
A COURSE ON SOFTWARE ENGINEERING TECHNIQUES

D. L. Parnas
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

INTRODUCTION

This is a report on a course entitled, "Soft-
ware Engineering Methods", which I have taught to
undergraduate students at the Carnegie-Mellon
University twice during the 1970-71 academic year.
The course ks "project oriented" and aims to edu-
cate by providing experience in the use of the
techniques taught.

WHAT DO I MEAN BY "SOFTWARE ENGINEERING"?

The term "software engineering" is often used
to denote the building of commonly used systems
programs such as assemblers, compilers and operat-
ing systems. In the design of this course I have
taken a much broader view. I take the view that
programming is taught in our basic courses as a
solo activity. Such courses teach programming
techniques that are suitable for use by a single
person constructing a program which will not be
touched by other people. In contrast, I feel that
the essential ch@r@cteristic of a software engi-
neering task is that many people will be involved
with the Rrqdugt. Either several people will co-
operate in producing it, or it will be used or
modified by persons other than the original writer.
The course emphasizes procedures which are option-
al and might be superfluous for solo progrananing
tasks but are important if several people are in-
volved. I shall list those techniques later.

It is certainly possible to complete a multi-
person project without those techniques; it is
done constantly, but the results are usually un-
satisfactory. On the other hand, I believe that
often the techniques are useful and appropriate
for the construction of a program whose author
will be its sole user. A software engineer must
be able to eomcnunicate precise partial descrip-
tions of the system to others on the project. Be-
cause of our limited mental capacity, techniques
for co~nunieation with others are also used for
communication with one's self. I expect the
course to result in an improvement of the solo
programming skills of the students as well as to
prepare them for software engineering projects.

BASIC EDUCATIONAL PHILOSOPHY

This course shares with a hardware course
reported previously [1,2] the following basic ed-
ucational philosophy.

I. It is better to teach methods of problem
solving than to teach known solutions to
specific problems.

2. It is more important to improve a stu-
dent's ability to read the literature
critically himself than to digest it for
him.

3. Students learn better by solving problems

themselves than by having probl~ns solved
in front of them~

4~ It is the role of the university to teach
how things should be done, rather than
current practice.

Although few would argue with the above
"motherhood principles" they have a drastic effect
on the course because of the limited time avail-
able. There are many useful and well thought out
software engineering methods (e.g., syntax analy-
sis methods, list processing algorithms, sorting
algorithms, code optimization algorithms, address
assignment and subprogram linking) which I treat
briefly or ignore in accordance with the above
priorities. Many educators will find the content
inadequate. Time pressures forced us to make
choices in the direction indicated above. Later I
mention some specific steps to reduce the conflict.

SUBJECT MATTER

I have often heard it stated that "software
engineering" cannot really be taught, that there
is no subject matter, that it is an art rather
than a science. Although the above educational
philosophy reflects some agreement with that view,
there follows a list of subject areas which the
course emphasizes. In the following, I provide
references to other reports rather than reproduce
material available elsewhere.

i. Techniques for precisely defining what a
piece of software is intended to do [3,

2. Criteria to be used in decomposing soft-
ware into "modules" or work units [4,5].

3. Criteria to be used in determining the
information about each module to be pre-
sented to other modules (i.e., interface
design) [4,5].

4. Techniques for specifying the functions
of modules [6].

5. Techniques for verifying the correctness
of specifications.

6. Program organization techniques [7,8,9,
i0].

7. Ability to read the software literature,
spacifically:

a. familiarity with some of the
jargon used in the literature

b. conmnon assumptions about the
structure of systems programs
used in the literature

154

c~ paper analysis skills

8. Sane issues of language design, e.g.~ use
of syntax, ability to process own text,
ease of learning vs~ ease of use.

9o Familiarity with the most common system
programming problems and tools, e~g.,
assemblers, compilers, interpreters, li-
braries~ loaders, operating syst~is.

I0. Sane "theory of design methodology", e.g.,
the effect of decision ordering on the
final design, hierarchies in program
structures, need for constant decision
verification [4,]0,11], etc.

COURSE ORGANIZATION

'lhe course may be thought of as divided into
three phases based upon the type of assignments
given to the students. In the first phase the
assigrunents consist of introductory small projects.
The students are given definitions of relatively
small devices common in software engineering (e.g.,
a stack~ queue or tree structure). For each ob-
ject s~e are asked to produce implementations
while others are asked to write small programs
which use the object. One example of such an ob-
ject is the stack defined in [6].

