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Administration
= Look at the SEOC! course webpage:

http://www.inf .ed.ac.uk/teaching/courses/seocl/

= Tutorials begin in week 3; Frequency: once a week; Maximum
12 people per tutorial group

= Course Resources:

Main Course Book: UML, Schaum's Outline Series, Simon Bennett,
John Skelton and Ken Lunn, McGraw-Hill, 2001, ISBN 0-07-
709673-8.

Lecture Notes and References
Software: Argo/UML and Java

= Coursework:

in small teams (approx 3-4 people);
two deliverables equally weighted
- 1s* deliverable: Monday, 315" October
- 2d deliverable: Monday, 5™ December
= Assessment:

25% coursework; 75% degree examination
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Software Engineering

= Software Engineering Institute (SEI)
motto:

The right software. Delivered defect free, on time
and ol cost, every time.

= Software Engineering studies:
* How to make software that is "fit for purpose’”.

- good enough - functionally, non-functionally, meets
constraints of the environment, law, ethics and work

practice.
* How to meet time and financial constraints on
delivery.
= We still fail too often
+ seea by Prof.

Thomas Hackle
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An Example: Patriot Missile

= Accident Scenario: On February 25, 1991,
during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabig,
failed to track and intercept an incoming
Iraqgi Scud missile. The Scud struck an
American Army barracks, killing 28 soldiers
and injuring around 100 other people.

= A report of the General Accounting office,
GAO/IMTEC-92-26, entitled Patriot Missile
Defense: Software Problem Led to System
Failure at Dhahran, Saudi Arabia reported on the
cause of the failure.

SEOC1 Lecture Note 01 4



http://www.fas.org/spp/starwars/gao/im92026.htm

An Example: Patriot Missile continued...

= Fault: inaccurate calculation of the time since boot due to computer
arithmetic errors.

The time in tenths of second as measured by the system's internal clock was
multiplied by 1/10 to produce the time in seconds.

This calculation was }Jerformed using a 24 bit fixed point register. In
particular, the value 1/10, which has a non-terminating binary expansion, was
chopped at 24 bits after the radix point.

= Error: The small chopping error, when multiplied by the large
humber giving the time in tenths of a second, lead to a significant
error. Indeed, the Patriot battery had been up around 100 hours,

and an easy calculation shows that the resulting time error due to
the magnified chopping error was about 0.34 seconds.

the binary expansion of 1/10 is
0.0001100110011001100110011001100....

Now the 24 bit register in the Patriot stored instead
0.00011001100110011001100 introducing an error of

0.0é)OQOOOOOOOOOOOOOOOOOOOl 1001100... binary, or about 0.000000095
ecimal.

l
Mul‘r(ijpléing by the number of tenths of a second in 100 hours gives
0.000000095x%100x60x60x10=0.34.
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An EXG"’\plZ: Patriot Missile continued...

SEOC1

Failure: A Scud travels at
about 1,676 meters per
second, and so travels more
than 500 meters in this time.

This was far enough that the
incoming Scud was outside
the "range gate" that the
Patriot tracked.

Ironically, the fact that the
bad time calculation had been
improved in some parts of
the code, but not adll,
contributed to the problem,
since it meant that the
inaccuracies did not cancel.
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An Example: Patriot Missile...conclusions

= Containing coding errors is very hard

+ seemingly insignificant errors result in major
changes in behaviour

= Original fix suggested a change in
procedures

* reboot every 30 hours - impractical in operation

= Patriot is atypical

- coding bugs rarely cause accidents alone

= Maintenance failure
» failure of coding standards and traceability
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The Pathology of Failure
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= Relationship between Faults, Errors and Failures

activation propagation ) causation
o — fult > [ror > failure ——— = fault —»= ...

= The fundamental chain of dependability threats
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Other Case Studies - Readings

= Ian Sommerville. Software Engineering Case
Studies, 2004.

« The Ariane 5 Launcher Failure
« The London Ambulance frasco
* Airbus Flight Control System

» Medical Devices: The Therac-25

* Nancy Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995
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Software Engineering

=  We will study the following
areas:

Software .Recﬁuir‘emems: the
activities involved in gaining an
accurate idea of what the Users
of the system want it to do.

Software Design: the design of
a system to meet the
requirements.

Software Construction: the
realisation of the designas a
program.

Software Testing: the process
of checking the code meets the
design.

Software Configuration,
Operation an aintenance:
major cost in the lifetime of
systems.

= These are the essential
activities

= How we deploy effort and
arrange these activities is part
of Software Engineering
Processes

SEOC1

(Rational) Unified Process - RUP

Workflows

Business Modeling
Reguirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment
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References

= Software Engineering

+ Ian Sommerville. Software Engineering. 7th Edition,
Addison-Wesley, 2004.

