Software Engineering
with Objects and Components

Massimo Felici
Room 1402, JCMB, KB
0131 650 5899

mfelici@inf.ed.ac.uk

Administration
= Look at the SEOC! course webpage:

http://www.inf .ed.ac.uk/teaching/courses/seocl/

= Tutorials begin in week 3; Frequency: once a week; Maximum
12 people per tutorial group

= Course Resources:

Main Course Book: UML, Schaum's Outline Series, Simon Bennett,
John Skelton and Ken Lunn, McGraw-Hill, 2001, ISBN 0-07-
709673-8.

Lecture Notes and References
Software: Argo/UML and Java

= Coursework:

in small teams (approx 3-4 people);
two deliverables equally weighted
- 1s* deliverable: Monday, 315" October
- 2d deliverable: Monday, 5™ December
= Assessment:

25% coursework; 75% degree examination

SEOC1 Lecture Note O1 2

Software Engineering

= Software Engineering Institute (SEI)
motto:

The right software. Delivered defect free, on time
and ol cost, every time.

= Software Engineering studies:
* How to make software that is "fit for purpose’”.

- good enough - functionally, non-functionally, meets
constraints of the environment, law, ethics and work

practice.
* How to meet time and financial constraints on
delivery.
= We still fail too often
+ seea by Prof.

Thomas Hackle

SEOC1 Lecture Note 01 3

An Example: Patriot Missile

= Accident Scenario: On February 25, 1991,
during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabig,
failed to track and intercept an incoming
Iraqgi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers
and injuring around 100 other people.

= A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile
Defense: Software Problem Led to System
Failure at Dhahran, Saudi Arabia reported on the
cause of the failure.

SEOC1 Lecture Note 01 4

http://www.fas.org/spp/starwars/gao/im92026.htm

An Example: Patriot Missile continued...

= Fault: inaccurate calculation of the time since boot due to computer
arithmetic errors.

The time in tenths of second as measured by the system's internal clock was
multiplied by 1/10 to produce the time in seconds.

This calculation was }Jerformed using a 24 bit fixed point register. In
particular, the value 1/10, which has a non-terminating binary expansion, was
chopped at 24 bits after the radix point.

= Error: The small chopping error, when multiplied by the large
humber giving the time in tenths of a second, lead to a significant
error. Indeed, the Patriot battery had been up around 100 hours,

and an easy calculation shows that the resulting time error due to
the magnified chopping error was about 0.34 seconds.

the binary expansion of 1/10 is
0.0001100110011001100110011001100....

Now the 24 bit register in the Patriot stored instead
0.00011001100110011001100 introducing an error of

0.0é)OQOOOOOOOOOOOOOOOOOOOl 1001100... binary, or about 0.000000095
ecimal.

l
Mul‘r(ijpléing by the number of tenths of a second in 100 hours gives
0.000000095x%100x60x60x10=0.34.

SEOC1 Lecture Note 01 5

An EXG"’\plZ: Patriot Missile continued...

SEOC1

Failure: A Scud travels at
about 1,676 meters per
second, and so travels more
than 500 meters in this time.

This was far enough that the
incoming Scud was outside
the "range gate" that the
Patriot tracked.

Ironically, the fact that the
bad time calculation had been
improved in some parts of
the code, but not adll,
contributed to the problem,
since it meant that the
inaccuracies did not cancel.

Flgure Az Cnleulaten RANGa Gata £ile A pprémdmataly & Hoora

2 validalian
AR

. Tracke dctian « Sy Rarga Gabed
Pirstn of Beam Procossod

Flgueg 52 Incqrrpclly Calcdloted Rango Gota

Incorrect Calculation

Missia

4. Track Aeven - Only Rasse Gmed :
d

PutTien ¢l Baam Proscann

% Pairial Radar
s, §opr Syshom

Lecture Noie u1

An Example: Patriot Missile...conclusions

= Containing coding errors is very hard

+ seemingly insignificant errors result in major
changes in behaviour

= Original fix suggested a change in
procedures

* reboot every 30 hours - impractical in operation

= Patriot is atypical

- coding bugs rarely cause accidents alone

= Maintenance failure
» failure of coding standards and traceability

SEOC1 Lecture Note 01 7

The Pathology of Failure

- Senvice Servic
— Component & Interface Component B |.1,E;T”E
e | |
\ : i
ey g y
(L Fropagation \Propagaton ¢ | Eemal (oo (emonPropagaton. .|
=]
l'_. S WO pau Nemey S \or |
5 | |
e*‘g‘ni
-
Service status
of compenent A& orrect .
rrrrrrr alldr
Service stalus Caorre .
of componemtd ~~~~~ monies Fai

= Relationship between Faults, Errors and Failures

activation propagation) causation
o — fult > [ror > failure ——— = fault —»= ...

