
20 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Splitting the Difference: The Historical
Necessity of Synthesis in
Software Engineering
STUART SHAPIRO

For the last quarter of a century, software technologists have worked to ad-
dress the “software crisis” identified in the 1960s. Their efforts have focused
on a number of different areas, but have often been marked by the search
for singular “best” solutions. However, the fundamental nature of software—
involving basic and poorly understood problem-solving processes combined
with unprecedented and multifaceted complexity—weighs heavily against
the utility of singular approaches. Examination of the discourse of software
technologists in a number of key professional and trade journals over the
last 25 years illuminates various disputes central to the development of
software engineering and highlights the necessity of a more pluralistic mind-
set revolving around synthesis and trade-offs.

Introduction
y the end of the 1960s, it was becoming obvious to the com-
puting community that software was a big problem and

growing bigger. While the cost of hardware steadily declined even
as hardware performance steadily increased, software seemed
headed in the opposite direction. Large software projects were
consistently late, over budget, and full of defects. Today, the com-
plaints remain much the same. This is not to deny that the current
situation represents a drastic improvement over the state of affairs
that prompted the North Atlantic Treaty Organization (NATO)
software engineering conferences of the late 1960s. What were
problems then are still problems now, but they tend to be (but not
always) relatively less frequent and less disastrous, especially in
the context of the vastly expanded size and ambitions of much
contemporary software. Indeed, Andrew Friedman has argued that
while software was previously the key stumbling block for sys-
tems development, the focus has now shifted to user needs.1

While Friedman is right to call attention to the current emphasis
on user needs, though, his periodization based on successive bot-
tlenecks is a little too tidy and belies the complexity and hetero-
geneity of the issues and arguments that have surrounded systems
development from the early days to the present.

Events of the late 1960s enhanced comprehension of the
breadth and depth of the problems plaguing software development
while only hinting at solutions. Still, the growing recognition that
a collection of interrelated problems existed, together with an
awareness of the importance of process, constituted a turning
point in the history of software technology. The “software crisis”
provided a context for the development of software technology in
the 1970s and beyond.

From the 1960s onward, many of the ailments plaguing software

could be traced to one principal cause—complexity engendered by
software’s abstract nature and by the fact that it constitutes a digital
(discrete state) system based on mathematical logic rather than an
analog system based on continuous functions. This latter character-
istic not only increases the complexity of software artifacts but also
severely vitiates the usefulness of traditional engineering techniques
oriented toward analog systems.2 Although computer hardware,
most notably integrated circuits, also involves great complexity (due
to both scale and state factors), this tends to be highly patterned
complexity that is much more amenable to the use of automated
tools. Software, in contrast, is characterized by what Fred Brooks
has labelled “arbitrary complexity.”3

The complexity associated with software technology, however,
is not that straightforward. Instead, it involves numerous facets
and dimensions. Complexity’s various contexts include algo-
rithmic efficiency, the structure of procedures and data, and the
psychological effort of problem comprehension, translation, and
system design. Those contexts have manifested themselves in
issues concerning structured programming, software metrics,
program verification, formal methods generally, programming
languages, the software life cycle, and programming environ-
ments. No solution aimed at a single area could provide the de-
gree of relief many were seeking. Moreover, agreeing on singular
approaches with respect to any of these issues also frequently
proved difficult in the face of incommensurable philosophies and
inescapable trade-offs. Recognition of the futility of technical
singularity in any realm of software technology was slow in
dawning.

The basic nature of software vis-à-vis hardware complicates
matters in this respect. Hardware, in computing and in general,

1058-6180/97/$10.00 µ 1997 IEEE

B

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 21

refers to something solid, inflexible, and not easily altered.
Software is soft precisely because its descriptors—ephemeral,
flexible, malleable—contrast with those of hardware. They
make software an excellent source of leverage—the power to
act effectively. The ability to fashion a means of problem solu-
tion adapted to the specifics of a problem constitutes leverage of
a high order. Obviously, software by itself, while maximizing
flexibility, is of limited utility since it then amounts to only a set
of instructions on how to accomplish a certain task. While such
codification is useful, it fails to supply the leverage that results
when it is combined with mechanization. Similarly, a special-
purpose machine with no capacity for variation is of little use
outside its narrow area of application. Hardware and software
have a synergistic effect on problem solution. The former
mechanizes narrowly but deeply, the latter mechanizes broadly
but shallowly. Together, they are capable of exerting a high
degree of leverage on problems.

The trade-off between breadth and depth also pertains to soft-
ware per se. Programming languages, application programs, tools,
methods, and environments (including cultural factors) all em-
body it. The essence of the tension is the degree to which any
given piece of software technology “fits” the circumstances sur-
rounding its use. To the extent that the piece of technology is cir-
cumstance-specific, it incorporates knowledge and characteristics
that help it function more effectively, affording the user greater
problem-solving leverage under those particular conditions. How-
ever, the corollary to this property is that the technology becomes
correspondingly less suitable for use in other situations, depend-
ing on how far they deviate from the original target situation. If
the original circumstances are narrowly defined, problematic de-
viation occurs relatively rapidly, while if the circumstances are
more broadly defined, deviation is less rapid. However, by the
same token, software technology suitable for a wide range of
circumstances will afford less leverage by way of highly particu-
lar knowledge embodied within the technology. This, then, is the
essential tension within software in all its aspects: the trade-off
between specificity and generality. It underlies software technol-
ogy in all its manifestations.

The powerful desire for dramatic singular solutions therefore
hindered rather than helped software technologists. Difficulties
were exacerbated by the exaggerated and sweeping claims that
often accompanied particular techniques, claims that frequently
generated an equal and opposite reaction. The problems plaguing
software technology were usually fuzzy, variable, and multifac-
eted, and thus rarely proved amenable to any one approach; in-
stead, they demanded hybrid and adaptive solutions. Messy re-
sponses, though, were less than satisfying to those who sought
sweeping breakthroughs. Effective action required a spirit of
pragmatic accommodation, a kind of technical pluralism that was
not always evident.

What follows is not intended to be a comprehensive history of
software engineering since the engineering appellation was first
formally used. Rather, it is an attempt to capture the flavor of
some of the key concerns and arguments as they have manifested
themselves in the discourse contained within some of the most
influential professional and trade literature. These sources serve
as a primary forum in which the issues of the day are raised and
debated. Clearly, though, this poses a couple of methodological
problems.

The first methodological problem is the unavoidable one of
source self-selection. Those individuals who submit articles or
write letters are by definition moved to do so by a variety of mo-
tivations, ranging from the pursuit of tenure to passionately held
views on a certain topic. However, this does not automatically
render their views unrepresentative. Moreover, while a number of
names appear on a regular basis, a larger number appear on a
much more ad hoc basis. In other words, while a body of elites is
clearly in evidence, so, too, is wide participation from the rest of
the computing and software communities.

The powerful desire for dramatic
singular solutions therefore
hindered rather than helped

software technologists.

The second methodological difficulty arises out of the circum-
scribed geographic range of the sources. This reflects several
practical limitations, including language barriers and time con-
straints. It most certainly should not be taken as implying the
insignificance of work done outside the United States and Great
Britain. Two factors, though, in the one case explain and in the
other case mitigate this bias. With respect to the former, the
United States has long been and continues to be the acknowledged
world leader in software technology. In terms of the latter, many
of the publications surveyed circulate widely outside their country
of origin and routinely carry articles, news, and correspondence
from around the world. Therefore, building this study on the par-
ticular literature employed seems eminently justifiable.