= Safety-critical Systems

* Nancy G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995

* Neil Story. Safety-Critical Computer Systems.
Addison-Wesley, 1996.
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Models Supporting SE

= UML provides a range of graphical notations
that capture various aspects of the
engineering process.

= Provides a common notation for various
different facets of systems.

= Provides the basis for a range of
consistency  checks,  validation  and
verification procedures.

= Provides a common set of languages and
notations that are the basis for creating
tools.
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UML: Use Case Diagrams

communication

Used to support requirements

P
actor "% Y Capture and analysis

Fatient

Show the actors'’
Involvement in
System activities

SEOC1

K‘“‘— - Use case

Cancel Appointment %
% Scheduler
Fatient Make Appointment

Feguest Medication %

Coctor

Fay Bill

Clerk
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UML: Class Diagrams

/Cap'rur'e the static
structure of systems
associations between

ICustomer Order classes
name 1 0..*| date k /
address j‘ status
N association — calcSubTotal()
calcTax()
abstract class - |‘|-.* 1/ calcTotal()
caleTotalWeight
Payment ,nfgi O
amount _ ()
.-’E“‘, 1 generalization \, —— aggregation
&
L/ I )
role NAME —. line item [\1.-»)y._multiplicity
OrderDetail Item «}— class name
Cash Check Credit quantity shippingWeight b attributes
SN description
cashTendered | |[name number taxStatus *) 1 ] .
bankiD type calcSubTotal( ) 0.2/ C getPriceForQuantity( )
authorized( )| |expDate caleweight( ) getTax() «-{— operations
authorized( ) calcTax() inStock()
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UML: Sequence Diagrams

Capture how objects

aChain aHotel H :
object » Hotelchain Hots| interact to achieve a
oal
window g
LIzerinterface : I
I I
I I
tnakeReservation(:void | rakeR eservationf):void |
| ' |
fi==
t,_ fe== Wﬁtwﬂ'ﬁnn
ITIE'ESDQ-E'
*[far each day] isRoom=availabled:hoolean
conditi
[igﬁunmj] on aResenvation
Reseration
—h
\ A aNotice
— Confirmation
—h.
,_ﬂ\{/‘f creation Z__ |
activation bar Ty
MEE\\}‘ u

|| If a room is available for |

he delett - | each day ofthe stay, make I

< eletion o lifeline _g..| a reservation and send a |

| : canfirmation. :
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UML: Collaboration Diagrams

window:Userinterface

aChain:HotelChain

~ message

¥
{H O makeResenation o aid

object

aHotel:Hotel

i
hd

1.1.1.2[isRoom] —T=

Also capture interaction
between objects

%71 1.1 makeReservationvoid

- sequence number

aReservation:Reservation

-

itemt[lan

self link

1.1.1.2.1:

_[::,.

1.1.1 1 [for each day] isRoom:=available:boolean —1=

SEOC1
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UML: Statechart Diagrams

Capture state change in
objects of the system

initial state
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P i
- transition —

_— state
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/ " Geting FIN

/
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alidiStart transaction | J0VAI08E BN and P'NJ submit —
" 7 action

Fress kev[key I= shift-tabl\Cisplay dot
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UML: Acﬂvufy Dlagr'ams

swamftme
— — .'lll __ __--"'\-\..\‘
¥
Custorner ATM Machine ‘Bank
<—— siart
Insert card
g activity
Enter pin % Authorize ~guard expression
branch ,L,
T —— [valid PIR] s | [Irvalid PIM]
C AR
-
{_ Check account balance :}
[balanee == amauni] \l/ [halance = amaunt]
k
f for
I { Debitaccount
( Take money fram slot __} join

v

Show balance

merge Ty

Eject card

-« end

Capture
the workflow
in a situation
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UML: Other Diagrams
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Things to Do

= Read the other software engineering case studies.

= Read the Practical UML: A Hands-On Introduction for
Developers. The Borland intro to UML is a quick intro to UML.

= Buy the main course book:

UML, Schaum's Outline Series, Simon Bennett, John Skelton and Ken Lunn,
McGraw-Hill, 2001, ISBN 0-07-709673-8.

= Read chapters 1 and 2 of the UML book

= Further Readings:

Bertrand Meyer. Software Engineering in the Academy. In IEEE
Computer, May 2001, pp. 28-35.

A. Avizienis, J.-C. Laprie and B. Randell, Fundamental Concepts of
Dependability. UCLA CSD Report no. 010028, LAAS Report no. 01-145,
Newcastle University Report no. CS-TR-739.
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