= The fundamental chain of dependability threats

SEOC1 Lecture Note 01

Other Case Studies - Readings

= Ian Sommerville. Software Engineering Case
Studies, 2004.

« The Ariane 5 Launcher Failure
« The London Ambulance frasco
* Airbus Flight Control System

» Medical Devices: The Therac-25

* Nancy Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995

SEOC1 Lecture Note 01 9

Software Engineering

= We will study the following
areas:

Software .Recﬁuir‘emems: the
activities involved in gaining an
accurate idea of what the Users
of the system want it to do.

Software Design: the design of
a system to meet the
requirements.

Software Construction: the
realisation of the designas a
program.

Software Testing: the process
of checking the code meets the
design.

Software Configuration,
Operation an aintenance:
major cost in the lifetime of
systems.

= These are the essential
activities

= How we deploy effort and
arrange these activities is part
of Software Engineering
Processes

SEOC1

(Rational) Unified Process - RUP

Workflows

Business Modeling
Reguirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Lecture Note 01

Phases
‘Inoaptiun” Elaboration H Construction

|| Transition ‘

: : o

PSS b= e

Const || Const | Const || Tran || Tran
| imital || #1 | Hab #2]] Const | Const | GO | Tion [Ty

Iterations

References

= Software Engineering

+ Ian Sommerville. Software Engineering. 7th Edition,
Addison-Wesley, 2004.

= Safety-critical Systems

* Nancy G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995

* Neil Story. Safety-Critical Computer Systems.
Addison-Wesley, 1996.

SEOC1 Lecture Note 01 11

Models Supporting SE

= UML provides a range of graphical notations
that capture various aspects of the
engineering process.

= Provides a common notation for various
different facets of systems.

= Provides the basis for a range of
consistency checks, validation and
verification procedures.

= Provides a common set of languages and
notations that are the basis for creating
tools.

SEOC1 Lecture Note 01 12

UML: Use Case Diagrams

communication

Used to support requirements

P
actor "% Y Capture and analysis

Fatient

Show the actors'’
Involvement in
System activities

SEOC1

K‘“‘— - Use case

Cancel Appointment %
% Scheduler
Fatient Make Appointment

Feguest Medication %

Coctor

Fay Bill

Clerk

Lecture Note 01 13

UML: Class Diagrams

/Cap'rur'e the static
structure of systems
associations between

ICustomer Order classes
name 1 0..*| date k /
address j‘ status
N association — calcSubTotal()
calcTax()
abstract class - |‘|-.* 1/ calcTotal()
caleTotalWeight
Payment ,nfgi O
amount _ ()
.-’E“‘, 1 generalization \, —— aggregation
&
L/ I)
role NAME —. line item [\1.-»)y._multiplicity
OrderDetail Item «}— class name
Cash Check Credit quantity shippingWeight b attributes
SN description
cashTendered | |[name number taxStatus *) 1] .
bankiD type calcSubTotal() 0.2/ C getPriceForQuantity()
authorized()| |expDate caleweight() getTax() «-{— operations
authorized() calcTax() inStock()
SEOC1 Lecture Note 01 14

UML: Sequence Diagrams

Capture how objects

aChain aHotel H :
object » Hotelchain Hots| interact to achieve a
oal
window g
LIzerinterface : I
I I
I I
tnakeReservation(:void | rakeR eservationf):void |
| ' |
fi==
t,_ fe== Wﬁtwﬂ'ﬁnn
ITIE'ESDQ-E'
*[far each day] isRoom=availabled:hoolean
conditi
[igﬁunmj] on aResenvation
Reseration
—h
\ A aNotice
— Confirmation
—h.
,_ﬂ\{/‘f creation Z__ |
activation bar Ty
MEE\\}‘ u

|| If a room is available for |

he delett - | each day ofthe stay, make I

< eletion o lifeline _g..| a reservation and send a |

| : canfirmation. :

SEOC1 Lecture Note 01 15

UML: Collaboration Diagrams

window:Userinterface

aChain:HotelChain

~ message

¥
{H O makeResenation o aid

object

aHotel:Hotel

i
hd

1.1.1.2[isRoom] —T=

Also capture interaction
between objects

%71 1.1 makeReservationvoid

- sequence number

aReservation:Reservation

-

itemt[lan

self link

1.1.1.2.1:

_[::,.

