
focussoftware patterns

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 5 9

Developers can use that knowledge to solve
what appears to be a new problem with a
tried-and-true solution, thus improving the
design of new software.

Recently, the word “pattern” has become
a buzzword, and the implicit definition of
the pattern concept has become less precise.
Defining patterns is tricky, because they are
not bound by prescriptive formal defini-
tions. Rather, it is consensus about the exis-
tence of particular patterns in a range of ex-
isting software that validates them. Yet we
still need to develop our understanding of
patterns at a theoretical as well as practical
level if we are to identify them, use them
well, and distinguish them from similar-
seeming nonpatterns that are described in a
pattern-like style.1 We must address this
lack of clarity if the pattern concept is to re-
tain its force.

For example, many authors agree that

Mediator (an object acting as a go-between
for communication between other objects)
is a pattern.1,2 But what about algorithms
such as Bubblesort and programming tech-
niques such as Extend by Subclassing? On a
larger scale, could idiomatic styles of system
organization such as Pipe and Filter (pipes
connect filters; filters read data from input
streams, transform it, and produce data on
output streams)3 represent patterns? And
what about activities other than program or
system design? For example, HotDraw pat-
terns tell HotDraw framework users how to
assemble HotDraw components to con-
struct a drawing editor4—but are they really
patterns?

We propose a list of essential characteris-
tics of patterns. Such a list cannot provide a
definitive test for pattern-ness: given a pat-
tern-like entity that exhibits the essential
characteristics, we cannot say that it is defi-

Is This a Pattern?
Tiffany Winn and Paul Calder, Flinders University of South Australia

“Pattern” is an often
misused buzzword,
perhaps because
patterns do not lend
themselves to
prescriptive, formal
definitions. To help
software designers
understand, use,
and write better
patterns, the
authors propose a
set of essential
characteristics that
can serve as a test
for “pattern-ness.”

W
ithin a given domain, what might appear to be very different
problems are often the same basic problem occurring in dif-
ferent contexts. A software design pattern identifies a recur-
ring problem and a solution, describing them in a particular

context to help developers understand how to create an appropriate solu-
tion. Patterns thus aim to capture and explicitly state abstract problem-solv-
ing knowledge that is usually implicit and gained only through experience.

nitely a pattern. However, we suggest that
any entity that does not exhibit any one or
more of the essential characteristics is not a
pattern.

What, then, are the essential characteris-
tics of patterns? We have identified nine,
each of which is underpinned by the prem-
ise that patterns are generative. Architect
Christopher Alexander explains,

Once we understand buildings in terms of
their patterns, we have a way of looking at
them which makes all buildings, all parts of a
town similar. … We have a way of under-
standing the generative processes which give
rise to these patterns.5

[A pattern] is both a process and a thing; both
a description of a thing which is alive, and a
description of the process which will generate
that thing.5

In other words, a pattern does more than
just showcase a good system’s characteris-
tics; it teaches us how to build such systems.

1. A pattern implies an artifact
Understanding a pattern means having

some sort of picture of the “shape” of the po-
tential artifacts being described. For a piece
of software, understanding its shape means
understanding

� at the big-picture level, how the soft-
ware works; and

� at the design level, the relationships that
the software attempts to capture.

James Coplien put it this way:

I could tell you how to make a dress by specify-
ing the route of a scissors through a piece of
cloth in terms of angles and lengths of cut. Or, I
could give you a pattern. Reading the specifica-
tion, you would have no idea what was being
built or if you had built the right thing when
you were finished. The pattern foreshadows the
product: it is the rule for making the thing, but
it is also, in many respects, the thing itself.6

Explaining how to make a dress by spec-
ifying a scissors’ route through a piece of
cloth is like telling programmers how to
write a program by handing over a piece of
assembly code. The assembly code might
solve the problem, but is unlikely to give
them any idea of what they are building.

Nor does it give them a means to evaluate
their solution’s correctness or usefulness. All
they can do is rote-copy the given assembly
code or work in a higher-level language and
compare the assembly code produced with
that suggested.

Using a dress pattern to make a dress is
like using a design pattern to write a piece
of software. The design pattern does not
just show how to create the code at a line-
by-line level. It also captures the program’s
key overall structure at a higher level, in a
more physical or spatial sense.

