The Arlane 5 Launcher Failure

©lan Sommerville 2004

June 4th 1996
Total failure of the

Ariane 5 launcher
on Its maiden
flight

Software Engineering Case Studies




Ariane 5

A European rocket designed to
launch commercial payloads
(e.g.communications satellites,
etc.) into Earth orbit

Successor to the successful
Ariane 4 launchers

Ariane 5 can carry a heavier
payload than Ariane 4

©Ian Sommerville 2004 Software Engineering Case Studies




L auncher failure

Approximately 37 seconds after a successful lift-off, the
Ariane 5 launcher lost control.

Incorrect control signals were sent to the engines and
these swivelled so that unsustainable stresses were
Imposed on the rocket.

It started to break up and was destroyed by ground
controllers.

The system failure was a direct result of a software
failure. However, it was symptomatic of a more general
systems validation failure.

©Ian Sommerville 2004 Software Engineering Case Studies




The problem

The attitude and trajectory of the rocket are
measured by a computer-based inertial reference
system. This transmits commands to the engines to
maintain attitude and direction.

The software failed and this system and the backup
system shut down.

Diagnostic commands were transmitted to the
engines which interpreted them as real data and
which swivelled to an extreme position resulting in
unforeseen stresses on the rocket.

©Ian Sommerville 2004 Software Engineering Case Studies




Software failure

e Software failure occurred when an attempt to
convert a 64-bit floating point number to a signed
16-bit integer caused the number to overflow.

There was no exception handler associated with
the conversion so the system exception
management facilities were invoked. These shut
down the software.

The backup software was a copy and behaved in
exactly the same way.

©Ian Sommerville 2004 Software Engineering Case Studies




Avoidable failure?

The software that failed was reused from the
Ariane 4 launch vehicle. The computation that
resulted in overflow was not used by Ariane 5.

Decisions were made

* Not to remove the facility as this could introduce new
faults;

Not to test for overflow exceptions because the
processor was heavily loaded. For dependabillity
reasons, it was thought desirable to have some
spare processor capacity.

©Ian Sommerville 2004 Software Engineering Case Studies




Why not Ariane 47

e [he physical characteristics of Ariane 4 (A
smaller vehicle) are such that it has a lower initial
acceleration and build up of horizontal velocity
than Ariane 5.

The value of the variable on Ariane 4 could never
reach a level that caused overflow during the
launch period.

©Ian Sommerville 2004 Software Engineering Case Studies




Validation failure

e As the facility that failed was not required for Ariane
9, there was no requirement associated with it.

e As there was no associated requirement, there were
no tests of that part of the software and hence no
possibility of discovering the problem.

During system testing, simulators of the inertial
reference system computers were used. These did
not generate the error as there was no requirement!

©Ian Sommerville 2004 Software Engineering Case Studies




Review failure

e The design and code of all software should be reviewed
for problems during the development process

e Either

 The inertial reference system software was not reviewed
because it had been used in a previous version;

The review failed to expose the problem or that the test
coverage would not reveal the problem;

The review failed to appreciate the consequences of system
shutdown during a launch.

©Ian Sommerville 2004 Software Engineering Case Studies




| essons learned

e Don’t run software in critical systems unless it is
actually needed.

e As well as testing for what the system should do,
you may also have to test for what the system
should not do.

Do not have a default exception handling
response which is system shut-down in systems
that have no fail-safe state.

©Ian Sommerville 2004 Software Engineering Case Studies




| essons learned

e In critical computations, always return best effort
values even if the absolutely correct values
cannot be computed.

Wherever possible, use real equipment and not
simulations.

Improve the review process to include external
participants and review all assumptions made in
the code.

©lan Sommerville 2004 Software Engineering Case Studies Slide 11




Avoidable failure

The designer’s of Ariane 5 made a critical and
elementary error.

They designed a system where a single
component failure could cause the entire system
to fail.

e As a general rule, critical systems should always
be designed to avoid a single point of failure.

©lan Sommerville 2004 Software Engineering Case Studies Slide 12