With the exception of the following section discussing the
NATO software engineering conferences, the organization of this
essay is thematic but chronological for each theme. The first
theme focuses on the central role of complexity in software tech-
nology and its manifestation in design and measurement strate-
gies. This will be followed by discussion of the debate over pro-
gram verification, leading into an examination of the formal
methods movement more generally. Issues arising out of pro-
gramming languages, life cycle models, and programming envi-
ronments will then be discussed. All of this will highlight the
problem of making choices in a pluralistic technological world, a
topic that will be addressed toward the end. While this work does
not assume expertise in software engineering on the part of the
reader, some basic appreciation of software technology would
undoubtedly prove helpful in making sense of it.

Setting the Stage: The NATO Conferences
The NATO software engineering conferences of 1968 and 1969
set an agenda and a context that even today continue to make their
presence felt.4 In the fall of 1967, the NATO Science Committee
had established a Study Group on Computer Science to assess the
field. The attention of the study group was drawn to the problems
endemic in the area of software. Around the end of 1967, it rec-
ommended that a working conference be held on software engi-
neering. The conference report noted that “the phrase ‘software
engineering’ was deliberately chosen as being provocative, in
implying the need for software manufacture to be based on the
types of theoretical foundations and practical disciplines that are
traditional in the established branches of engineering.”5 Interna-

Splitting the Difference

22 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

tional experts from a wide variety of backgrounds gathered in
Garmisch, Germany, in October 1968 to consider problems in the
design, production, and maintenance of software.

Although the participants agreed that problems existed,
opinions varied on the seriousness of the “software crisis” and
the extent of the problems. Typical of the exchanges was the
one between Ken Kolence of Boole and Babbage Inc. and
Douglas Ross from the Massachusetts Institute of Technology
(MIT). Kolence did not like the use of the word crisis. “It’s a
very emotional word. The basic problem is that certain classes
of systems are placing demands on us which are beyond our
capabilities and our theories and methods of design and produc-
tion at this time. There are many areas where there is no such
thing as a crisis....”5,p.121 Ross responded that “it makes no dif-
ference if my legs, arms, brain and digestive tract are in fine
working condition if I am at the moment suffering from a heart
attack. I am still very much in a crisis.”5,p.121 Most, however,
could agree with E.E. David of Bell Laboratories that
“production of large software has become a scare item for man-
agement. By reputation it is often an unprofitable morass, costly
and unending.”5,p.67

With regard to the underlying causes of the crisis, at least some
of the participants appreciated the ephemeral nature of the me-
dium and the difficulties it created. David noted that with respect
to problems of scale,

the uninitiated sometimes assume that the word “scale” re-
fers entirely to the size of code. . . . This dimension is in-
deed a contributory factor to the magnitude of the problems,
but there are others. One of increasing importance is the
number of different, non-identical situations which the
software must fit. Such demands complicate the tasks of
software design and implementation, since an individually
programmed system for each case is impractical.5,pp.68-69

Moreover, he noted, “there is no theory which enables us to cal-
culate limits on the size, performance, or complexity of software.
There is, in many instances, no way even to specify in a logically
tight way what the software product is supposed to do or how it is
supposed to do it.”5,p.69 On the subject of design criteria, J.W.
Smith observed that there was

a tendency that designers use fuzzy terms, like “elegant” or
“powerful” or “flexible.” Designers do not describe how the
design works, or the way it may be used, or the way it
would operate. What is lacking is discipline, which is
caused by people falling back on fuzzy concepts. . . . Also
designers don’t seem to realize what mental processes they
go through when they design. Later, they can neither ex-
plain, nor justify, nor even rationalize, the processes they
used to build a particular system.5,p.38

Heterogeneity, fuzziness, lack of discipline, lack of theory—such
complaints persist to this day.

Because problem solving is such a basic activity and because
complexity is such a fundamental phenomenon, attempts to ad-
dress these dilemmas tended to produce conceptually broad no-
tions. Peter Naur suggested that “software designers are in a
similar position to architects and civil engineers, particularly those
concerned with the design of large heterogeneous constructions,
such as towns and industrial plants. It therefore seems natural that
we should turn to these subjects for ideas about how to attack the

design problem.”5,p.35 More concretely, H.R. Gillette of Control
Data suggested that the three fundamental design concepts of
modularity, specification, and generality were essential to a
maintainable system.5,pp.39-40 IBM’s Brian Randell suggested that
“there are two distinct approaches to the problem of deciding in
what order to make design decisions,” top-down and bottom-up.6

Professor Stanley Gill contended, however, that “in practice nei-
ther approach is ever adopted completely; design proceeds from
the top and bottom, to meet somewhere in between, though the
height of the meeting point varies with circumstances.”7 In other
words, one’s approach to software design had to be flexible rather
than doctrinaire. Effectiveness required combining perspectives.

A year later, a follow-up conference on software engineering
techniques took place in Rome under NATO auspices. The editors
of the conference report observed, however:

The resulting conference bore little resemblance to its
predecessor. The sense of urgency in the face of common
problems was not as apparent as at Garmisch. Instead, a
lack of communication between different sections of the
participants became a dominant feature. Eventually, the
seriousness of this communication gap, and the realization
that it was but a reflection of the situation in the real
world, caused the gap itself to become a major topic of
discussion. Just as the realization of the full magnitude of
the software crisis was the main outcome of the meeting at
Garmisch, the realization of the significance and extent of
the communication gap is the most important outcome of
the Rome conference.8

This perceived gap was generally regarded as one between theory
and practice, i.e., between computer science and software engi-
neering. I.P. Sharp opined that theory and practice translated into
architecture and engineering and that design was the key activity.
“Within that framework programmers or engineers must create
something. No engineer or programmer, no programming tools,
are going to help us, or help the software business, to make up for
a lousy design.”8,p.12 R.M. Needham of the Cambridge University
Mathematical Laboratory and J.D. Aron of IBM argued that
“much theoretical work appears to be invalid because it ignores
parameters that exist in practice.”9 Reality, they seemed to feel,
was a messy and complex business, and that messiness and com-
plexity could not simply be wished away. They had to be dealt
with.

The NATO conferences set the stage for many of the debates of
the next decade: language generality versus specificity, testing
versus verification, practice versus theory. But they also high-
lighted the problem of complexity and the pivotal activity of de-
sign. In short, the NATO meetings revealed and sparked concern
not only for the structure of programs but also for the structure of
programming.

Coming to Grips:
Getting a Handle on Complexity
Central to the software development process, both literally in
terms of the life cycle and figuratively in terms of profile, soft-
ware design drew much of the attention in the years immedi-
ately following the NATO software engineering conferences.
The problem of complexity was particularly evident in the proc-
ess of design and so generated much thought as to how to con-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 23

trol it. That thought devolved on the community as techniques
of modularity, abstraction, management, and measurement.
Much of it was soon ensconced in the appealing term structure.
While some hailed the advent of the structure revolution, how-
ever, others rebelled against the notion that these concepts and
techniques constituted a breakthrough that would transport
software development into a new world untroubled by the diffi-
culties of the past.