Coplien’s dress pattern example, flow
charts and other graphical representations
of standard algorithms, and the structural
diagrams provided in pattern catalogs7 all
highlight the important role of pictures in
providing big-picture understanding. Algo-
rithms are often best explained with a com-
bination of text, sample code, and pictures.
In the case of Bubblesort, for example, a
picture can highlight “lighter” elements
“bubbling up” and “heavier” ones “sinking
down” as the sort operates. Having gained
such big-picture understanding, program-
mers can better adapt sample code to their
specific needs, instead of needing to literally
copy or translate the given sample code to
use it.

In this respect, software patterns are the
same as Alexander’s architectural patterns.
If a proposed software pattern cannot be
drawn, it does not embody a physical un-
derstanding of a software artifact’s structure
and therefore is not a pattern.

2. A pattern bridges many levels of
abstraction

A pattern is neither just a concrete, de-
signed artifact nor just an abstract descrip-
tion. Rather, it incorporates design informa-
tion at many abstraction levels, from sample
code to big-picture structure diagrams. A
pattern facilitates the progression from a
vague idea of “I need some software to do
this kind of task” to the actual software it-
self. It also facilitates standing back from a
piece of software and analyzing it at more
general levels of design. So, a pattern
bridges different abstraction levels and
thinking about a problem and its solution.

Robert Floyd illustrates what it means to
bridge, or link, different abstraction levels
in the context of teaching programming:

Using a dress
pattern to make
a dress is like
using a design

pattern to write
a piece of
software.

6 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

If I ask another professor what he teaches in
the introductory programming course, whether
he answers proudly “Pascal” or diffidently
“FORTRAN,” I know that he is teaching a
grammar, a set of semantic rules, and some
finished algorithms, leaving the students to
discover, on their own, some process of design.
Even the texts based on the structured pro-
gramming paradigm, while giving direction at
the highest level, what we might call the
“story” level of program design, often provide
no help at intermediate levels, at what we
might call the “paragraph” level.8

Linking different abstraction levels means
helping designers make connections between
different design levels, such as the story, para-
graph, sentence, and word levels. For a par-
ticular problem, you could include a general
overview at the story level, a flowchart de-
tailing control flow at the paragraph level, al-
gorithms at the sentence level, and sample
code at the word level. The flowchart and al-
gorithm, for example, work together to help
link idea with implementation, and general
overview with sample code. In Floyd’s case,
he teaches what he calls a standard paradigm
for interactive input—prompt-read-check-
echo—together with relevant algorithm and
sample code, rather than simply providing
sample code and leaving students to work
out the general paradigm themselves.

Design aids such as patterns should
bridge different design levels because a de-
signer’s understanding of a problem evolves
as the solution develops:

The most common information needs in the
early stages of development are ill-defined—
users don’t know how to solve a problem or
where to look for a solution. … As the design
unfolds, the designer’s understanding of the
problem and potential solutions improves, and
he refines and elaborates the problem defini-
tion until a satisfactory design emerges.9

[The designer’s] information needs change as
the problem context evolves.9

It is important, therefore, to develop de-
sign aids that help people move gradually
from an initial, general understanding of a
problem to a more in-depth one. Further,
that ability to link different levels of thinking
about a design is critical to knowledge reuse,
and knowledge reuse is a key to good design.

The challenge in software reuse is not so

much to do more of it, but to recognize
which reuse is worth doing: “The challenge
in reusability is to express the fragmentary
and abstract components out of which com-
plete programs are built.”10 All designers,
whether consciously or unconsciously, reuse
knowledge by learning from their own and
others’ experience. Design patterns facilitate
knowledge reuse by capturing implicit and
abstract knowledge in a form that lets a
range of people share and use it. But de-
signers also need to link abstraction levels
to reuse knowledge. They need to recognize
and abstract from useful similarities, at pos-
sibly any abstraction level, between their
own context and another’s.

Floyd said it like this:

I believe it is possible to explicitly teach a set of
systematic methods for all levels of program de-
sign, and that students so trained have a large
head start over those conventionally taught en-
tirely by the study of finished programs.8

[You should] identify the paradigms [patterns]
you use, as fully as you can, then teach them
explicitly. They will serve your students when
Fortran has replaced Latin and Sanskrit as the
archetypal dead language.8

Design patterns do not just present fin-
ished programs. They also identify the par-
adigm or pattern underlying that program.
This facilitates software designers’ recogni-
tion of the pattern and hence their ability to
abstract from their own and other contexts
and reuse knowledge.

