
.

n his essay,Ed Yourdon expresses,justifies,and leaves unresolved two well-

founded questions:What is the future of software? What does the future

hold for the software professional? His prognosis is evasive, incomplete,

and unsatisfying:the future will be good for some,not so for others.

Given Yourdon’s extensive experience in the real world of computer usage, as

proven by the problems he has observed, it is easy to see why he feels that soft-

ware’s future is uncertain. But he does not point to a solution to this uncertainty,

nor does he indicate what can be done to achieve the best possible outcome for

software professionals.More importantly,Yourdon’s analysis does not indicate what

should be done to ensure the security,well being,and survival of society,which de-

pends increasingly on software.

For more than a decade now,there have been those in the software engineering

community who have accepted that the need to continually change and evolve

software is a fact—a fact addressed through activity that is planned,executed,and

controlled by humans.Thus,the software development and maintenance processes,

which I prefer to unify and call software evolution,1 are key to managing comput-

erization. In my view it is key to our survival in this computer age.

M.M. Lehman, Imperial College, London

Software’s Future:
Managing Evolution

Only  by  acknowledging  change  as  a  constant  in  our  indust r y  can
we success fu l ly  negot iate  the  cha l lenges  we face  and ensure  our
cont inued sur v iva l  in  th i s  computer  age.

I

4 0 I E E E  S o f t w a r e J a n u a r y – F e b r u a r y  1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0  ©  1 9 9 8  I E E E]



WHERE ARE WE? 

Society is growing ever more dependent on com-
puters and, therefore, on software. As more and more
individual and organizational activities involve com-
puters, both society’s software dependency and the
interdependency among users increases more than
linearly. This creates internal and external pressures
and should change the way software development is
assessed, planned, and managed.

Internal affairs
Applications are becoming ever more extensive and

critical. Ever larger organizational units are partially, at
least, subject to common control. Individual software
systems are growing rapidly in functionality,behavioral
complexity,size,and structural complexity.Software re-
flects organizational and individual
behavior in ever greater detail.

As organizations increase their
exploitation of computer technol-
ogy,integration becomes the order
of the day.Previously independent systems merge and
are made to communicate with—and in some cases
control—each other. Despite this, they must remain
compatible with established processes and practices.
Coupling—both within the system and between the sys-
tem and users—is initially loose,but inevitably becomes
tighter and more intimate with time.Moreover, in spec-
ifying new applications, seeking mergers, and integrat-
ing already operational systems, developers must im-
pose bounds on both the applications and the extent
and details (bells and whistles) of their operational do-
main.This results in restrictions that become the source
of bottlenecks and irritants,both in themselves and be-
cause they result in a need for manual intervention when
mechanized functions are insufficient or incomplete.

The consequence is that users experience frustra-
tion, growing ambition, and increasing interdepen-
dence in the operating environment that leads to pres-
sure for change and unification. Such unification can
never be complete.There is inevitable and irresistible
pressure for change on an ever more extensive scale.
To achieve this reliably,economically,and promptly re-
quires deep insight by users and developers into the
characteristics of the application in its operational do-
main and into the solutions to be employed and their
wider impact.

External forces
There are also exogenous pressures originating in

the operational domain. Sometimes—as exemplified
by Yourdon’s discussion of the millennium problem—
such pressures may be unavoidable once they arise.
They could, however, have been avoided, if the activi-
ties I discussed later had been common practice.

Other external pressures result from policy deci-
sions that take little if any note of the wider IT impact.

