Al-l be- 
cause the problem has a known algorithmic solution. 

Although it is possible for work to satisfy both defini- 
tions, the best Al-l work that I have seen does not use 
heuristic or rule-based methods. Workers in AI-1 often 
use traditional engineering and scientific approaches. 
They study the problem, its physical and logical con- 
straints, and write a program that makes no attempt to 
mimic the way that people say they solve the problem. 

III. What can we learn from AI that will help us build 
the battle-management computer software? 
I have seen some outstanding Al-l work. Unfortu- 
nately, 1 cannot identify a body of techniques or tech- 
nology that is unique to this field. When one studies 
these AI-1 programs one finds that they use sound sci- 
entific approaches, approaches that are also used in 
work that is not called AI. Most of the work is problem 
specific, and some abstraction and creativity are re- 
quired to see how to transfer it. People speak of AI as if 
it were some magic body of new ideas. There is good 
work in AI-1 but nothing so magic it will allow the 
solution of the SD1 battle-management problem. 

I find the approaches taken in AI-Z to be dangerous 
and much of the work misleading. The rules that one 
obtains by studying people turn out to be inconsistent, 
incomplete. and inaccurate. Heuristic programs are de- 
veloped by a trial and error process in which a new 
rule is added whenever one finds a case that is not 
handled by the old rules. This approach usually yields 
a program whose behavior is poorly understood and 
hard to predict. AI-Z researchers accept this evolution- 
ary approach to programming as normal and proper. I 
trust such programs even less than I trust unstructured 
conventional programs. One never knows when the 
program will fail. 

On occasion I have had to examine closely the claims 
of a worker in AI-2. I have always been disappointed. 
On close examination the heuristics turned out to han- 
dle a small number of obvious cases but failed to work 
in general. The author was able to demonstrate spectac- 
ular behavior on the cases that the program handled 
correctly. He marked the other cases as extensions for 
future researchers. In fact, the techniques being used 
often do not generalize and the improved program 
never appears. 

1332 Communications of the ACM December 1985 Volume 28 Number 12 



Computer Risks Forum 

IV. What about expert systems? 
Lately we have heard a great deal about the success of 
a particular class of rule-based systems known as ex- 
pert systems. Every discussion cites one example of 
such a system that is being used to solve real problems 
by people other than its developer. That example is 
always the same-a program designed to find configu- 
rations for VAX computers. To many of us. that does 
not sound like a difficult problem: it sounds like the 
kind of problem that is amenable to algorithmic solu- 
tion because VAX systems are constructed from well- 
understood, well-designed components. Recently I read 
a paper that reported that this program had become a 
maintenance nightmare. It was poorly understood, 
badly structured, and hence hard to change. I have 
good reason to believe that it could be replaced by a 
better program written using good software engineering 
techniques instead of heuristic techniques. 

SD1 presents a problem that may be more difficu!t 
than those being tackled in AI-1 and expert systems. 
Workers in those areas attack problems that now re- 
quire human expertise. Some of the problems in SD1 
are in areas where we now have no human experts. Do 
we now have humans who can, with high reliability 
and confidence, look at missiles in ballistic flight and 
distinguish warheads from decoys? 

V. Conclusion 
Artificial intelligence has the same relation to intelli- 
gence as artificial flowers have to flowers. From a dis- 
tance they may appear much alike, but when closely 
examined they are quite different. I don’t think we can 
learn much about one by studying the other. AI offers 
no magic technology to solve our problem. Heuristic 
techniques do not yield systems that one can trust. 

Can automatic programming solve 
the SD1 software problem? 

I. Introduction 
Throughout my career in computing I have heard peo- 
ple claim that the solution to the software problem is 
automatic programming. All that one has to do is write 
the specifications for the software, and the computer 
will find a program. Can we expect such technology to 
produce reliable programs for SDI? 