3. A pattern is both functional and
nonfunctional
Functional issues deal with possibility; they
determine what decisions could be (or were)
made in a particular context. Nonfunctional
issues deal with feasibility; they address a
particular decision’s desirability in a particu-
lar context, or the reasons the decision was
made. Nonfunctional issues are critical to
good design because they help designers bal-
ance conflicting forces, and they facilitate
design adaptation in the face of change.

Design often involves balancing related
and conflicting forces. For example, you
might sacrifice software readability for effi-
ciency. So, good design requires more than
understanding just the forces involved. It
also requires understanding the relationships

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 6 1

The challenge in
software reuse
is not so much

to do more of it,
but to recognize
which reuse is
worth doing.

between those forces. If those relationships
are not explicitly documented, that under-
standing can be lost, with significant conse-
quences. For example, Douglas Schmidt says
that the loss of understanding about con-
flicting forces “deprives maintenance teams
of critical design information, and makes it
difficult to motivate strategic design choices
to other groups within a project or organi-
zation.”11 In contrast, explicitly document-
ing the rationale for design decisions opens
that rationale to criticism, thus facilitating
improvement in the design process.

Software design is complex and subject to
frequent change. Where design is complex, a
designer will unlikely be able to grasp the in-
terplay between forces involved simply by
observation or intuition. Designers must
therefore develop skills, methods, and tools
that help clarify that interplay. In a climate
where change is frequent and inevitable, an
explicit understanding of the reasoning be-
hind design decisions facilitates understand-
ing of the consequences of change.12 This
understanding is critical for effective soft-
ware maintenance and adaptation.

Design patterns address both functional
and nonfunctional design issues. A pattern is
inherently functional because it documents a
solution to a problem. It is also nonfunc-
tional because it discusses the feasibility of
the solution it documents. Patterns address
functional design issues by providing frag-
ments of sample code and diagrams of soft-
ware structure, and by discussing implemen-
tation issues. They highlight nonfunctional
issues in many ways. For example, a pattern
includes discussion of its applicability. For in-
stance, Schmidt’s Reactor pattern “explains
precisely when to apply the pattern (e.g.,
when each event can be processed quickly)

and when to avoid it (e.g., when transferring
large amounts of bulk data).”11

Although both functional and nonfunc-
tional design issues are important, the inter-
weaving of the two in discussion is what
makes patterns so effective. The functional
aspects provide a good solution in a given
context; the nonfunctional aspects let us
more effectively adapt that solution to an-
other context.

4. A pattern is manifest in a solution
Where a pattern has been used, either

consciously or unconsciously, to solve a par-
ticular problem, that pattern will be present
and recognizable in the developed solution.
Although a pattern does capture an abstract
idea, it is not just that. It is also the recogni-
tion of the generality of that abstract idea,
but explained, understood, and demon-
strated in a concrete artifact. A pattern is
thus not simply a tool used in a program’s
design and then forgotten. It leaves an in-
delible mark on the finished product because
it focuses on both design process and design
structure: it is “both a process and a thing.”5

For example, a pattern’s mark is evident
in the Prism system for planning radiation
treatment programs for cancer patients.2

Prism’s design addressed the problem of de-
veloping a highly integrated but easily ex-
tendable computer system. Previous systems
that needed to be extendable had often been
designed to be loosely coupled, because
tightly coupled systems were seen as too
complex to extend and their behavior too
complex to verify. Yet, in some environ-
ments—particularly those using integrated
systems—a loosely coupled system does not
model the tight real-world coupling between
the system’s different parts and is therefore
difficult and time-consuming to use.

Use of the Mediator pattern makes a sys-
tem such as Prism possible. The pattern
structures integrated systems as “collections
of visible, independent components inte-
grated in networks of explicitly represented
behavioral relationships.”2 In Prism’s case,
a set of tumors, a set of corresponding but-
tons, and a set of panel displays are all in-
dependent object sets kept consistent by me-
diators. The pattern’s manifestation—the
mediator objects—is clearly visible. In fact,
it is critical to the system’s overall structure,
as Figure 1 shows.

6 2 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

(a)

Colleague

Colleague
Mediator

Colleague

(b)

Organ set

Panel set
Organ set/
button set
mediator

Button set Button set/
panel set
mediator

Figure 1. (a) The
Mediator pattern; (b)
a mediator and two
colleagues (circled)
in the Prism system.