In the second phase of the course the class
builds a "family" of small systems from a design
presented to them by the instructor. The project
is a small scale system but larger than the pre-
vious projects. The past projects for this course
have been a translator for a Markov Algorithm
based progran~ing language [12], and a system for
the production of KWIC indices. The system is
divided into approximately six modules. Each mod-
ule is given a precise definition and each student
builds one module. With 18 students in the class
this provides us with three versions of each mod-
ule. Because of the precise definitions, any
correct version of a given module is replaceable
by another student's correct version of the same
module without changes in any other modules. Thus
if all the students do6their jobs properly, the
"family" consists of 3 or 721 working versions.
The students working on a given module do not co-
operate; the various versions of each module have
very different implementations. The ability to
produce a system as a team effort with indepen-
dently replaceable parts is an essential skill for

all software engineers.

In the third phase of the course another sys-
tem is started. In this one the students are
given only a rough picture of what the system [s
intended to do. The class, working as a design
committee or system committee, goes through the
exercise of squeezing the real intentions of
management (in this case the instructor) from the
vague description and conversations, producing a
more precise form such as is given to them in the
first phase. They then go through the exercise
of dividing the system into modules, providing
precise definitions of the modules, and (if time
permits) completing the system as in the first
projeet~

Throughout all three phases the lectures are

coordinated with the projects so as to explain to
the students what they are doing and why they are
doing it. In the introductory projects the main
effort is on teaching the students how to use the
specifications. Some time is spent on exploring
possible implementations with the aid of a pro-
grarmning textbook. The text by Knuth [13] has
been found tremendously useful in this regard.
During the second phase the project's design is
motivated for the students. They are shown how
the system's decomposition into modules was ar-
rived at, they are given the reasons for defining
the interfaces chosen, and they are shown some
alternative formulations together with the relative
advantages and disadvantages. An example of the
type of comparison which can be made in class is
given in [5]. We examine possible implementations
of each module, taking care to show several alter-
natives and show the situations in which each is
preferred. In this way I encourage the students
to make different implementations and show them
the advantages of having several different "plug
compatible" implementations. Thus the lectures
in the second phase are used to build up a con-
cept of how to design a system. In the third
phase the lectures are devoted to the discussions
of an actual design and the students are encouraged
to apply the conclusions reached in the second
phase discussions.

As one compares the course organization with
the list of topics to be covered one can see that
no attempt has been made to base the course on
that list. Instead, the list has been used to
motivate the problems and examples used in class.
The projects are chosen to either illustrate the
most common software components, to provide situ-
ations in which the student can profitably make
use of the literature to get his own assignments
done, or to make him familiar with an important
technique. As a result the "factual material"
which might be the direct aim of a more conven-
tionally organized course appears as incidental
byproducts of the project work of this course.
The success of the course in covering the topics
that one would like to see covered is dependent
very much on the ability of the instructor to
select appropriate examples.

RESULTS AND PROBLEMS

To date the results have been encouraging.
The problems of the first phase have been complet-
ed successfully. The systems of the second phase
[lave always been completed in many versions,
though usually we have one version of each module
which could not be gotten to work. Instead of our
goal of 36 w~r$ing versions the usual result has
been about 2 .~ Needless to say, we have not test-
ed all possible combinations, but we have used each
module in several combinations. In the third phase
we have not had time to proceed to the point of
implementation, and I feel that a great deal is
lost because of that. One positive note: with one
very minor exception, every failure in the secon_d
hase pro|eat has been traceable to an error in

~7
"Most recently the figures were: 20 students, 5
modules, 45 possible versions, 5 incorrect ver-
sions (15 correct ones), and 192 apparently cor-

rect combinations.

155

ro rm~in a sin le module rather than an error
in the iDecifications or ~vstem desii~. From a
managerial (or grading) point of view we find that
extremely helpful and the next best thing to get-
ting all modules working correctly. In previous
project courses [1,2] as well as in current in-
dustrial practice, project failure is extremely
hard to trace to its source. One usually finds a
number of misunderstandings about what each mem ~
her of the team was supposed to do. Generally the
vagueness of the original natural language docu-
ments make it impossible to place the blame square-
ly and often means that a single error is shared
by many modules. I feel that the reduction of the
"fault placing" problem is a basic verification of
the validity of the methods being taught by the
course.