II. Some perspective on automatic programming 
The oldest paper known to me that discusses automatic 
programming was written in the 1940s by Saul Gorn 
when he was working at the Aberdeen Proving Ground. 
This paper, entitled “Is Automatic Programming Feasi- 
ble?” was classified for a while. It answered the ques- 
tion positively. 

At that time, programs were fed into computers on 
paper tapes. The programmer worked the punch di- 
rectly and actually looked at the holes in the tape. I 

have seen programmers “patch” programs by literally 
patching the paper tape. 

The automatic programming system considered by 
Gorn in that paper was an assembler in today’s termi- 
nology. All that one would have to do with his auto- 
matic programming system would be to write a code 
such as CLA. and the computer would automatically 
punch the proper holes in the tape. In this way, the 
programmer’s task would be performed automatically 
by the computer. 

In later years the phrase was used to refer to program 
generation from languages such as IT, FORTRAN, and 
ALGOL. In each case, the programmer entered a speci- 
fication of what he wanted, and the computer produced 
the program in the language of the machine. 

In short, automatic programming always has been a 
euphemism for programming with a higher-level lan- 
guage than was then available to the programmer. Re- 
search in automatic programming is simply research in 
the implementation of higher-level programming lan- 
guages. 

III. Is automatic programming feasible? What does that 
mean? 
Of course automatic programming is feasible. We have 
known for years that we can implement higher-level 
programming languages. The only real question was the 
efficiency of the resulting programs. Usually, if the in- 
put “specification” is not a description of an algorithm, 
the resulting program is woefully inefficient. I do not 
believe that the use of nonalgorithmic specifications as 
a programming langauge will prove practical for sys- 
tems with limited computer capacity and hard real- 
time deadlines. When the input specification is a de- 
scription of an algorithm, writing the specification is 
really writing a program. There will be no substantial 
change from our present capability. 

IV. Will automatic programming lead to more reliable 
programs? 
The use of improved languages has led to a reduction in 
the amount of detail that a programmer must handle 
and hence to an improvement in reliability. However, 
extant programming languages, while far from perfect, 
are not that bad. Unless we move to nonalgorithmic 
specifications as an input to these systems, I do not 
expect a drastic improvement to result from this re- 
search. 

On the other hand, our experience in writing non- 
algorithmic specifications has shown that people make 
mistakes in writing them just as they do in writing 
algorithms, The effect of such work on reliability is not 
yet clear. 

V. Will automatic programming lead to a reliable SD1 
battle-management system? 
I believe that the claims that have been made for auto- 
matic programming systems are greatly exaggerated. 

December 1985 Volume 28 Number 12 Communications of the ACM 1333 



Computer Risks Forum 

Automatic programming in a way that is substantially 
different from what we do today is not likely to become 
a practial tool for real-time systems like thlz SD1 battle- 
management .iystem. Moreover, one of the basic prob- 
lems with SD1 is that we do not have the information to 
write specifications that we can trust. In such a situa- 
tion, automatic programming is no help at all. 

Can program verification make the SIX software 
reliable? 

1. Introduction 
Programs are mathematical objects. They have mean- 
ings that are mathematical objects. Program specifica- 
tions are mathematical objects. Should it not be possi- 
ble to prove that a program will meet its specification? 
This has been a topic of research now for at least 25 
years. If we can prove programs correct, could we not 
prove the SD1 software correct? If it was proved correct, 
could we not rely on it to defend us in time of need? 

II. What can we prove? 
We can prove that certain small programs in special 
programming languages meet a specification. The word 
small is a relative one. Those working in verification 
would consider a so&line program to be large. In dis- 
cussing SD1 software, we would consider a 500-line pro- 
gram to be small. The programs whose proofs I have 
seen have been well under 500 lines. They have per- 
formed easily defined mathematical tasks. They have 
been written without use of side effects, an important 
tool in practical programs. 