All design approaches strive for the same
end: the creation of well-designed software.
But approaches that focus solely on design
process or methodology do not necessarily
leave any identifiable imprint. In contrast,
approaches such as design patterns that focus
on both design process and structure directly
influence the product’s visible structure.

5. A pattern captures system hot
spots

Software systems must remain stable in a
highly dynamic environment. They will fre-
quently both change and be subject to exter-
nal changes. Building a stable software sys-
tem is not about foreseeing every possible
modification. Rather, stability is about un-
derstanding a domain well enough to build a
system that can evolve appropriately. As
Terry Winograd and Fernando Flores said,

The most successful designs are not those that
try to fully model the domain in which they
operate, but those that are “in alignment” with
the fundamental structure of that domain, and
that allow for modification and evolution to
generate new structural coupling. As observers
(and programmers), we want to understand to
the best of our ability just what the relevant
domain of action is. This understanding guides
our design and selection of structural changes,
but need not (and in fact cannot) be embodied
in the form of the mechanism.13

Central to any pattern is an invariant
that solves a recurring problem. But any im-
plemented solution varies or evolves with
time. Patterns facilitate good design by cap-
turing what Wolfgang Pree calls system
“hot spots”14—those parts of a solution
likely to change as a developed system
evolves. In effect, the pattern captures the
invariant and hot spots and provides a
structure to manage the interaction between
these stable and changing system elements.
That structure is critical, because for the
invariant part of a system to continue to be
invariant in a dynamic environment, the in-
teraction between the invariant and the rest
of the system must be carefully defined.

In the software domain, patterns isolate
expected invariant system elements from the
effects of changes to system hot spots. For
example, the Composite pattern deals with
situations where treating objects and com-
positions of objects uniformly is desirable.

The invariant is the way objects are struc-
tured; the variant is the operation to be per-
formed on the object. Interaction between
system elements can be managed by having
a Component class, which can have both
Leaf and Composite subclasses. Differences
between and changes to the Leaf and Com-
posite classes are hidden from their users
through the Component class interface.7

6. A pattern is part of a language
Every pattern is connected to and shaped

by other patterns. Patterns, therefore, are
part of a network of interrelated patterns: a
pattern language. Alexander explains:

No pattern is an isolated entity. Each pat-
tern can exist in the world, only to the extent
that it is supported by other patterns: the
larger patterns in which it is embedded, the
patterns of the same size that surround it, and
the smaller patterns which are embedded in it.

This is a fundamental view of the world. It
says that when you build a thing you cannot
merely build that thing in isolation, but must
also repair the world around it, and within it,
so that the larger world at that one place be-
comes more coherent, and more whole.15

Alexander’s architecture patterns are or-
dered from the largest patterns, for regions
and towns, through neighborhoods, clusters
of buildings, and so on, down to construc-
tion details. When the patterns are com-
bined, they form a language for describing
design solutions. An Accessible Green, for
example, can be embedded in an Identifiable
Neighborhood. It should also help to form
Quiet Backs and must contain Tree Places.

Doug Lea explains the relationship be-
tween patterns at different levels of such a
pattern language:

Patterns are hierarchically related. Coarse
grained patterns are layered on top of, relate,
and constrain fine grained ones. These rela-
tions include, but are not restricted to various
whole-part relations. … Pattern entries are
arranged conceptually as a language that ex-
presses this layering.16

The software patterns in Design Patterns7

could also be part of a pattern language. For
example, an Abstract Factory could be im-
plemented using Factory Method, which in
turn could use Template Method to avoid
subclassing.

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 6 3

Pattern
languages

are critical
because they
capture, in

some sense,
the emergent
behavior of

complex
systems.

Pattern languages are critical because
they capture, in some sense, the emergent
behavior of complex systems: “The combi-
nation of patterns acting on a smaller level
of scale acquires new and unexpected prop-
erties not present in the constituent pat-
terns.”17 A pattern language is thus a col-
lective of solutions to recurring problems,
each in a context and governed by forces.
The solutions work together at every level
of scale to resolve a complex problem. A
good pattern language guides designers to-
ward good system architectures: ones that
are useful, durable, functional, and aesthet-
ically pleasing.18

In other words, the whole is more than
the sum of the parts: a pattern language is
more than the sum of its patterns.