The political decision to adopt the Euro currency is one
such example.Other pressures include those resulting
from technological changes whose exploitation re-
quires software adaptation. One example is the ex-
tension of telephone number codes resulting from the
explosion in telecommunication usage. Pressure to
change can also come from flawed system design de-
cisions or implementations, such as the European
Space Agency’s Arianne 5 flight 501 rocket disaster.2

Whatever the source of the problem, the result is
the same:frustration,expense,even disaster, followed
by an urgent need for software change. And if these
were not enough,there is always the demand for more
detail to make software more responsive to people’s
needs,to the changing domain,and to changing tech-
nological, legal, and economic requirements.The op-
portunities offered by design and implementation are

equally limitless. Exploiting this multidimensional
unboundedness is an inevitable consequence of
computer usage. Facts of life such as these lead to an
unending process of software change,enhancement,
and evolution,the unending sequence of releases with
which we are all familiar.

SOFTWARE IN THE REAL WORLD

In structure, content, and functionality software
systems are by far the most complex artifacts we have
ever created. Software itself is a model of the appli-
cation, its participants (human and mechanical), the 
operational domain, and activities in that domain.
The entire universe constitutes the domain, even
though many of its elements and properties may
appear irrelevant in the context of the application as
it is at the time of conception, development, and
installation of the system. And this domain is essen-
tially unbounded: it is, in fact, countably infinite in at
least three dimensions.

Danger of assumptions
The problem of apparently irrelevant detail subse-

quently becoming significant is beautifully illustrated by
the case of the recently constructed CERN particle accel-
erator.The new machine had twice the diameter of its
predecessor. It was put into operation using control and
interpretation software transferred from its predecessor.
The results were dismal. They varied from day to day,and
even previously successful results could not be repro-
duced. It was only when someone noticed an apparent
correlation between the variations and the moon’s
phases that realization struck:The previously justified 
assumption—that the moon was outside the selected

J a n u a r y – F e b r u a r y  1 9 9 8 I E E E  S o f t w a r e 4 1]

.

There is inevitable and irresistible pressure for
change on an ever more extensive scale.



bounds of the operational domain and its gravitational
pull was too small to be of consequence—turned out to
be invalid when new circumstances (a larger accelerator)
arose.There was no choice but to modify all the software
to account for the new circumstance.

E-type software is defined as software that ad-
dresses some real-world application, problem, or ac-
tivity in some real-world domain.3 Such software is an
artifact created by humans in finite time,is represented

by finite sequences,is developed by creators who gen-
erally have only limited understanding of the intended
application and its real-world domains,and is executed
in a system with finite storage capacity.The software is,
of necessity, both finite and incomplete. It is a finite
and incomplete model of an unbounded application
in an unbounded operational domain.

To further complicate matters, the executing pro-
gram becomes part of the application and its domain.
It must contain a model of itself, of its own operation.
In a finite domain (model), that is logically impossible.
This intrinsic limitation in the software’s ability to take its
own behavior in the operational domain into account is
another source of imprecision and incompleteness.
Every E-type program is essentially incomplete.

Bridging the gap
There is, therefore, always a gap between the

bounded system and the unbounded application in
its unbounded domain. This gap is bridged by as-
sumptions that are embedded in the software in var-
ious ways, in the choice of algorithms,values for para-
meters, sequencings, and so on. System selection,
specification,design,and implementation also involve
numerous assumptions. Some of these assumptions
will be made explicitly,during requirements selection
for example. Others will be implicit, a consequence of
adopting a theory, designing an algorithm, selecting
a procedure, defining an interface, setting limits, or
even in deciding to use two digits to represent years
(whence the millennium problem) and so on. The
sources and nature of the assumptions are countless
(I have estimated that a typical program has about one
real-world assumption for every 10 lines of code).
Some of these assumptions will remain valid through-
out the system’s life; others will be invalidated by sub-
sequent changes in the application or its operational
domain. Still others will fall somewhere in-between:
valid in some circumstances,but leading to unaccept-
able results or behavior in others.Such invalidity gen-
erally remains undetected until a problem arises or a
disaster such as Arianne 5 flight 501 occurs.2

Management challenge
Software systems are static unless and until hu-

mans change them.Software cannot,of itself,adapt to
external change. Only where humans anticipate
change and incorporate a correct adaptation mecha-
nism into the executable code can software be self-
adaptive.Code can be made flexible only to the extent
that programmers specifically recognize uncertainty
or a possibility of change and incorporate the appro-
priate tolerance, responsiveness, and switchable new
mechanisms into the system’s logic and its textual im-
plementation.One incorrect bit among tens of millions
can cause misbehavior, failure, or, in extreme cases,
disaster.But the universe and the operational domains
therein are continually changing. Hence, the gap be-
tween the domain and its software model tends to
grow.The gap can be kept satisfactorily small only by
ceaseless maintenance.