Proofs for programs such as a model of the earth’s 
gravity field do not have these properties. Such pro- 
grams are larger: their specifications are not as neat or 
mathematically formalizable. They are often written in 
programming languages whose semantics are difficult 
to formalize. I have seen no proof of such a program. 

Not only are manual proofs limited to programs of 
small size with mathematical specifications; machine 
theorem provers and verifiers are also strictly limited 
in the size of the program that they can handle. The 
size of programs that they can handle is several orders 
of magnitude different from the size of the programs 
that would constitute the SD1 battle-management sys- 
tem. 

III. Do we havl? the specifications? 
In the case of SD1 we do not have the speci-fications 
against which a proof could be applied. Even if size 
were not a problem, the lack of specifications would 
make the notion of a formal proof meaningless. If we 
wrote a formal specification for the software, we would 
have no way of proving that a program that satisfied 
the specification would actually do what we expected it 
to do. The spelnification itself might be wrong or incom- 
plete. 

IV. Can we have faith in proofs? 
Proofs increase our confidence in a program, but we 

1334 Communications of the ACM 

have no basis for complete confidence. Even in pure 
mathematics there are many cases of proofs that were 
published with errors. Proofs tend to be reliable when 
they are small, well polished, and carefully read. They 
are not reliable when they are large, complex. and not 
read by anyone but their author. That is what would 
happen with any attempt to prove even a portion of the 
SD1 software correct. 

V. What about concurrency? 
The proof techniques that are most practical are re- 
stricted to sequential programs. Recent work on proofs 
of systems of concurrent processes has focused on 
message-passing protocols rather than processes that 
cooperate using shared memory. There are some tech- 
niques that can be applied with shared memory, but 
they are more difficult than proofs for sequential pro- 
grams or proofs for programs that are restricted to com- 
munication over message channels. 

VI. What about programs that are supposed to be 
robust? 
One of the major problems with the SD1 software is that 
it should function with part of its equipment destroyed 
or disabled by enemy action. In 20 years of watching 
attempts to prove programs correct, I have seen only 
one attempt at proving that a program would get the 
correct answer in the event of a hardware failure. That 
proof made extremely unrealistic assumptions. We 
have no techniques for proving the correctness of pro- 
grams in the presence of unknown hardware failures 
and errors in input data. 

VII. Conclusion 
It is inconceivable to me that one could provide a con- 
vincing proof of correctness of even a small portion of 
the SD1 software. Given our inability to specify the re- 
quirements of the software, I do not know what such a 
proof would mean if 1 had it. 

Is SD10 an efficient way to fund worthwhile 
research? 

The subject of this section is not computer science. 
Instead, it discusses an issue of concern to all modern 
scientists: the mechanism that determines what re- 
search will be done. These remarks are based on nearly 
20 years of experience with DOD funding as well as 
experience with other funding mechanisms in several 
countries. 

I. The proposal 
In several dicussions of this problem, I have found peo- 
ple telling me they knew the SD10 software could not 
be built but felt the project should continue because it 
might fund some good research. In this section I want 
to discuss that point of view. 

II. The moral issue 
There is an obvious moral issue raised by this position. 
The American people and their representatives have 

December 1985 Volume 28 Number 12 



Computer Risks Forum 

been willing to spend huge amounts of money on this 
project because of the hope that has been offered. Is it 
honest to take the attitude expressed above? Is it wise 
to have our policymakers make decisions on the as- 
sumption that such a system might be possible? I am 
not an expert on moral or political issues and offer no 
answers to these questions. 