CONCLUSIONS

It is tempting to conclude from the above that
the course should be taught in a two semester se-
quence. Certainly there is much more about soft-
ware that I would like to get across. However, a
factor not yet mentioned leads me to postpone that
conclusion.

In each semester the class has been relative-
ly easily divided into two groups. One group,
which I would call "experienced" had had some pre-
vious contact with the making of systems progr&ms.
These students had in most cases completed the
basic courses offered more than a year before and
had part time or sunmner jobs with some organiza-
tion writing systems programs. The other groups
which I would call "naive" had just completed the
more basic courses and had not had any systems
prograrmming experience. The first surprise was
that the experienced group did n9% outperform the
naive group. The methods being taught were suf-
ficiently different from current practice that
both groups were on an equal footing.

Experience did show that it was extremely
difficult to give lectures and problems that were
suitable for both groups. There were many ques-
tions raised by the experienced group which did
not seem relevant to the naive group. They were
questions relating to current practice with which
the naive group was not familiar. On the other
hand, there were concerns of the naive group (gen-
erally specific programming problems) which were
not relevant to the experienced group. Thus, I
had a tendency to bore one group or confuse the
other.

Economic conditions permitting, it would seem
best to offer two versions of the course; one ori-
ented to students with systems progranm~ing experi-
ence, the other oriented to the more naive stu-
dent. In fact, for really experienced students
(for example, students in an in house training
project for a software company or computer manu-
facturer) a single project coupled with a well
planned series of lectures could accomplish much
of the course's purpose in two-three weeks Inten-
sive or four-six weeks of part time effort. The
course for the naive students would then be able
to tackle some of the problems in a more orderly
manner and could conceivably cover the desired
material in a semester. Under those circumstances

we might try to devote s(*a~e section,s ol the course
to providing studeots with a~ expe~ie!~c~ of "the
way things are TM . Without such a section there is
a danger that a student~ trained in the way out-
lined above~ will become convinced ti~at the ap-
proach is a naive one becau~{e it does not deal
with many of the problems which exist in current
s y s t e m S , Some t i .~e i n the c o u r s e s h o u l d be d e -
v o t e d t o a d i s c u s s i o n i n d e p t h o f tho~:e p r o b l e m s so
tilat the student can be prepared to diflerentiate
between problems which are the {esult of a [iai!ure
to use the methods taught and problems which are
unavoidable or intrinsic.

ACKNO{q L EDGV{ I;JNT

I am greatly indebted to Professor Alan J.
Perlis, whose consta~$t encouragemel~t contributed
greatly to the course's development. T am also
grateful to the first students who suffered
through early versions of the cour:~e.

A P P gND [X

The above paper gives little indication of the
content of the course because much of it has been
published in the references and it did not seem ap-
propriate to the author to duplicate the material.
However, the following sample examination problems
may provide some indication of the ~flavor" of the
Course.

INTRODUCTION

In the following module all function values
and par~neters are integers except where stated
otherwise. In the interest of brevity we shall
not state this repeatedly. For si-~ne values the
values are not predicted by the definition. They
are chosen arbitrarily by the system. This is
done because the user should not make use of any
regularity which mi~lt exist in the values assigned.
The necessary relations between the values of those
functions and the values of other functions are
stated explicitly. Such incompletely defined func-
tions are noted with an *. 'Fne user may store the
values of those functions and use them to avoid
repeated nested function calls.

Note: fa = father, is = !eft~on, rs = light,on,
sls = !et is, srs = set rs, sva = set val,
val = valjJe, del = de jlete~ els = exists is,
ers = e~aisgs r~, u~d. = undefined.