Many of the key design concepts of the period sprang from the
elemental notion of modularity. In a 1971 article in Communica-
tions of the ACM (the principal journal of the Association for
Computing Machinery, ACM), Niklaus Wirth described stepwise
refinement, a process of software development in which a design
is gradually decomposed in successively greater detail until fully
expressed in the implementation (programming) language. Step-
wise refinement constituted a basic, practical approach to the
problem of minimizing program complexity. It aimed to
“decompose decisions as much as possible, to untangle aspects
which are only seemingly interdependent, and to defer those deci-
sions which concern details of representation as long as possi-
ble.”10 In more concrete terms, stepwise refinement implied
modular design. But while the notion of modularity had long been
bandied about, its effective application was another matter. A
1971 letter to Datamation (a leading data processing trade jour-
nal) complained that many supposedly modular programs were
little better than the monolithic ones they replaced. Practitioners
needed criteria for modular design.11

This was no sooner said than done, as David Parnas explored
that very topic in the pages of Communications the following
year. Parnas argued that segments or modules should convey the
minimum amount of information required to enable other parts of
the program to use them properly. Parnas’s point was that how a
module accomplished its function was irrelevant to the modules
that invoked it. Information beyond the relationship between
module input and output served only to complicate matters and
tempt the programmer to play with details better left alone. Par-
nas’s technique was quickly labeled “information hiding.”12 The
salutary aspect of such a strategy was inherent in the label. If the
problem was one of excessive complexity, which in practical
terms meant too much information for an individual to manage
intellectually, then the obvious solution was somehow to reduce
the amount of information that had to be considered at any given
time. Parnas followed up on this in another article later that year.
He cited the benefits of modular programming as managerial
(reduced communication requirements between module develop-
ers), flexibility (changes in one module need not necessitate
changes in others), and comprehensibility (the system could be
studied one module at a time).13

The next year, 1973, Glenford Myers tackled the subject of
criteria to guide program decomposition. He suggested that the
objective was to minimize module coupling (interdependence
between modules) and to maximize module strength
(intradependence within modules). Correct modularization, he
asserted, would lead to increased reliability, decreased develop-
ment costs, increased extensibility, increased project control, and
off-the-shelf parts, with a large measure of these benefits resulting
from a reduction in complexity.14 In a paper two years later in
1975, Frank DeRemer and Hans Kron of the University of Cali-
fornia at Santa Cruz expanded the meaning of the distinction be-

tween intramodule and intermodule complexity. They argued that
“structuring a large collection of modules to form a ‘system’ is an
essentially distinct and different intellectual activity from that of
constructing the individual modules. That is, we distinguish pro-
gramming-in-the-large from programming-in-the-small.”15 The
authors’ principal point was the necessity of a separate module
interconnection language. In the years to follow, however, this
distinction would often be invoked to distinguish software engi-
neering from mere programming.

But while the notion of modularity had
long been bandied about, its effective

application was another matter.

If benefits could be gained from treating modules as functional
abstractions, which was the basic goal of information hiding,
perhaps there were also advantages to treating data structures in a
similar manner. A 1975 article by Barbara Liskov (MIT) and Ste-
phen Zilles (IBM) in IEEE Transactions on Software Engineering
(started that year by the Computer Society of the Institute of
Electrical and Electronics Engineers, IEEE) explored techniques
for specifying data abstractions—groups of related operations that
act on a class of objects (a data type) and provide the only means
of manipulating the objects.16 In other words, just as information
hiding permits modules to be used only in certain well-defined
ways, data abstraction allows only certain well-defined operations
on data structures. Most early efforts regarding data abstraction
focused on achieving it in more traditional procedural languages.
John Guttag, in a 1977 Communications article, described an
algebraic technique for the specification of abstract data types.
But while such techniques “should present no problem to those
with formal training in computer science,” he cautioned, “most
people involved in the production of software have no such train-
ing. The extent to which the techniques described . . . are gener-
ally applicable is thus somewhat open to conjecture.”17

Object-oriented programming took both data abstraction and
information hiding to extremes. Originating with the Simula pro-
gramming language Kristen Nygaard and Ole-Johan Dahl devel-
oped in Norway in the 1960s and typified by the Smalltalk system
developed at Xerox during the 1970s, object-oriented program-
ming revolved around objects that embodied a data type and the
operations applicable to it. Rather than acting directly on its uni-
verse of objects, a program (as well as the objects) dispatched
messages that each object interpreted and acted on in accordance
with its internal rules. This was data abstraction in the extreme,
because in theory the program did not require any knowledge
whatsoever of the implementation specifics of the objects; it did
not even need to know whether there were any objects. Object-
oriented enthusiasts, though, contended that the approach was
different not simply in degree but also in kind. In contrast to tra-
ditional methods, “rather than factoring our system into modules
that denote operations, we instead structure our system around the
objects that exist in our model of reality.”18 This led to “the claim
that the thinking process inherent in OOD [object-oriented design]
is more ‘natural’ than that of SD [structured development], i.e., in
building an abstract model of reality it is more natural to think in
terms of objects than in terms of functions.”19 On the other hand,

Splitting the Difference

24 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

there is very little that one can say with much confidence
about a “most natural” way that people think about the re-
alities of their universe. Thus, to say that the object model
is a more natural way to think involves a rather sizeable
leap of faith. Undoubtedly, the truth of the matter is that
both paradigms are “natural,” and that the proper synthe-
sis of the two, in relation to a particular problem, is what
should be striven for. . . . The task ahead is to move the
debate to a higher level—not arguing about which is more
“natural”—but exploring how we best take advantage of
both approaches.19,p.47

In the mid-1980s, in fact, several proposals were made to com-
bine object-oriented and conventional procedural techniques. In a
1984 article in IEEE Software (started that year by the IEEE
Computer Society), Brad Cox proposed adding object-oriented
concepts “on top” of conventional programming languages.
“Hybrid languages just add a new power tool to the programmer’s
kit, a tool that can be picked up when it fits the task at hand or set
aside when conventional techniques are sufficient.”20 In the same
vein, the authors of an article in Computer (the principal journal
of the IEEE Computer Society) the following year suggested that
“just as a combination of top-down and bottom-up development is
appropriate to many applications, a combination of functional
[Fortran-like] and object-oriented design might well be most ap-
propriate.”21 Likewise, a 1989 article described how to integrate
the object-oriented approach with structured development.22 Such
proposals reinforced the notion that synthesis might prove more
beneficial than revolution. Rather than treat distinct approaches or
concepts as universal dogma, a more pragmatic approach might
entail employing a combination of techniques as circumstances
warranted.

The object-oriented approach also put in high relief the issue of
domain-specific knowledge. As consultant Patrick Loy noted, the
principal problem for this approach was finding the objects, i.e.,
identifying the relevant objects in the problem domain that must
then be defined along with their properties within the soft-
ware.19,p.45 This often required fairly deep knowledge of the ap-
plication domain. After all, even if object-oriented programming
was exceptionally effective at modeling the “real world,” the real
world is a complex place, and what should be construed as an
object for programming purposes is often not obvious. Writing in
Communications in 1987, Russell Abbott emphasized the crucial
role of domain knowledge in software development.23 The fol-
lowing year, a report on a study of 17 large software development
projects noted that

the deep application-specific knowledge required to suc-
cessfully build most large, complex systems was thinly
spread through many software development staffs. Although
individual staff members understood different components
of the application, the deep integration of various knowl-
edge domains required to integrate the design of a large,
complex system was a scarcer attribute.24

The importance of domain-specific knowledge was also recog-
nized at the 1989 International Conference on Software Engi-
neering. Victor Basili of the University of Maryland argued for
application-specific research in academia, while Bill Curtis of the
Microelectronics and Computer Technology Corporation (known
as MCC) made a case for developing domain specializations in

software engineering.25 Application domain has repeatedly been
seen as one of the principal contexts of which software technolo-
gists must be cognizant. It is one of the key areas in which the
tension betweeen specificity and generality plays itself out.