The challenge to keep relative parity between a
system and its operational domain, despite antici-
pated changes, increases as our dependence on com-
puters grows.The penalty for failure increases as well.
These observations are not new; they were first rec-
ognized in the late ’60s.4 However, given that the
problem—the range, extent, and criticality of com-
puter application—and the concomitant threat to
humanity continue to grow, we must raise the ques-
tion: In the light of the facts outlined here, how shall
we manage computerization and the planning, de-
velopment,and use of appropriate computer systems
and their software?

RECOMMMENDATIONS:
THE WAY FORWARD

From about 1989 onward, formal process model-
ing has been widely viewed as a key to managing
the inevitable changes we face.5,6 But, as evidenced
by Yourdon’s essay in this issue, it is widely recog-
nized that neither modeling nor formalism have
solved the problems.

Recently I suggested7 that a phenomenon first rec-
ognized in 19728 could be invoked to explain the major
difficulties encountered in producing and maintaining
software and in improving the software process. The
FEAST (feedback, evolution, and software technology)
hypothesis formalizes this observation as follows:

The software process constitutes a multilevel,
multiloop feedback system and must be treated
as such if major progress in its planning, control,
and improvement is to be achieved.

Process is used here in its broadest sense to include
any activity that influences its outcome. It encom-
passes, therefore, not only the activities of technical
personnel but also those of, for example, manage-
ment (from line managers to organizational execu-

4 2 I E E E  S o f t w a r e J a n u a r y – F e b r u a r y  1 9 9 8]

.

Software systems are 
static unless and until 
humans change them.



tives), marketing and sales personnel, user support,
and users. All have an impact on the process. All are
sources of feedback information and subject to feed-
back control. All must be considered when develop-
ing process models—models that must include infor-
mation flow paths and feedback mechanisms if they
are to support process evaluation and improvement.

Recognition and treatment of the software process
as a feedback system is, at present, the exception
rather than the rule in the process and improvement
communities. However, first results of the FEAST/l 
project9-11 confirm my observations and conclusions
from the 1970s,12 suggesting once again that,among
other things, mastering and exploiting the feedback
phenomenon may be key to help solve the problems
Yourdon outlines. But it must not be seen as the final
solution to these problems, merely as a tool to help
identify solutions.

Projects such as FEAST/1 are opening up new ap-
proaches to understanding what is involved in com-
puterization and how you might cope more effectively
with the challenges raised by the application of infor-
mation technology. A brief, unordered list of some
guiding principals for avoiding problems such as those
Yourdon described follows. A more systematic and
complete account must await another opportunity.

♦ When introducing or expanding computer sup-
port, its wider impact must be considered.It is not suf-
ficient to simply consider an application’s effectiveness
or its economic benefit in a local domain.

♦ Application and domain boundaries must be
identified from the start. Such decisions should be
recorded in a structured fashion that also displays
the recognized dependencies and relationships be-
tween them.

♦ It must be recognized and accepted that such
bounds will change and expand with time,experience,
and indigenous and exogenous change.Changeability
is a necessary attribute of software architectures, de-
signs, and implementations.

♦ Thus, as development proceeds, boundaries
must be updated to reflect an inevitable increase in
understanding, the implications of the emerging de-
sign and implementation,and the anticipated impact
on and of the user.

♦ Bounds definitions must be reviewed regularly,
both during and after development,to ensure contin-
uing satisfaction as circumstances change.