Function spslft

possible values: integer
parameters: none
initial values: p2
effect:

Function exists

possible values: true, false
parameters: integer i
initial values: exists<0) = true~

exists(l:pl) = false;
all others undo

effect: call ECI if i < 0 or i ~ pl

156

*Function fa
possible values: integer
parameters: integer i
initial values: fa(0) = 0; all others und°
effect: call EC2 if i < 0 or i > pl

call EC3 if 'exists'(i) = false

Function valdefd
possible values: true, false
parameters: integer i
initial values: valdefd(0) = false;

all others und.
effect: call EC4 if i < 0 or i > pl

call EC5 if 'exists'(i) = false

Function val
possible values: integer
parameters: integer i
initial values: und.
effect: call EC6 if i < 0 or i > pl

call EC7 if 'exists'(i) = false
call EC8 if 'valdefd'(i) = false

Function els
possible values: true, false
parameters: integer i
initial values: els(0) = false; all others und.
effect: call EC9 if i < 0 or i > pl

call ECi0 if 'exists'(i) = false

Function ers
possible values: true, false
parameters: integer i
initial values: ers(0) = false; all others und.
effect: call ECiI if i < 0 or i > pl

call ECi2 if 'exists'(i) = false

*Function Is
possible values: integer
parameters: integer i
initial values: und°
effect: call ECi3 if i < 0 or i > pl

call ECI4 if 'exists'(i) = false
call ECI5 if 'els'(i) = false

*Function rs
possible values: integer
parameters: integer i
initial values: und.
effect: call ECI6 if i < 0 or i > pl

call ECI7 if 'exists'(i) = false
call ECi8 if 'ers'(i) = false

Function sval
possible values: none
parameters: integer i,v
initial values: not applicable
effect: call ECi9 if i < 0 or i > pl

call EC20 if 'exists'(i) = false
call EC21 if 'valdefd'(i) = true
val(i) = v
valdefd(i) = true

Function cval

possible values: none
parmueters: integer i,v
initial values: ~t applicable
effect: call EC22 if i < 0 or i > pl

call EC23 if 'exists'(i) = false
call EC24 if 'valdefd'(i) = false

val(i) = v

Function del

possible values: none
parameters: integer i
initial values: not applicable
effect: call EC25 if i ! 0 or i > pl

call EC26 if 'exists'(i) = false
call EC27 if 'els'(i) or 'ers'(i)=true
fa(i) is und.
val(i) is und.
ers(i) is und.
els(i) is und.
valdefd(i) is und.
exists(i) = false
if i = 'is'('fa'(i)) then (

is('fa'(i)) is und.
els('fa'(i)) = false)

if i = 'rs'('fa'(i)) then (
rs('fa'(i)) is und.
ers('fa'(i)) = false)

spslft = 'spslft' + 1

Function sls
possible values: none
parameters: integer i
initial values: not applicable
effect: call EC28 if i < 0 or i > pl

call EC29 if 'exists'(i) = false
call EC30 if 'els'(i) = true
call EC31 if 'spslft' = 0
there exists k such that (

0 < k ! pl
'exists'(k) = false
exists(k) = true
is(i) = k
els(i) = true
els(k) = ers(k) = false

valdefd(k) = false
fa(k) = I)

spslft = 'spslft' - i

Function srs
possible values: none
parameters: integer i
initial values: not applicable
effect: call EC32 if i < 0 or i > pl

call EC33 if 'exists'(i) = false
call EC34 if 'ers'(i) = true
call EC35 if 'spslft' = 0
there exists k such that (

0 < k < pl
'exists'(k) = false
exists(k) = true
rs(i) = k

valdefd(k) = false
els(k)=ers(k) = false

ers(i) = true
fa(k) = i)

spslft = 'spslft' - i

I. Specific questions

i.i Can there be two integers i I and i 2 such

that Is(i I) = rs(i2)?

1.2 Give the values of i such that the fol-
lowing ALGOI~ program will stop.

i = some initial value ~iven outside
the block

ii
157

integer k; k := i;
L: k := fa(k)

if k ~ i then go to L;
end ;

1.3 Can there be two distinct integers i 1
and i z such that fa(i I) = fa(i2)?

1.4 Consider that the following sequence of
calla has been made:

SIs(0); srs(0); sis(is(0)); srs(rs(0)); sls(rs(0));
sval(0,0); sva(Is(0),l);
i := is(Is(0)); sva(i,l); sva(rs(0),3);
sva(rs(rs(0)),4); k = rs(0); sva(is(k),5);

Give the values of the following function
calls after the above sequence is exe-
cuted.

val(k);
val(fa(i));
fa(fa(i));
val(fa(fa(i)));
val(rs(rs(fa(i)))));

Is val(i) = val(Is(is(0))?