In any case, the important point was that in the mid-1970s,
many concepts that applied to procedures or functions could also
apply to data. Around the mid-1970s, Michael Jackson, one of the
European structured programming disciples, developed an ap-
proach that centered around the data rather than the operations.
Jackson’s method produced a program whose structure corre-
sponded to the data structure of the problem.26 This was also the
premise behind a method Jean Warnier devised around the same
time.27 Ken Orr developed a variation of Warnier’s technique a
few years later that became known as the Warnier–Orr approach.
A 1978 article in Software Engineering Notes (the publication of
SIGSOFT—the ACM Special Interest Group on Software Engi-
neering) concluded that “the data-structured/process oriented
approach is the one that has the best prospects for system and
program design in the future.”

The term structured had quickly assumed the status of an icon,
representing salvation in the eyes of some and just one more du-
bious quick fix in the eyes of others. The arrival of the structured
programming “revolution” was heralded in a collection of Data-
mation articles at the end of 1973. James Donaldson of Control
Data indicated that the name of the game was complexity man-
agement. “A technique known as structured programming has
been developed which offers improvements in both program

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 25

complexity and program clarity.”29 The following year, a seminal
article by Stevens, Myers, and Constantine in the IBM Systems
Journal brought together many of the basic tenets and attached a
slightly different but revealing label to them—structured design.30

Many articles and books on structured programming, structured
design, and structured analysis followed, but they were essentially
variations on a theme. That theme consisted of concepts that Si-
mon has suggested are fundamental, universal principles of de-
sign—hierarchical decomposition and modularity. It is hardly
surprising that so many seized on “structured” as the adjective of
choice. Design, from Simon’s viewpoint, consists of exercises in
divining the structure of a problem and systematically structuring
an appropriate solution.31

Another aspect of the structure “revolution” addressed the task
of carrying out the design process in an efficient and controllable
fashion. In other words, this aspect concerned management of the
process. One management strategy in particular became closely
associated with structured programming. As IBM’s F. Terry Baker
and Harlan Mills discussed in the 1973 Datamation collection, the
chief programmer team approach, while “made possible by recent
technical advances in programming, . . . also incorporates a fun-
damental change in managerial framework which includes re-
structuring the work of programming into specialized jobs, de-
fining relationships among specialists, developing new tools to
permit these specialists to interface effectively with a developing,
visible project....”32,p.61 By placing a single master programmer in
charge of design, providing appropriate support in terms of tools
and personnel, and employing structured programming tech-
niques, the chief programmer team approach could supposedly
result not only in an “entirely new technical standard for design
quality” but also in a “true professional discipline with a recog-
nized, standard methodology.”32 (Such arguments illustrate the
function that “techniques” play in the process of professionaliza-
tion.) This focus on group structure and dynamics was not alto-
gether new; Gerald Weinberg had taken the same perspective in
The Psychology of Computer Programming in 1971.33 But
whereas Weinberg had emphasized decision by consensus, Baker
and Mills saw advantages in a more authoritarian style. As evi-
dence, the authors pointed to the development of an information
bank for the New York Times, a project characterized by high pro-
ductivity and very low error rates. Questions were raised, how-
ever, concerning the extent to which the circumstances surround-
ing the project were in fact typical. Moreover, it seems the system
eventually proved unsatisfactory and was replaced some years
later by a less ambitious system.34 (It should be noted, though,
that in recounting the project, Mills presented it as an unqualified
success, making its ultimate outcome unclear.)

Given the fanfare with which structured programming (or
whatever other activity one cared to attach) was introduced, a
substantial amount of skepticism was virtually guaranteed to greet
it. Fred Gruenberger’s reaction was typical:

So now it’s structured programming and chief programmer
teams that will clear up all the troubles and make master pro-
grammers of all us clods. Pardon me while I yawn; I’ve been
here so many times. . . . Every single advance in software . . .
has been introduced with exactly the same claims. Each such
advance (and the totality of structured programming may well
be one) adds to our bag of tricks. And none of them contrib-

utes very much to the real underlying problem, which is clear
thinking in the area of problem solving.35

Likewise, Dick Butterworth of General Electric cautioned that
“SP [Structured Programming] is no panacea—it really consists of
a formal notation for orderly thinking—an attribute not commonly
inherent in programmers nor any other type.”36 John Fletcher of
Lawrence Livermore Laboratory was more scathing. He acidly
suggested that the labeling as revolutionary of the ideas underly-
ing structured programming was “clear commentary on the sad
state into which the practice of programming has fallen in many
quarters and in which it apparently will remain.”37 Fletcher appar-
ently felt the concepts falling under the structured programming
rubric consisted of long-standing fundamentals rather than reve-
latory innovations.

The term structured [programming] had
quickly assumed the status of an icon,
representing salvation in the eyes of

some and just one more dubious
quick fix in the eyes of others.

Experiences with structured programming, if not earth-
shattering, were nevertheless reasonably positive. A session on
experiences and accomplishments with SP at the 1974 Lake Ar-
rowhead Workshop on Structured Programming produced the
conclusion that programs were generally more reliable, under-
standable, and maintainable.38 James Elshoff of General Motors
compared sets of actual production programs to ascertain the ef-
fect of structured techniques and found the SP programs much
more comprehensible.39 Nevertheless, a 1976 book review in
Computer observed that the “ideas underlying the subject
[structured programming] have been intensively debated for al-
most a decade. . . . Yet there has been little sign of any real con-
sensus emerging from this debate. On the contrary, it often seems
that discussions of the merits of structured programming are be-
coming more acrimonious as time goes by.”40

Much of the caustic commentary over structured programming
did not constitute rejection of its basic tenets. As several individuals
noted, no one was in favor of unstructured programs. Rather, the
argument concerned relative value. Many practitioners objected to
perceived attempts to deify a set of useful but less than omnipotent
techniques. Many sought not to discredit structured programming
but simply to bring it and its overly zealous advocates back down to
earth. Paul Abrahams of the Courant Institute indicted the sociology
of structured programming rather than its content. “There are two
baleful aspects of this sociology: the elevation of good heuristics
into bad dogma, and the creation of the illusion that difficult prob-
lems are easy.”41 In a similar vein, Daniel Berry of the University of
California at Los Angeles (UCLA) declared that it “seems prepos-
terous to me (and to others) that the programs described in the pub-
lished descriptions of structured programming were developed as
cleanly as described in the papers....”42 A decade later, Parnas and
Paul Clements made a similar charge regarding the rationality of
design processes generally:

Splitting the Difference

26 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

The picture of the software designer deriving his design in a
rational, error-free way from a statement of requirements is
quite unrealistic. No system has ever been developed in that
way, and probably none ever will. Even the small program
developments shown in textbooks and papers are unreal.
They have been revised and polished until the author has
shown us what he wishes he had done, not what actually did
happen.43

Numerous practitioners took such arguments a step further, con-
tending that the benefits of design techniques and software engi-
neering in general were principally in the state of mind they pro-
duced. In his software keynote address at COMPCON (the IEEE
Computer Conference) in 1975, William McKeeman of the Univer-
sity of California at Santa Cruz “described structured programming
as a problem-solving process—‘a human activity that needs to be
structured....’”44 Peter Denning contended that the “whole point of
‘structured programming’ is to set up mental patterns according to
which we write programs from the beginning using the prescribed
forms. The whole point is to establish ordered and disciplined
thinking leading to clearly structured programs.”45 C. Wrandle
Barth of the Goddard Space Flight Center observed that
“catastrophes can be constructed from the top down. A chief pro-
grammer team can still design a horse as a camel. The real lessons
of software engineering are much more in the realm of attitude,
approach, and emphasis than on techniques and rules.”46 Honey-
well’s David Frost suggested more explicitly a psychological ration-
ale for structured programming, relating the concept of chunking to
programming. (Chunking refers to the process in which humans
store information in their memories by structuring or coding it.)
“What all this boils down to is that psychology provides a powerful
argument for modularity in systems design. But it is also a powerful
argument for the hierarchical design process called top-down de-
composition, as well as for hierarchical program structures, because
chunking results in essentially hierarchical structures in the mind.”47