7. A pattern is validated by use
Patterns are usually discovered through

concrete experience rather than abstract ar-
gument, although both are possible.5 But a
pattern cannot be verified or validated from
a purely theoretical framework. In the end,
such proof of a pattern’s existence lies in its
recurring, identifiable presence in artifacts.

In a spoken language, new words are de-
vised, or old words acquire new meanings,
through common use. New words can also
be created “theoretically”—for example, by
combining appropriate word roots—but any
newly minted word is not validated unless
and until it achieves widespread use. So, too,
a pattern’s repeated presence in existing arti-
facts confirms its usefulness. Theory is im-
portant, but to be meaningful it must be eval-
uated in the context of concrete experience.

Consider the technique for solving diffi-
cult problems that Floyd outlined in his
1978 Turing Lecture:

In my own experience of designing difficult
algorithms, I find a certain technique most
helpful in expanding my own capabilities. Af-
ter solving a challenging problem, I solve it
again from scratch, retracing only the insight
of the earlier solution. I repeat this until the
solution is as clear and direct as I can hope
for. Then I look for a general rule for attack-
ing similar problems, that would have led me
to approach the given problem in the most ef-
ficient way the first time. Often, such a rule is
of permanent value.8

Floyd’s technique offers insight into what
it means for a pattern to be validated by use.

At the point where he has first solved the
challenging problem, Floyd might have dis-
covered a pattern. But not until he has dis-
covered a “general rule for attacking similar
problems”8 and used that rule in other situ-
ations can he call his solution a pattern.

Alexander argues that in confirming the
existence of architectural patterns “we must
rely on feelings more than intellect.”5 He is
precise in what he means by this—there is
no simple rule with which to verify a pat-
tern’s existence. Confirming the existence of
architectural patterns is, therefore, not sim-
ply a process of abstract argument; it re-
quires a more intangible mix of theory and
practice.

Schmidt notes that “Patterns are vali-
dated by experience rather than by testing,
in the traditional sense of ‘unit testing’ or
‘integration testing’ of software.”11 How-
ever, he also states that validating a pat-
tern’s existence by experience is difficult,
because it is hard to know when a pattern
is complete and correct. His group used pe-
riodical reviews of patterns to help with
that process.

Each pattern in the Design Patterns cata-
log lists its known uses: examples of the pat-
tern in real systems. This provides a critical
check on the pattern’s validity. In contrast,
Ralph Johnson uses what he calls patterns
to document object-oriented framework
use, but gives no evidence that his patterns
have occurred in more than one solution—
that is, are used by a number of users of the
HotDraw framework.4 To validate his pat-
terns, he should give concrete examples of
where they have been used. Then, he will
have shown that they are useful.

8. A pattern is grounded in a
domain

A pattern is not an isolated entity. It is de-
fined both in the context of other patterns (a
pattern language) and with respect to a par-
ticular area or field to which it applies. Dis-
cussion of a pattern only makes sense as part
of a pattern language. Moreover, discussion
of a pattern has no meaning outside the do-
main to which it applies.

For example, Design Patterns describes
patterns in the domain of object-oriented
software construction, whereas Johnson de-
scribes a set of patterns in the domain of
framework use. Johnson’s HotDraw pat-

A good pattern
language guides

designers
toward good

system
architectures:
ones that are

useful, durable,
functional, and
aesthetically

pleasing.

6 4 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

terns work well together, as do those from
the Design Patterns catalog, but combining
one from each makes no sense.

A discussion of patterns must clarify
what domain the patterns serve, and it must
ensure that all patterns share a common do-
main. Otherwise, the discussion will likely
be confused and confusing.

9. A pattern captures a big idea
Design patterns are not about solutions

to trivial problems, so not every solution to
a software design problem warrants a pat-
tern. Rather, patterns focus on key, difficult
problems in a particular area—problems
that designers in that area face time and
time again, in one form or another. Thus, a
pattern language “captures” a domain: to-
gether, the patterns in the language identify
the domain’s key concepts and the impor-
tant aspects of their interplay.

The elements of other languages exhibit
the same effect. For example, the key words
of a spoken language—the nouns, verbs,
and adjectives that carry much of the mean-
ing in communication—correspond to key
objects, actions, and descriptions that occur
repeatedly. It is not necessary or even sensi-
ble to make up a new word for every con-
cept; instead, we combine existing words in
phrases and clauses that convey meaning.