For how many values of i is sls(i) true?
For how many values of i is ors(i) true?

1.5 Is there a "longest" expression that will
not call an error call? If so, give it.
If not, state why not.

1.6 W'nat sequence of function calls will
guarantee that Is(rs(0)) is equal to 5?

2. This module was intended for use in an informa-
tion retrieval project where a file of publica-
tions is stored and each is classified by a
binary code consisting of 48 binits (either 0
or I). Associated with each document is an
accession number which tells where to find it
on the shelves. The conception of the system
is that the user answers up to 48 questions
while istting at an interactive terminal (an-
swering either yes or no to each one), then
the syste~prints up an accession hOt,per. The
number of questions you are asked may well vary
with the answers you give. Same answers will
suddenly result in a '~E AIN'T GOT NONE ~O~DY"
reply.

Show how to use the modules in this applica-
tion.

3. Can you use this module in a simple direct
way to keep the marriage and birth records of
a city, i.e., to store information sh~ing
the father and mother of each person, the wife
of each person, the sons and daughters of each
person?

In other words, how would you store the fol-
lowing information structure with this module?
If you think that this is not a good ~odule
for this application, say why,

..... <,Soha) i t / ice} ~ ~ob~

" + ~ 4. ¢5 ~ , ' < / < ' c:-< ~ .'>%o

<)j~tional~!~es!~ip~! (extra credit possible)

For one of the two applications suggested for
this module (preferably one where the module is
easily applied) show the decomposition into modules
that you would use. Describe each module briefly
indicating the special piece of knowledge it would
hold and the way that it would be used by the rest
of the syst~sm,

References

[1] Strauss, Jo C., D. L. Parnas, R. Soelsire,
Y. Wallach, A Design-~>~phasis Problem Solving
Experience, Electrical Engineering Department,
Carnegie Institute of Technology, Pittsburgh,
Pa,

{2]

[3]

[4]

{5]

[6]

[7]

Parnas, D. L., "On the Use of the C<m~puter in
Engineering Education Without a Progrm~m~ing
Prerequisite", J Educa-
tion, April 1966.

Parnas, D. L., "Sample Man Machine Interface
Specification - A Graphics Based Line Editor",
presented at NATO Advanced Study Institute on
Man Machine Interaction Using Graphics, held
at the IMD, University of Erlangen, Erlangen,
West Germany, April 1971. To be published in
the Proceedings of that meeting.

Parnas, D. L., ~'Infor~ation Distribution
Aspects of Design Methodology ~, Proceedin551
of IFIP Congress 1971.

Parnas, D. L., On the Criteria to be Used in
Decomposing Syst~ss into Modules ~', Carnegie-
Mellon University Technical Report, to appear
in the Co~munications of the ACM (Programxning
Techniques Department).

Parnas, D. L., ~'A Technique for Software
Module gpecificatlon with Examples", to appear
in the C~nications of the A(~M (Programming
Techniques Deportment).

Wulf, W. A., '~Progra~ing Without the G0to",
Procee~f the IFIP Congress 1971.

Dijkstra, Z. W.~ Notes o~ Structured Program-
ming, Report of the Technical University of
Eindhoven.

[9]

[i0]

Dijkstra~ E. W., "Structured Frogra~=ning",
Software , edited by
~xton and Randall (available from ~TO,
Brussels).

in

Dijkstra~ g. W., ~A Constr~ctiv~ Approach ts
~he Proble~a of P~ozrg~ Correetne~ BIT 8
(1968)~ 174~186

[Ii] Parnas, D~ L.~ "TP~e Application of Modelli~g

[12 I

[13]

[14]

to System Development and Design." (invited pa-
i~e~), hlt erna t[ona i (]o~nli!~t i!~.__~m/ii~biu!~, ACM
~]uropean Chapters~ May].970, vol~ IV, 137-147~

Ga]ler, B. and Perlis, A. J,, A View of Pro-
~]:J!Z__~~, Addison Wesley, 1970.

Knuth, D. L. ~ The Art o f ~ ~ Pr0~yj_m Z
m~!~ume I - Fundamental ~_~orithm__~i ,
Addison Wesley~

Parnas~ D, L., "On the Use of Transition
Diagrams i.n the Design of a User Interface
for an Interactive Computer System", Pro-
ceedings - of the 1969 National ACM Conference,
379-386,

159