A 1976 Datamation article by Lawrence Peters and Leonard Tripp
of Boeing placed such views in still larger perspective. They char-
acterized software design as a “wicked problem,” i.e., one that
changes during resolution and for which it is not always clear how
to proceed. Specific techniques could ease but not remove the es-
sential difficulty of the design process.48 Peters and Tripp made the
point even more explicitly in the pages of Datamation the following
year. “Software design methods merely assist in solving routine
aspects of a problem. Using a methodology only reveals the critical
issues in a design effort and gives us more time to address them. . . .
[D]esigning is problem solving—a fundamental, personal issue.”49

Indeed, Dennis Geller in a 1979 letter to Software Engineering
Notes suggested that modularity and top-down be viewed “as un-
derlying principles which reflect our understanding of our own psy-
chological and organizational limitations, rather than as
‘methodologies....’”50 In other words, such concepts constituted
fundamental problem-solving strategies precisely because they ad-
dressed basic human limitations in dealing with complexity.

Dealing with limitations in a realistic manner was certainly the
thrust of the landmark 1975 book The Mythical Man-Month, in
which Brooks analyzed his experience as manager of the OS/360
project that developed the operating system for IBM’s famous
System/360 computers. Writing in an engaging and accessible
style, Brooks addressed issues involving such things as the dy-
namics of programming teams, scaling up, design principles, and

estimation. The results were revealing insights into, for example,
the overheads inherent in large organizations, the difficulty of
producing coherent designs, and the virtual impossibility of get-
ting a software product right the first time. His epilogue concisely
sums up his analysis:

The tar pit of software engineering will continue to be
sticky for a long time to come. One can expect the human
race to continue attempting systems just within or just be-
yond our reach; and software systems are perhaps the most
intricate and complex of man’s handiworks. The manage-
ment of this complex craft will demand our best use of new
languages and systems, our best adaptation of proven engi-
neering management methods, liberal doses of common
sense, and a God-given humility to recognize our fallibility
and limitations [emphasis added].51

Observations of this sort, however, seemed unlikely harbingers of
a new age.

A new age, though, was exactly what many practitioners
sought and believed would result from formalized mathematical
attacks on the programming problem. One of the principal carriers
of this torch was Mills. (It should be noted that while formal
mathematics in programming was most prominently associated
with particular advocates—including Mills, Edsger Dijkstra, and
C.A.R. Hoare—who were often mentioned in the same breath,
they were certainly not all of one mind. Dijkstra, for example,
disassociated himself from what he considered the “empty but

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 27

impressive slogans” of Mills regarding structured program-
ming.52) In a 1975 Communications article, Mills presented a
mathematical model of structured programming to “simplify and
describe programming objects and processes. It is applied mathe-
matics in the classic tradition, providing greater human capability
through abstraction, analysis, and interpretation in application to
computer programming.” Such efforts would supposedly trans-
form programming from “an instinctive, intuitive process to a
more systematic, constructive process that can be taught and
shared by intelligent people in a professional activity.”53 Writing
the following year in IEEE Transactions on Software Engineer-
ing, he lamented the “legacy of heuristic thinking in software
development” while lauding the “powerful tools in mathematics
for expressing and validating logical design on a rigorous ba-
sis.”54 He was particularly taken with Dijkstra’s constructive ap-
proach to program correctness (in which a program and its proof
are developed concurrently) as articulated in A Discipline of Pro-
gramming, which came out that same year.55 A rigorous, formal
approach of this type stood in contrast to a mere “attitude.”

While debate swirled around structured programming in gen-
eral, the goto statement continued to serve as lightning rod. Goto
statements unconditionally transfer program execution to some
other instruction out of sequence. In the late 1960s, Dijkstra had
called attention to the deleterious and unnecessary complexity
their use engendered; avoidance of goto statements quickly be-
came one of the most prominent mantras of the structured pro-
gramming movement. The goto drew so much attention, in fact,
that sometimes it seemed as if practitioners were incapable of
seeing the forest for the trees. The flap over the goto was in full
display at the 1972 ACM National Conference, with several nota-
bles taking sides.56 In a 1974 piece, Donald Knuth argued that it
was indeed possible to write well-structured programs with goto
statements. He advocated limited, disciplined use, however.57 In a
1976 article in SIGPLAN Notices (the publication of the ACM’s
Special Interest Group on Programming Languages), Richard
DeMillo, S. Eisenstat, and Richard Lipton set out to determine
formally whether structured control mechanisms could efficiently
simulate programs using the goto construct. They developed for-
mulas indicating that a significant loss of efficiency occurred,
which manifested itself either in increased program size or in
slower execution.58 Ronald Jeffries responded that his firm’s re-
written code did not suffer in such a fashion and asserted that “we
need approaches to design which, in the hands of ordinary mor-
tals, yield programs that work. The techniques of ‘structured pro-
gramming’ seem to help us meet those goals.”59 Jeffries obviously
found theoretical debates over the goto of less concern than find-
ing design techniques of practical value. SofTech’s William Ro-
senfeld also suggested that the authors “seem to have missed the
point of the structured programming debate. It is not the objective
of structured programming to improve the efficiency of control
structures but rather to improve program readability. . . . Too
much time is spent making programs efficient and not enough
time is spent making them useful and correct.”60

Indeed, a 1975 Communications article by Henry Ledgard and
Michael Marcotty suggested that the whole debate over control
structures was getting out of hand. Nevertheless,

while it may be argued that the control structure issue has
been entirely overworked, the debates and polarized opin-
ions remain. On the one side we have the well-known views

of Dijkstra and Mills, who have advocated the strict use of
the if-then-else and while-do control structures and their
variants. On the other side, we have the views of Knuth,
who has recently presented interesting arguments on the
utility of the goto.61

The authors remained convinced that the basic structures Dijkstra
advocated—sequence, selection, and repetition—were sufficient
for the practicing programmer.61,p.638 A 1978 Workshop on the
Science of Design also concluded that efficiency was no longer
king. “No matter how elegant proving and testing techniques are,
they cannot replace design correctness. . . . In this regard, design
constraints that result in better testability and better verification
even though the hardware may be used less efficiently should be
encouraged.”62 In other words, good software implied more than
efficient software.

“We need approaches to design which,
in the hands of ordinary mortals, yield

programs that work.”