Consider the problem, in an OO context,
of extending an object’s behavior. Often, the
solution is simple—create a subclass with the
extra behavior—and does not require a pat-
tern. But this solution does not let existing
objects take advantage of the extra behavior,
because existing objects will inherit from the
(nonextended) base class. If, instead, we add
the extension to the base class itself, existing
objects can use the new behavior, but the re-
sult can be an unwieldy base class that tries
to be all things to all clients.

The more complex problem of extending
an object’s behavior without modifying the
base class, such that existing objects that
choose to do so can access the extended be-
havior, does warrant a pattern-based solu-
tion. It is a key problem in OO design and is
addressed by Erich Gamma’s Extension Ob-
ject pattern.19 This pattern lets an extension
object’s clients choose and access the inter-
faces they need by defining extension objects
and their interfaces in separate classes.

A pattern must strike a balance. It must

propose a specific solution to a specific
problem. But if the problem it addresses is
not significant, the pattern approach’s im-
pact is lost.

D eveloping a definition that com-
pletely captures the pattern concept
is neither worthwhile nor possible.

But it is possible and worthwhile to docu-
ment essential characteristics of patterns as
a means of clarifying and developing our
understanding of the concept and thus our
ability to identify and use patterns.

How do our characteristics help answer
the questions posed in the introduction? In
our view, Mediator exhibits all the charac-
teristics—a pattern language for OO soft-
ware design will likely include this pattern.
So, too, we would likely find Bubblesort in
a language of algorithm-like patterns and
Pipe and Filter in a pattern language for
software architecture. Extend by Subclass-
ing, however, falls short because it does not
capture a big idea—including it in a lan-
guage for software design would dilute the
impact of more important patterns. John-
son’s HotDraw patterns fall short on two
grounds. As we mentioned before, Johnson
provides no evidence that they have been
validated by repeated use, and they do not
clearly identify the domain (framework use
or design) in which they apply.

References
1. E. Gamma et al., “Design Patterns: Abstraction and

Reuse of Object-Oriented Design,” Proc. 1993 Euro-
pean Conf. Object-Oriented Programming (ECOOP
93), Lecture Notes in Computer Science, vol. 707,
Springer-Verlag, Heidelberg, Germany, 1993, pp.
406–431.

2. K.J. Sullivan, I.J. Kalet, and D. Notkin, “Evaluating the
Mediator Method: Prism as a Case Study,” IEEE Trans.
Software Eng., vol. 22, no. 8, Aug. 1996, pp. 563–579.

3. M. Shaw and D. Garlan, Software Architecture: Per-
spectives on an Emerging Discipline, Prentice Hall, Up-
per Saddle River, N.J., 1996.

4. R. Johnson, “Documenting Frameworks Using Pat-
terns,” Proc. 1992 Conf. Object-Oriented Program-
ming: Systems, Languages, and Applications (OOPSLA
92), ACM Sigplan Notices, vol. 27, no. 10, Oct. 1992,
pp. 63–76.

J a n u a r y / F e b r u a r y 2 0 0 2 I E E E S O F T W A R E 6 5

A pattern
must strike
a balance. It

must propose
a specific
solution to
a specific
problem.

5. C. Alexander, The Timeless Way of Building, Oxford Univ.
Press, New York, 1979.

6. J.O. Coplien, Software Patterns, SIGS Books & Multime-
dia, New York, 1996.

7. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading,
Mass., 1995.

8. R.W. Floyd, “The Paradigms of Programming,” Comm.
ACM, vol. 22, no. 8, Aug. 1979, pp. 455–460.

9. S. Henninger, “Using Iterative Refinement to Find Reusable
Software,” IEEE Software, vol. 11, no. 5, Sept. 1994, pp.
48–59.

10. C. Rich and R.C. Waters, The Programmer’s Apprentice,
Addison-Wesley, Reading, Mass., 1990.

11. D.C. Schmidt, “Experience Using Design Patterns to De-
velop Reusable Object-Oriented Communication Soft-
ware,” Comm. ACM, vol. 38, no. 10, Oct. 1995, pp.
65–74.

12. C. Alexander, Notes on the Synthesis of Form, Harvard
Univ. Press, Cambridge, Mass., 1964.

13. T. Winograd and F. Flores, Understanding Computers and
Cognition, Ablex Publishing, Norwood, N.J., 1986.

14. W. Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, Mass., 1995.

15. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern
Language, Oxford Univ. Press, New York, 1977.