♦ At all stages of definition, design, and develop-
ment, attempts must be made to recognize, capture,
and record assumptions,whether explicit or implicit, in
design and implementation decisions,as must any de-
pendencies and relationships between them.Such as-
sumptions relate not only to technical and manage-
ment matters, but to the reactions of users, to a
program’s impact on the operational domain, to eco-
nomic and societal factors, and so on.

♦ Assumptions must be recorded (preferably in

machine-processable form) in a structured fashion to
simplify the inspection and identification of any that
may have become of questionable validity.

♦ Both the bounds and assumptions records
should contain indications of the likelihood of future
application or domain changes,and of change drivers,
to guide and limit the review process.

♦ Assumptions must be regularly reviewed both
during implementation and after the system enters
service to ensure continuing validity.

♦ In the same way that the embedded assump-
tions and code are updated so they remain consis-
tent with the world, application models, the opera-
tional domain, and the solution prescriptions must
also be updated.

♦ Whenever bounds change, assumptions must
be reviewed.

♦ When considering or implementing tight or
loose couplings between separate applications sys-
tems or system elements, their bounds and assump-
tion lists must be reviewed in their joint contexts and
domain-wide implications identified and acted upon.

♦ Proposed changes to a software system must be
examined in relation to the existing bounds and as-
sumption set to avoid incompatibility or other unde-
sirable side effects.

♦ Proposed process changes, at whatever level,
must be examined and assessed in relation to their
global and local impact. This requires, among other
things, knowledge and understanding of any associ-
ated  feedback loops.

♦ In introducing or modifying management
controls, assessment of the global impact of the
change must take the global process, its feedback
mechanisms, and their global impact into account.

♦ Software architectures that minimize the inter-
dependence of units (modules, components, subsys-
tems,and so on) must be developed.You might,for ex-
ample, develop system structures that are composed
from software units defined by their behavior rather
than assemble the system from procedure-oriented
elements.13,14

♦ Wherever possible, system elements should
serve the user directly rather than providing data for
further processing by other elements.The concept is to
build software systems by assembling functionally in-
dependent units, in much the way hardware systems
are assembled.

♦ System safety and security must be addressed
at the system level (both hardware and software).
Physical systems can be made safe; E-type software is
intrinsically uncertain and cannot be made safe.

J a n u a r y – F e b r u a r y  1 9 9 8 I E E E  S o f t w a r e 4 3]

.

Treatment of the software process as
a feedback system is the exception
rather than the rule.



S ome of these practical suggestions may be di-
rectly adopted,others require research or devel-

opment.Unquestionably,much work must be done to
apply them systematically, economically, and, above
all, reliably. But in all cases, I believe the underlying
technology is within our grasp.Those who take these
facts,attitudes,and principles to heart can expect con-
tinued prosperity in their development and the main-
tenance of satisfactory computer systems.Those who
do not will likely face the worst of all times.The ideas I
presented here, however briefly, indicate some an-
swers to the question implicit in Yourdon’s essay.

With its ever-increasing dependence on comput-
ers, the world’s future will be bright or disastrous. It is
the software engineering community’s responsibility
to ensure the former. I believe that the material pre-
sented contains seeds of a solution. ❖

REFERENCES
1. M.M. Lehman, V. Stenning, and W.M. Turski, “Another Look at

Software Design Methodology,” ICST DoC Res. Rep. 83/13,
June 1983; see also Software Eng. Notes, Apr. 1984, pp. 38-53.

2. “Flight 501 Failure,” Arianne 501 Inquiry Board Report, European
Space Agency, Paris, 19 July 1996.

3. M.M. Lehman and L.A. Belady, Program Evolution—Processes of
Software Change, Academic Press, San Diego, Calif., 1985, p. 522.

4. P. Naur and B. Randell, “Software Engineering—Report on a
Conference,” Scientific Affairs Division, NATO, Brussels, 1969,
p. 231.