Over the course of the 1970s, attributes other than efficiency
began to dominate concern over software characteristics. Effi-
ciency remained a legitimate concern, but it could no longer be
the only concern. The vast increases in complexity necessitated a
more complex value structure. A fast but incomprehensible pro-
gram was no bargain; errors and maintenance difficulties rendered
speedy execution far less advantageous. Tools such as structured
techniques were means toward satisfying the demands of the new
value structure, but difficulties arose in evaluating the results of
their application. Like so much else in the developing software
field, software metrics quickly settled into the motherhood and
apple pie category. Everyone agreed on the importance of proper-
ties such as clarity, reliability, and maintainability for software
quality but nobody was sure how to measure them. While effi-
ciency lent itself to relatively straightforward measurement in
terms of execution times, more nebulous criteria proved less
obliging. Traditional measurement methods that concentrated on
statistical analyses of defects and breakdowns were clearly inade-
quate for a medium in which many problems originated in speci-
fication and design rather than physical deterioration. The concept
of a physical breakdown is a non sequitur in the realm of soft-
ware. Of concern, rather, is how to determine, for instance, which
design is less complex than another and thus likely to be less
flawed and more maintainable. By 1978, consultant Tom Gilb
could still complain in the pages of Software Engineering Notes
that “quality goals are like the weather; everybody talks about
them, but nobody quantifies them.”63

In this sphere also, many found the allure of the “hard” sci-
ences irresistible. Kolence argued in Datamation in 1971 that
“performance measurement is inextricably linked to the study of
the natural laws governing the behavior of software in situ,” an
area he dubbed software physics.64 Around the same time,
Maurice Halstead of Purdue University began experimenting with
formulas relating structural properties of programs (e.g., numbers
of operators and operands) to coding time and expected error
counts. Halstead laid out his findings and arguments in 1977 in
Elements of Software Science.65 The year before, Thomas
McCabe of the National Security Agency, whose work is often

Splitting the Difference

28 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

mentioned in the same breath as Halstead’s, described in IEEE
Transactions on Software Engineering a measure of program
complexity he termed the cyclomatic number.66 The cyclomatic
number was a function of the number of potential logical execu-
tion paths through a structured program. But even here the sheer
complexity of the object forced a compromise. The impracticabil-
ity of attempting to calculate the total number of paths led to a
definition based on “basic paths,” which when combined would
generate every possible path. A 1977 article in SIGPLAN Notices
by Glenford Myers of IBM provided evidence of the utility of the
cyclomatic metric. In Myers’s opinion, “McCabe’s proposal
seems to be . . . one of the most intuitively satisfying, simplistic,
and easy-to-apply complexity measures.”67 Myers noted that the
cyclomatic metric confirmed the subjective judgments of B. Ker-
nighan and P. Plauger in The Elements of Programming Style
(1974) as to the relative complexity of various control structures.

Measuring software complexity, however, turned out to be a
complex business in and of itself. Myers had puzzled over the
existence of structured programs that registered a greater com-
plexity than their unstructured equivalents. In 1978, Elshoff and
Marcotty attempted, also in SIGPLAN Notices, to explain such
apparent aberrations. They suggested that things were even more
complicated than they appeared, “Cyclomatic complexity is only
one component in the measurement of the overall complexity of a
program. A reduction in one measure of complexity will often
result in an increase in another aspect of complexity.”68 In other
words, the very phenomenon of software complexity was com-

plex, manifesting itself in a variety of interrelated ways. The real
world would not even accommodate a straightforward notion of
complexity. Therefore, Elshoff and Marcotty concluded, “the use
of [an] empirically determined bound for complexity as a pro-
gramming guideline . . . seems to be reasonable. On the other
hand, the use of the cyclomatic complexity for the direct compari-
son of programs . . . is fraught with danger.”68,p.39 That one of the
best software metrics available was not useful as a basis for pro-
gram comparison reflected the individualistic nature of programs,
which was in turn a reflection of the malleability of the software
medium. A 1977 Datamation essay voiced a similar theme, ques-
tioning “the wisdom of attempting to discover universal measures
for problems which are, perhaps inherently and certainly practi-
cally, local in character.”69

The malleability of the medium was even more explicitly rec-
ognized in a 1978 piece in Transactions. Edward Chen of Travel-
ers Insurance argued that complexity metrics generally ignored
the fact that “there exist, in general, multiple solutions, and the
programming process can be envisaged as a combination of both
analysis and synthesis processes aimed at identifying the most
desirable solution among a large number of feasible alterna-
tives.”70 In other words, the problem was not simply the com-
plexity of the resulting artifact, but the inherent complexity in-
volved in the design of the artifact. One derived benefits from a
design of relatively low complexity, but arriving at that design
was a complex matter itself. Several General Electric scientists
put forward a similar view the following year. Differentiating
between the computational complexity of the algorithm and the
psychological complexity of the programming process, they con-
cluded that “assessing the psychological complexity of software
appears to require more than a simple count of operators, oper-
ands, and basic control paths. If the ability of complexity metrics
to predict programmer performance is to be improved, then met-
rics must also incorporate measures of phenomena related by
psychological principles to the memory, information processing,
and problem solving capacities of programmers.”71 The apparent
necessity of such measures suggests the importance of funda-
mental cognitive processes and strategies in dealing with soft-
ware. Nevertheless, N.F. Schneidewind and H.-M. Hoffmann
concluded that same year that “for similar programming environ-
ments and assuming a stable programming personnel situation,
structure would have a significant effect on the number of errors
made and labor time required to find and correct the errors. . . . It
would be worthwhile to use complexity measures as a program
design control to discourage complex programs and as a guide for
allocating testing resources.”72 They also suggested that while no
single measure of program complexity had proven “best” in their
experiment, the cyclomatic metric appeared most practical due to
its relative ease of computation.

The notion that no single metric qualified as “best” received
reinforcement in the 1980s. A 1982 Computer article that dis-
cussed the relationship of complexity metrics to software main-
tenance observed that while measures based on program size
worked well in differentiating programs of widely varying sizes
with respect to maintenance costs, measures dealing with data
structure, data flow, and flow of control were needed to rank
programs of similar size. "The hybrid approach to measuring
software complexity is clearly the most sensible approach,"
concluded the authors. “Software complexity is caused by so

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 29

many different factors that measuring only one of them cannot
help but give unreliable results for a general case.”73 American
Bell’s William Evangelist voiced a similar view in SIGPLAN
Notices the following year, suggesting the need to “represent
software complexity as a combination of quantities derived
from both static and dynamic program properties.” He also
noted, however, the sticky problem of “precise identification of
those quantities of importance and the relative weight each
should have.”74 Indeed, an analysis of several metrics, including
those of Halstead and McCabe, by a team at the University of
Maryland using an experimental database produced the conclu-
sion that “none of the metrics examined seem to manifest a
satisfactory explanation of effort spent developing software or
the errors incurred during that process.”75 A 1988 critique of
cyclomatic complexity in the Software Engineering Journal (a
joint publication of the British Computer Society [BCS] and the
Institution of Electrical Engineers) went even further, suggest-
ing that “it is arguable that the search for a general complexity
metric based upon program properties is a futile task. Given the
vast range of programmers, programming environments, pro-
gramming languages and programming tasks, to unify them into
the scope of a single complexity metric is an awesome task.”76

However, while many technologists seemed to agree with such
sentiments in principle, J. Paul Myers, Jr., of Trinity University
complained in 1992 that “new metrics are introduced nonethe-
less as ‘all-purpose’ measures of software complexity.”77

An IEEE Software article later that year attempted to finesse
the problem by using factor analysis to aggregate individual
complexity metrics into one overall complexity value. Many of
the more than 100 existing metrics, the authors contended,
“measure many of the same things. Our research leads us to
believe that existing metrics probably measure no more than
four or five distinct types of complexity. Assuming this is true,
the best metric would represent as much variance in these un-
derlying complexity domains as possible.”78 They therefore
proposed a metric called “relative complexity,” the product of
mapping individual complexity metrics into independent com-
plexity domains—control, size, modularity, information content,
and data structure—the resulting weighted values (relative sig-
nificance for that program) of which were then converted into a
single complexity score for each program module. In a sense,
though, such a scheme begged the question, since in order to
make sense out of any given relative complexity, the score
would have to be unpacked to give the scores in the different
complexity domains. Moreover, it did not address the issue of
whether particular metrics might prove more or less suitable for
given settings. While the metrics in one complexity domain
might all be measuring the same type of complexity, some could
prove more meaningful than others depending on circumstances
such as application type and the particulars of the development
environment. These more meaningful metrics would then be
diluted by the presence of less appropriate ones. Indeed, writing
in IEEE Software in 1988, Basili had criticized the tendency of
organizations to employ metrics that “are bottom-up and based
blindly on models and metrics in the literature, rather than top-
down and based on an understanding of their own processes,
products, and environment.”79 The importance of such context
sensitivity was affirmed by the former director of Contel’s soft-
ware metrics program five years later. “Different projects have

different products, environments, domains, goals, and custom-
ers, so developers have different needs. The metrics collected
should reflect the project’s process maturity and needs. It is not
only natural but desirable for different projects to collect differ-
ent metrics.”80