1.1.1 1 [for each day] isRoom:=available:boolean —1=

SEOC1

Lecture Note 01

aNotice:Confirmation

16

UML: Statechart Diagrams

Capture state change in
objects of the system

initial state

ICursarta 35M

& " Rejecting :
- Getting G5

CanceliQuit
— RetryiClear S50, PIM entries

event guard activity
5

¥
Fress Hey[kevt ta b]IDispEv ke

[notvalidliDisplay errar message subimit

AN

Fress tabh OF mowve cursor to PIM
fieldfCursar to PIM

Fress shift-tab OR mowve cursorto
S5 fieldiCursarto 35K

P i
- transition —

_— state

final state
/ " Geting FIN

/
i - - -
@5 Validating “|
alidiStart transaction | J0VAI08E BN and P'NJ submit —
" 7 action

Fress kev[key I= shift-tabl\Cisplay dot

SEOC1 Lecture Note 01 17

UML: Acﬂvufy Dlagr'ams

swamftme
— — .'lll __ __--"'\-\..\‘
¥
Custorner ATM Machine ‘Bank
<—— siart
Insert card
g activity
Enter pin % Authorize ~guard expression
branch ,L,
T —— [valid PIR] s | [Irvalid PIM]
C AR
-
{_ Check account balance :}
[balanee == amauni] \l/ [halance = amaunt]
k
f for
I { Debitaccount
(Take money fram slot __} join

v

Show balance

merge Ty

Eject card

-« end

Capture
the workflow
in a situation

SEOC1

Lecture Note 01

18

UML: Other Diagrams

Accounting =~ ————— %~ — — | Bank
M, \
: - \\, dependency
_| | _ (
Ul |—— == Ordering |— — — —3{ Shipping \'.I
o T/
/T L
i L L
package =-—— |
CustomerDB StockDB
[Package}
instance naome ---.,,HE .l:/__.,--' class name
mathStat:Department
math:DeEartmerrt
statistics:Department
appliedMath:Department mathEd:Department

SEOC1

node

3

Bank Server
| Y P —r——r—
==Databases> Mortgage Application
CustomerDB
n
_______ R
interface < IMartgageApplication
:
T
|
|
|
f
! arc -~
| -
TCRIP Buyerlnterface

Real Estate Server
Listing =«Storage==
— —» MultipleListings
L
~ component
IListing
=
-
-
- /*-.._5
L —— dependency
-
_ connection
e
TCRIP

[Componen‘r and Deploymenf}

Department

-degree String[]={"graduate" "undergraduate” "hoth"}

0.

subdepartment

Lecture Note 01

1

 Object |

19

Things to Do

= Read the other software engineering case studies.

= Read the Practical UML: A Hands-On Introduction for
Developers. The Borland intro to UML is a quick intro to UML.

= Buy the main course book:

UML, Schaum's Outline Series, Simon Bennett, John Skelton and Ken Lunn,
McGraw-Hill, 2001, ISBN 0-07-709673-8.

= Read chapters 1 and 2 of the UML book

= Further Readings:

Bertrand Meyer. Software Engineering in the Academy. In IEEE
Computer, May 2001, pp. 28-35.

A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of
Dependability. UCLA CSD Report no. 010028, LAAS Report no. 01-145,
Newcastle University Report no. CS-TR-739.

SEOC1 Lecture Note 01 20

http://homepages.inf.ed.ac.uk/mfelici/UML
http://homepages.inf.ed.ac.uk/mfelici/UML
http://homepages.inf.ed.ac.uk/mfelici/UML
http://homepages.inf.ed.ac.uk/mfelici/UML
http://www.inf.ed.ac.uk/teaching/courses/seoc1/2004_2005/resources/fund_concp_depend.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc1/2004_2005/resources/fund_concp_depend.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc1/2004_2005/resources/fund_concp_depend.pdf

	Software Engineering �with Objects and Components
	Administration
	Software Engineering
	An Example: Patriot Missile
	An Example: Patriot Missile continued…
	An Example: Patriot Missile continued…
	An Example: Patriot Missile…conclusions
	The Pathology of Failure
	Other Case Studies - Readings
	Software Engineering
	References
	Models Supporting SE
	UML: Use Case Diagrams
	UML: Class Diagrams
	UML: Sequence Diagrams
	UML: Collaboration Diagrams
	UML: Statechart Diagrams
	UML: Activity Diagrams
	UML: Other Diagrams
	Things to Do

