Class Diagrams

Massimo Felici
Room 1402, JCMB, KB
0131 650 5899

mfelici@inf.ed.ac.uk

Class Diagrams

= support architectural design
* Provide a structural view of systems

= Represent the basics of

+ identify what classes there are, how they
interrelate and how they interact

* Capture the static structure of Object-Oriented
systems - how systems are structured rather than
how they behave

= Constrain interactions and collaborations
that support functional requirements

SEOC1 Lecture Note 05 2

Class Diagram Rationale

= Desirable to build systems quickly and
cheaply (and to meet requirements)

+ All required behaviour can be realized simply from
objects in the classes of the system

* The system consists of g collection of objects in
the implemented classes (e.g., there may be a GUI
coordinate human interaction with the other parts
of the system)

= Desirable to make the system easy to
maintain and modify

- The classes should be derived from the (user)
domain - avoid abstract object

* Classes provide limited support to capture system
behaviour - avoid tfo capture non-functional
requirements of the system as classes

SEOC1 Lecture Note 05 3

Class Diagrams in the Life Cycle

= They can be used throughout the
development life cycle

= Class diagram carry different information
depending on the phase of the development
process and the level of detail being
considered

*+ The contents of a class diagram will reflect this
change in emphasis during the development process

* Initially, class diagrams reflect the problem
domain, which is familiar to end-users

+ As develogmen’.r progresses, class diagrams move
towards the implementation domain, which is
familiar to software engineers

SEOC1 Lecture Note 05 4

Class Diagrams at a Glance

Class Diagram Basics
* classes and

Classes

* Basic Class Components
- Afttributes and Operations e

name 1 0.* | date

Class Relationships -

association N calcTax

¢ ASSOCiGTionS abs:ractdass/'__* Payment | 1 - Izl ! E::EIEI::Weight
+ Generalizations 1

- Aggregations and N S
Comp05|1.|ons seneralfzation —y lingitern | 1.7 €— Irlnwftfplfci:y

[[| OrderDetail I,."' Item < class name
° : l . Credit Cash Check quantity ¢ \ shippingyeight
ConSfrUCTlon l nvo Ves ¢ numbar cashTendered name taxStatus o.* 1. | description attributes
type bankiD
. expDate ca:c\?\?pTﬁttal | gemigeitor@uanity operations
] caltWeig gebiiely
Mo del l ng C I asses authorized Funorzed I\
navigability

Modeling
between classes and

Refining and elaborate as
necessary

SEOC1 Lecture Note 05 5

Objects and Object Classes

= Objects are entitiesina = Object classes are

software system which templates for objects. A
represent instances of description of a group of
real-world and system objects all with similar
entities roles in the system
" Objects derive from: what objects of the Cdlgg‘;ne
- Things: tangible, real-world know
objects, etc. define
- Roles: classes of actors in what objects of the class
systems, e.g., students, can do

managers, nurses, etc.

- Events: admission, " Object classes may

registration, matriculation, inherit attributes and
;TC- o | services from other
sneractions: meetings, object classes. They may

be used to create objects
SEOC1 Lecture Note 05 6

Objects and Object Classes

= An object is an entity that has a state and a
defined set of operations which operate on that
state. The state is represented as a set of object
attributes. The operations associated with the
object provide services to other objects (clients)
which request these services when some
computation is required.

= Objects are created according to some object
class definition. An object class definition serves
as a template for objects. It includes declarations
of all the attributes and services which should be
associated with an object of that class.

SEOC1 Lecture Note 05 7

Basic Class Compartments

seobt

Name

Attributes

represent the s’ra’re of an
object of the class

Are descriptions of the
structural or static features
of a class

Operations

define the way in which
objects may interact

Ofper'a’nons are descriptions
behavioral or' dynamic
features of a class

Note that the level of detail
known or displayed for
attributes and operations
depends on the phase of the
development process

Objects are instances of
lasses

/ Name

/
/
/

Employee

name: string

address: string
dateOfBirth: Date
employeeNo: integer
socialSecurityNo: string

Department: Dept S~

manager: Employee N -

Salary: integer
status: {current, left, retired}
taxCode: integer

join ()
leave ()

\ retire ()
¢hangeDetails ()

Lecture Note 05

\

\\ Attributes

-— s .