Clearly, software complexity was itself complex, with a multi-
tude of facets that defied management or measurement by any
single method. Simple, singular approaches were unlikely to do
the trick in a complicated and messy reality. Complexity was a
slippery concept, and while various “structured” techniques
helped control the complexity of both design activity and the de-
sign itself, they hardly constituted a panacea. Moreover, deter-
mining the complexity of a particular design in some absolute
sense as well as relative to other designs was a tricky business. A
number of practitioners even acknowledged the essential fuzzi-
ness of design activity, suggesting that the principal benefits of
structured programming derived from general mental patterns
rather than specific techniques. Structured techniques constituted
one important pragmatic response to the problems of software
technology. Their promotion by some practitioners as dogma
rather than as practical tools served only to stiffen resistance.

Correctness Versus Confidence:
Program Verification
The issues of complexity, pragmatic accommodation, and self-
image were nowhere so apparent as in the area of program verifi-
cation. But while people could disagree over software metrics

Splitting the Difference

30 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

with little rancor, the question of how to determine a program’s
“correctness”—whether the program met its specifications—
aroused passions. The controversy pitted the advocates of pro-
gram testing against the promoters of formal verification. That the
former was often viewed as the “engineering” approach while the
latter was seen as more “scientific” or mathematical is suggestive
of both the nature of the techniques and the self-images of practi-
tioners. The nature of the solution sometimes seemed to be a
function of the perceptions of the practitioner as to what he or she
was (scientist or engineer) and just what that entailed. What be-
came apparent to at least a handful of practitioners, however, was
the existence of a middle ground. Complexity took its toll in every
venue and defied singular or absolutist approaches. Just as it had
in the case of software design and metrics, pragmatism in the case
of verification translated into accommodation and synthesis.

There was little disagreement in the 1970s that software quality
was too often a contradiction in terms. People agreed less on pre-
cisely what to do about it. Quality assurance techniques developed
for hardware were of dubious applicability. As a 1971 Computer
article noted, it “would indeed be fortunate if the well-developed
theory of hardware reliability could be used to predict or enhance
the reliability of software. Unfortunately, this is not to be the case
as hardware reliability theory is based mainly upon the statistical
analysis of random failures of components with age.”81 Never-
theless, something had to be done. In a 1974 Datamation piece,
Tom Steel of Equitable Life Insurance declared:

[T]he major critical problem in the [computer] industry is, in
my view, the quality of software, whether vendor or user pro-
duced. . . . It is usually inadequate functionally, inconsistent
between actuality and documentation, error-ridden and inex-
cusably inefficient. Beyond all that, it costs far too much. I
can think of no other products (aside, perhaps, from pornog-
raphy and telephone service in New York) that have all these
failings to anything like the degree found in software.82

The search for a “back-end” answer followed two distinct paths—
testing and formal verification. Testing sought to develop reason-
able confidence that a program or system would behave as was
intended by “exercising” the program. Formal verification (also
referred to as program proving and proofs of correctness) sought
to prove mathematically that a program matched its specifications.
These two approaches tended to attract and foster often antago-
nistic mind-sets.

The idea of testing a program was hardly new, but the rela-
tively new emphasis on the software development process
prompted increased emphasis on more systematic testing
throughout the development cycle. A 1971 Datamation article
advised readers to “‘think testing’ right from the start—modules,
programs, systems—all designed to be tested along the way.”83

Mirroring the increasing fashionability of structured programming
as the decade progressed, the late 1970s saw numerous calls for
structured testing. Complaining in 1977 that testing continued to
be a “witch-hunt,” Dorothy Walsh advocated a structured ap-
proach to testing that “formalizes the intuitive good practices that
are its foundation and provides procedures for using them that
may be carried out even by inexperienced programmers.”84 A
Datamation piece the following year argued for top-down testing
in addition to top-down coding.85

Making testing a more integrated part of the development
process was all well and good, but testing proved just as vulner-
able to the pernicious effects of mounting complexity as other
aspects of software development. One can test software both stati-
cally and dynamically, and both are problematic. Static tests focus
on program structure, while dynamic tests focus on program exe-
cution. Put another way, static tests checked the program’s logic,
while dynamic tests checked the program’s function. Ideally, this
meant checking every possible logical path, in the case of the
former, and testing with every possible set of inputs (with respect
to the program specification), in the case of the latter. Complexity,
however, could easily defeat both strategies; combinatorial explo-
sion rendered both complete path testing and exhaustive dynamic
testing totally impractical in most instances.

The problem of test data selection attracted much attention. As
was noted in Datamation in 1977:

the key to constructing a minimal yet logically complete set of
test data is the accurate and explicit enumeration of all cases
or conditions handled by the program or system. . . . The
quality of the systems test often breaks down precisely at this
starting point. The complete definition of test cases is viewed
as an impossible task, so no attempt at an orderly enumeration
of conditions to be tested is made at all.86

In other words, the complexity of typical software precluded the
economical derivation of test data that would completely exercise
all aspects of the program. Raising confidence in software testing
would require more than brute force. While some advocated the

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 31

use of randomly generated test cases, most sought a more ration-
alized solution.

In a 1975 article in Transactions, John Goodenough and Susan
Gerhart of SofTech sought to finesse the problem. They suggested
that the input domain of a program could be partitioned into
classes of inputs such that the testing of one element of a class
was equivalent to testing the entire class: “This pinpoints the fun-
damental problem of testing—the inference from the success of
one set of test data that others will also succeed, and that the suc-
cess of one test data set is equivalent to successfully completing
an exhaustive test of a program’s input domain.”87

This was easier said than done, principally because, despite the
attempt at systematization, particular cases of program conditions
were nevertheless considered in an ad hoc fashion. Variations on
this approach were offered in later years. But those who awaited
the arrival of a comprehensive theory of testing amenable to
automation found little encouragement in a 1980 editorial in
Transactions that observed there was “increasing recognition that
it is unlikely there will be a grand theory of testing which will
lead to fully automatic testing systems. Instead the tester will be
called upon to use his intuition and problem-dependent knowl-
edge in a disciplined manner to test for a variety of specified error
types.”88 Attempting to apply computational leverage to testing
encountered the same difficulties as attempts to leverage other
problem domains; variability and complexity placed limits on
effective formalization and automation. DeMillo, Lipton, and
Frederick Sayward had made a similar observation two years
earlier: “Until more general strategies for systematic testing
emerge, programmers are probably better off using the tools and
insights they have in great abundance. Instead of guessing at
deeply rooted sources of error, they should use their specialized
knowledge about the most likely sources of error....”89 Here was
another acknowledgment of the importance of local, problem-
specific knowledge.

A similar spirit of pragmatism was evident in a 1980 piece in
Transactions that attempted to make the Goodenough–Gerhart
theory “more than an unattainable ideal,” by using it to detect
certain classes of error thought likely to occur.90 Likewise, writing
in IEEE Software in 1985, Nathan Petschenik of Bell Communi-
cations Research argued for the setting of “practical priorities” in
the selection of case studies by looking for key problems that
would cause massive disruption rather than attempting to track
down all or nearly all problems in the software.91 Practical ac-
complishment demanded pragmatic concessions.