III. Is DOD sponsoring of software research effective? 
I can raise another problem with this position. Is the 
SD10 an effective way to get good research done? 
Throughout many years of association with DOD I have 
been astounded at the amount of money that has been 
wasted in ineffective research projects. In my first con- 
tact with the U.S. Navy, I watched millions of dollars 
spent on a wild computer design that had absolutely no 
technical merit. It was abandoned many years after its 
lack of merit became clear. As a consultant for both the 
Navy and a number of contractors, I have seen expen- 
sive software research that produces very large reports 
with very little content. I have seen those large, expen- 
sive reports put on shelves and never used. I have seen 
many almost identical efforts carried out independently 
and redundantly. I have seen talented professionals 
take approaches that they considered unwise because 
their “customers” asked for it. I have seen their cus- 
tomers take positions they do not understand because 
they thought that the contractors believed in them. 

In computer software, the DOD contracting and fund- 
ing scheme is remarkably ineffective because the bu- 
reaucrats who run it do not understand what they are 
buying. 

IV. Who can judge research? 
The most difficult and crucial step in research is iden- 
tifying and defining the problem. Successful research- 
ers are usually those who have the insight to find a 
problem that is both solvable and important. 

For applied research, additional judgment is needed. 
A problem may be an important one in theory, but 
there may be restrictions that prevent the use of its 
solution in practice. Only people closely familiar with 
the practical aspects of the problem can judge whether 
or not they could use the results of a research project. 

Applied research must be judged by teams that in- 
clude both successful researchers and experienced sys- 
tem engineers. They must have ample opportunity to 
meet, be fully informed, and have clearly defined re- 
sponsibilities. 

V. Who judges research in DOD? 
Although there are a few notable exceptions within 
DOD, the majority of those who manage its applied re- 
search program are neither successful researchers nor 
people with extensive system-building experience. 
There are outstanding researchers who work for DOD, 
but most of them work in laboratories, not in the fund- 
ing agencies. There are many accomplished system 
builders who work for DOD, but their managers often 
consider them too valuable to allow them to spend 
their time reviewing research proposals. The people 

who end up making funding decisions in DOD are very 
often unsuccessful researchers, unsuccessful system 
builders, and people who enter bureaucracy immedi- 
ately after their education. We call them technocrats. 

Technocrats are bombarded with weighty volumes of 
highly detailed proposals that they are ill prepared to 
judge. They do not have the time to study and think; 
they are forced to rely on the advice of others. When 
they look for advice. they look for people that they 
know well, whether or not they are people whose areas 
of expertise are appropriate, and whether or not they 
have unbiased positions on the subject. 

Most technocrats are honest and hard-working, but 
they are not capable of doing what is needed. The re- 
sult is a very inefficient research program. I am con- 
vinced that there is now much more money being spent 
on software research than can be usefully spent. Very 
little of the work that is sponsored leads to results that 
are useful. Many useful results go unnoticed because 
the good work is buried in the rest. 

VI. The SD10 
The SD10 is a typical organization of technocrats. It is 
so involved in the advocacy of the program that it can- 
not judge the quality of the research involved. 

The SD10 panel on battle-management computing 
contains not one person who has built actual battle- 
management software. It contains no experts on trajec- 
tory computations, pattern recognition, or other areas 
critical to this problem. All of its members stand to 
profit from continuation of the program. 

VII. Alternatives 
If there is good research being funded by SDIO, that 
research has an applicability that is far broader than 
the SD1 itself. It should be managed by teams of scien- 
tists and engineers as part of a well-organized research 
program. There is no need to create a special organiza- 
tion to judge this research. To do so is counterproduc- 
tive. It can only make the program less efficient. 

VIII. Conclusion 
There is no justification for continuing with the pre- 
tense that the SD1 battle-management software can be 
built just to obtain funding for otherwise worthwhile 
programs. DOD’S overall approach to research manage- 
ment requires a thorough evaluation and review by 
people outside the DOD. 

Author’s Present Address: David Large Parnas, Department of Computer 
Science. University of Victoria. P.O. Box 1700. Victoria. British Colum- 
bia. Canada V8W 2Y2. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear. and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise. or to 
republish. requires a fee and/or specific permission. 

December 1985 Volume 28 Number 12 Communications of the ACM 1335 