5. Representing and Enacting the Software Process, Proc. 4th Int’l
Proc. Workshop, C. Tully, ed., IEEE Comp. Soc. Press, Los
Alamitos, Calif., 1989.

6. L. Osterweil, “Software Processes are Software Too, Iteration in
the Software Process,” Proc. 3rd Int’l Proc. Workshop, IEEE
Comp. Soc. Press, Los Alamitos, Calif., 1987, pp. 79-80.

7. M.M. Lehman, “Feedback in the Software Evolution Process,”
Proc. Information and Software Technology, Special Issue on
Software Maintenance, Elsevier, Amsterdam, 1996, pp. 681-686.

8. L.A. Belady and M.M. Lehman, “An Introduction to Program
Growth Dynamics,” in Statistical Computer Performance
Evaluation, W. Freiburger, ed., Academic Press, New York,
1972, pp. 503-511.

9. M.M. Lehman and V. Stenning, “FEAST/1—Feedback,
Evolution, and Software Technology; Case for Support,” (UK)
Engineering and Physical Sciences Research Council Research
Proposal, Nov. 1995/March 1996, p. 11; available from
http://www-dse.doc.ic.ac.uk/~mml/.

10. M.M. Lehman et al., “Metrics and Laws of Software Evolution—
The Nineties View,” Proc. Metrics ‘97, IEEE Comp. Soc. Press, Los
Alamitos, Calif., 1997.

11. M.M. Lehman, “Process Models—Where Next?,” Proc. ICSE 19,
IEEE Comp. Soc. Press, Los Alamitos, Calif., 1997, pp. 549-552.

12. L.A. Belady and M.M. Lehman, “An Introduction to Growth
Dynamics,” Proc. Conf. on Statistical Computer Performance
Evaluation, Academic Press, 1972, pp. 503-511.

13. M.M. Lehman, “The Funnel, A Software Unit or Function
Channel,” IBM Patent Disclosure P08-76-002, 31 Dec. 1975, p.
8; copies available from the author.

14. W.M. Turski, “Specification as a Theory with Models in the
Computer World and in the Real World,” P. Henderson, ed.,
System Design, Infotech State of the Art Report, Infotech,
London, 1981, pp. 363-377.

Address questions about this article to Lehman at the
Department of Computing, Imperial College of Science,
Technology and Medicine, London SW7 2BZ; +44 171 594
8214; fax  +44 171 594 8215 or 44 171 581 8024;
mml@doc.ic.ac.uk; http://www-dse.doc.ic.ac.uk/~mml/.

4 4 I E E E  S o f t w a r e J a n u a r y – F e b r u a r y  1 9 9 8]

.

Meir M. (Manny) Lehman is an emeritus
professor and senior research fellow in
the Department of Computing at
Imperial College in London. He has
worked previously for IBM Research,
Yorktown Heights, where he established
and led a team to architect and design
the IMP parallel processing system. He

also investigated IBM’s programming process, publishing a
report on his findings, “The Programming Process,” in 1969.
Prior to his work at IBM, Lehman worked in the Scientific
Department of the Israeli Ministry of Defense, where he led a
small team in the design and construction of the SABRAC digi-
tal computer. His study of the evolution of OS/360 and other
systems, along with his previous programming process study,
led to recognition of the software process as a feedback sys-
tem, his formulating the laws of software evolution, and the
concepts of software process dynamics. He joined the staff of
Imperial College in 1972. He has served as the Head of the
Department of Computing and established and served as
chair and director of Imperial Software Technology Ltd (IST).

Lehman received his BSc in mathematics from Imperial
College, The University of London. He then began research at
Imperial designing the ICCE II arithmetic unit  for which he re-
ceived a PhD and a DSc from the University of London. He was
elected a fellow of the IEEE in 1985 and to the Royal Academy
of Engineering in 1989.

About the Author