16. D. Lea and C. Alexander, “An Introduction for Object-
Oriented Designers,” Software Eng. Notes, vol. 19, no. 1,
Jan. 1994, pp. 39–52.

17. N.A. Salingaros, “Structure of Pattern Languages,” Archi-
tectural Research Quarterly, vol. 4, no. 2, 14 Sept. 2000,
pp. 149–162.

18. B. Appleton, “Patterns and Software: Essential Concepts
and Terminology,” 2000, www.enteract.com/~bradapp/
docs/patterns-intro.html (current Nov. 2001).

19. E. Gamma, “Extension Object,” Pattern Languages of Pro-
gram Design 3, R. Martin, D. Riehle, and F. Buschmann,
eds., Addison-Wesley, Reading, Mass., 1998, pp. 79–88.

For more information on this or any other computing topic, please visit our Dig-
ital Library at http://computer.org/publications/dlib.

I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 2

About the Authors

Tiffany Winn is a PhD student in computer
science at Flinders University, where she received
her BSc (Hons.) in computer science. Her research
interests are in design patterns and programming
paradigms. Contact her at the School of Informatics
and Eng., Flinders Univ., GPO Box 2100, Adelaide
SA 5001, Australia; winn@cs.flinders.edu.au; www.
cs.flinders.edu.au/People/Tiffany_Winn.

Paul Calder is a senior lecturer in the School
of Informatics & Engineering at Flinders University.
His research interests include object-oriented soft-
ware design, component-based software reuse,
graphical interfaces, and data visualization. He is a
member of the IEEE Computer Society, ACM SIGCHI,
and ACM SIGPLAN. He earned his PhD in electrical
engineering from Stanford University, where he
was one of the developers of the InterViews user
interface toolkit. Contact him at the School of Informatics and Eng., Flinders
Univ., GPO Box 2100, Adelaide SA 5001, Australia; calder@cs.flinders.edu.au;
www.cs.flinders.edu.au/People/Paul_Calder.

IEEE Computer Society
10662 Los Vaqueros Circle

Los Alamitos, California 90720-1314
Phone: +1 714 821 8380

Fax: +1 714 821 4010
http://computer.org

advertising@computer.org

Advertising Personnel

Advertiser Page Number

ADVERTISER INDEX
J A N U A R Y / F E B R U A R Y 2 0 0 2

Addison Wesley 7

IEEE Pervasive Computing 73

IEEE Software 51

John Wiley 17

MIT 13

OOPSLA Conference 2002 Inside Back Cover

Software Development Conference 2002 Back Cover

Classified Advertising 12

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product/recruitment)
David Schissler
Phone: +1 508 394 4026
Fax: +1 508 394 4926
Email: ds.ieeemedia@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Southwest (product)
Royce House
Phone: +1 713 668 1007
Fax: +1 713 668 1176
Email: rh.ieeemedia@ieee.org

Northwest (product)
John Gibbs
Phone: +1 415 929 7619
Fax: +1 415 577 5198
Email: jg.ieeemedia@ieee.org

Japan (product/recruitment)
German Tajiri
Phone: +81 42 501 9551
Fax: +81 42 501 9552
Email: gt.ieeemedia@ieee.org

Europe
Gerry Rhoades-Brown
Phone: +44 193 256 4999
Fax: +44 193 256 4998
Email: grb.ieeemedia@ieee.org

Southern CA (recruitment)
Karin Altonaga
Phone: +1 714 974 0555
Fax: + 1 714 974 6853
Email: ka.ieeemedia@ieee.org

Southeast (product/recruitment)
C. William Bentz III
Email: bb.ieeemedia@ieee.org
Gregory Maddock
Email: gm.ieeemedia@ieee.org
Sarah K. Huey
Email: sh.ieeemedia@ieee.org
Phone: +1 404 256 3800
Fax: +1 404 255 7942

Northwest (recruitment)
Mary Tonon
Phone: +1 415 431 5333
Fax: +1 415 431 5335
Email: mt.ieeemedia@ieee.org

Midwest (recruitment)
Tom Wilcoxen
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: tw.ieeemedia@ieee.org

Midwest (product)
David Kovacs
Phone: +1 847 705 6867
Fax: +1 847 705 6878
Email: dk.ieeemedia@ieee.org

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

James A. Vick
IEEE Staff Director, Advertising Businesses
Phone: +1 212 419 7767
Fax: +1 212 419 7589
Email: jv.ieeemedia@ieee.org