Operations

———J

Attributes and Operations

= <featureName>:<type>

= Type is the data type of the attribute or the data
returned by the operation

= Visibility: private (-), public (+) or protected (#)

» Attributes

Initial value, Derived Attribute, Multiplicity [m..n]

- Examples of Multiplicity: n.m - n fo m_instances; O.
zero or one instance; 0..* or * - no limit on the numbe
instances (including none). 1 - exactly one instance; 1.
least one instance

= Operations

* Parameters (passed by value or by reference), Method Note,
Grouping by Stereotype

* A Method Note captures the actual implementation of
operations

of
at

3

*

SEOC1 Lecture Note 05 9

Associations

Objects (classes) participate in
relationships with other objects (classes)

(binary or n-ary) relationships between
instances (i.e., objects) of classes

Associations
an attribute of an object is an associated
object
a method relies on an associated object

an instance of one class must know about
the other in order to perform its work

Passing messages and receiving responses

Associations may be annotated with
information

Name, Multiplicity, Role Name, Ends,
Navigation

SEOC1 Lecture Note 05

Employee Department

is-member-of

is-managed-by

manages

Manager

10

Generalizations

abstract class~

- Pavinent

amaount

generalization __ %

Credit

nurmber

type
expDate

Cash

Check

cashTendered

authorized

narme
hanklD

SEOC1

autharized

an inheritance link
indicating one class is a
superclass of the other,
the subclass

An object of a subclass
to be Used as a member
of the superclass

The behavior of the two
specific classes on
receiving the same
message should be similar

A generalization has a
triangle pointing to the
superclass

Payment is a superclass
of Cash, Check, and
Credit

Lecture Note 05 11

Generalizations continued

= Checking Generalizations

.]A;\f' class A is a generalization of a class B, then "Every B is an

= Design by Contract

* A subclass must keep to the contract of the superclass by:
ensuring operations observe the pre and post conditions on
the methods and that the class invariant is maintained

= Implementing Generalizations

- Java: creating the subclass by extending the super class
» Inheritance increases system coupling

* Modifying the superclass methods may require changes in
many subclasses

- Restrict inheritance to conceptual modeling

* Avoid using inheritance when some other association is more
appropriate

SEOC1 Lecture Note 05 12

Aggregations and Compositions

= Aggregations

+ are used to indicate that, as well as having

attributes of its own, an instance of one class may
consist of, or include, instances of another class

* are an association in which one class belongs to a

collection.

» have a diamond end pointing to the part containing

the whole.

= Compositions

SEOC1

* imply coincident lifetime. A coincident lifetime

means that when the whole end of the association
is created ('dele’red), the the part components are
created (deleted).

Lecture Note 05 13

Modeling by Class Diagrams

= Class Diagrams (models)

+ from a conceptual viewpoint, reflect the

requirements of a problem domain

* From a specification (or implementation)

viewpoint, reflect the intended design or
implementation, respectively, of a software system

= Producing class diagrams involve the
following iterative activities:

+ Find classes and associations (directly from the

use cases)

+ Identify attributes and operations and allocate to

classes

+ Identify generalization structures

SEOC1

Lecture Note 05 14

How to build a class diagram

= Design is driven by criterion of completeness either
of data or responsibility

* Data Driven Design identifies all the data and see it is
covered by some collection of objects of the classes of the
system

- Responsibility Driven Design identifies all the
responsibilities of the system and see they are covered by a
collection of objects of the classes of the system

. look at the use cases and identify a
noun phrase. Do this systematically and do not eliminate
possibilities

. those which are
redundant, vague, outside system scope, an attribute of the
system, efc.

= Validate the model...

SEOC1 Lecture Note 05 15

Common Domain Modeling Mistakes

Overly specific noun-phrase analysis

Counter-intuitive or incomprehensible class
and association names

Assigning multiplicities to associations too
soon

Addressing implementation issues too early:

* Presuming a specific implementation strategy
- Committing to implementation constructs
» Tackling implementation issues

Optimizing for reuse before checking use
cases achieved

SEOC1 Lecture Note 05 16

Class and Object Pitfalls

= Confusing basic class relationships (i.e., is-q,
has-aq, is-implemented-using)

= Poor use of inheritance

» Violating encapsulation and/or increasing coupling
» Base classes do too much or too little
* Not preserving base class invariants

+ Confusing interface inheritance with
implementation inheritance

» Using multiple inheritance to invert is-a

SEOC1 Lecture Note 05 17

VolBank: Early Class Diagram

Aadress

Wolunteer

Skl

e

SEOC1

hvi

“

B Eount

Transactian

<1

lab

Match

Individual

Wallrg

Heed

Debit

/

Auctivity

Lecture Note 05

Reading/Activity

= Please review the use of ArgoUML in the
generation of UML diagrams

* http://argouml.tigris.org/tours

SEOC1 Lecture Note 05 19

Summary

= Class Diagrams in the life cycle

= Class Diagram Rationale

= Classes

- Basic Class Components
- Attributes and Operations

= Class Relationships

- Associations
- Generalizations
- Aggregations and Compositions

= Modeling by Class Diagrams

+ How to build a class diagram
- Common domain modeling mistakes
» Class and Object Pitfalls

SEOC1 Lecture Note 05

20