Even more pragmatic were practitioners who, instead of pin-
ning their hopes on the arrival of a grand theory of testing, began
to explore a combination of various strategies. In a 1984 Transac-
tions article, Simeon Ntafos of the University of Texas described
an approach that combined structural (based on control flow),
black-box (based on the program’s input specifications), and er-
ror-driven (based on known errors) approaches to generate test
cases.92 The following year, Sandra Rapps and Elaine Weyuker at
the Courant Institute proposed employing both data flow and
control flow as a basis for determining path coverage. Mitre’s
Samuel Redwine, Jr., had explicitly suggested in 1983 an
“engineering approach” to generating test data that revolved
around the idea of “different domains and types or metrics of
coverage.”93 The use of a combination of testing strategies con-
stituted a pragmatic response to the deficiencies of individual

approaches. Such remedies held little appeal, however, for those
who saw legitimacy and efficacy as the products of formalism
rather than heuristics.

Stemming from the fundamental work of Floyd in the 1960s,94

program verification with its formal mathematical basis appeared
a haven from the dirty, ad hoc world of testing. In a 1971 article in
Communications, Hoare presented a proof of the correctness of a
simple program. He urged the incorporation of such proofs into
the coding process, suggesting that carrying out proofs in this
fashion was “hardly more laborious than the traditional practice of
program testing.”95 Writing in the Computer Journal (the research
journal of the BCS) that same year, he and a colleague attempted
to demonstrate the practicality of employing previously proven
programs (in this case, a subroutine) in the proof of a new pro-
gram. Just as important in this case was the claim that the pro-
gram to be proved was “realistic” and “nontrivial.”96 Hoare ad-
dressed the scaling-up issue even more explicitly the following
year, admitting that the application of proof techniques “even to
small programs is already quite laborious, so their direct applica-
tion to large programs is out of the question.”97 There were chal-
lenges, however, not only with respect to the question of scaling-
up but also with regard to the epistemological foundations of
proof methods.

Stemming from the fundamental work
of Floyd in the 1960s, program

verification with its formal
mathematical basis appeared a haven
from the dirty, ad hoc world of testing.

The battle was formally joined on a widespread basis in 1979,
when DeMillo (Georgia Institute of Technology), Lipton (Yale),
and Alan Perlis (Yale) argued in their article “Social Processes
and Proofs of Theorems and Programs” that “in the end, it is a
social process that determines whether mathematicians feel confi-
dent about a theorem—and we believe that, because no compara-
ble social process can take place among program verifiers, pro-
gram verification is bound to fail.”98 In mathematics, they con-
tended, the proof of a theorem constitutes a message that is dis-
seminated, scrutinized, and commented on: “Being unreadable
and—literally—unspeakable, verifications cannot be internalized,
transformed, generalized, used, connected to other disciplines,
and eventually incorporated into a community conscious-
ness.”98,p.275 Toy proofs such as Hoare’s 1971 verification of the
FIND algorithm left them cold: “There is no continuity between
the world of FIND . . . and the world of production software,
billing systems that write real bills, scheduling systems that
schedule real events, ticketing systems that issue real tick-
ets.”98,p.277 So many of software’s problems were so intimately
connected with scale, the authors were arguing, that a toy (i.e.,
very small-scale) proof of concept amounted to no proof at all.
The practicality of formal verification had yet to be demonstrated
through application to large-scale programs. Even then, their prin-
cipal argument would remain undented; they would still lack con-
fidence in the result.

Verification advocates were not slow to pick up the gauntlet.
Leslie Lamport of SRI International declared, “I am one of those

Splitting the Difference

32 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

‘classicists’ who believe that a theorem either can or cannot be
derived from a set of axioms. I don’t believe that the correctness
of a theorem is to be decided by a general election.”99 W.D.
Maurer of George Washington University argued essentially that
it was not software engineers who should adopt the social proc-
esses of mathematics but rather the mathematicians who should
make use of the computer to produce complete formal proofs.100

Implicit in such an assertion was the view that all good things
flowed from rigorous formalism. (The formal methods movement
will be discussed in the next section.) As for reliance on program
testing, he asserted that was “the way other sciences and engi-
neering disciplines used to function, with disastrous results. The
Tacoma Narrows Bridge collapsed because people were designing
bridges, in those days, with no thought whatever to proving that
they would not collapse.”100,p.628 DeMillo, Lipton, and Perlis
found this claim “a complete distortion of fact, and to suggest that
engineers [engage in formal proofs of correctness] . . . now is
simply false.”101

Maurer’s view was indeed a distortion and a revealing one.
The Tacoma Narrows Bridge was the first suspension bridge to
connect the mainland of Washington State with the Olympic
Peninsula. The bridge demonstrated a pronounced tendency to
undulate and tore itself apart only months after it opened in 1940.
Analysis after the fact revealed that the bridge had behaved in a
fashion similar to an airplane wing in uncontrolled turbulence. As
Henry Petroski notes, the problem was not the result of a failure
to check the design. Rather, “the possibility of failure of the Ta-
coma Narrows Bridge in a crosswind of forty or so miles per hour
was completely unforeseen by its designers, and therefore that
situation was not analyzed [emphasis added]. On paper the bridge
behaved well under its own dead weight and the light traffic it
was to carry.”102 The problem did not reside within the realm of
verification, but within that of design. Just as unforeseen condi-
tions produce software errors, so, too, did they produce the Ta-
coma Narrows Bridge failure. Formalism is of no help in such
instances. That Maurer believed so illustrates how the debate over
such issues was often clouded by confusion over the nature of
engineering (and science).

DeMillo, Lipton, and Perlis were hardly alone in their doubts
over the usefulness of formal verification. Richard Hill of A.C.
Nielsen Management Services commented that he could not recall
“a single instance in which a proof of a program’s correctness would
have been useful.”103 H. Lienhard of Switzerland applauded even
louder: “It was time somebody said it—loud and clear—the formal
approach to software verification does not work now and probably
never will work in the real programming world. . . . There is one
dimension that is crucial in ‘real-life’ programs: complexity. The
problem of software engineering is usually not the finding of ‘deep
theorems’ but rather the highly nontrivial task of mastering com-
plexity.”104 All this, however, was a replay of an earlier debate in
the pages of Software Engineering Notes. An earlier version of
“Social Processes and Proofs” had been presented at the 1977 ACM
Symposium on Principles of Programming Languages, and it had
prompted a strong response from Dijkstra. Terming it “a very ugly
paper” in “the style of a political pamphlet,” Dijkstra protested that
the authors “just ignore that how to prove—not in the silly ways
they depict, but more elegantly—‘the correct functioning of par-
ticular pieces of software’ is the subject of a lively interchange of
experiences between scientists active in the field.”105 “Unaware that

the ‘problems of the real world’ are those you are left with when
you refuse to apply their effective solutions, they confirm the im-
pression of anti-intellectualistic reactionaries....”105,p.15 DeMillo,
Lipton, and Perlis did not take this lying down, refusing to concede
that their confidence in a piece of “real” software had ever been
increased by a proof of correctness. They also maintained that “the
verifications . . . are long, ugly, and boring, no matter how concise,
elegant, and fascinating the idea of verification may be. If verifica-
tions of real programs are currently being socialized, Professor
Dijkstra should have no trouble pointing to the channels of commu-
nication.”106 In response to a Dijkstra position paper on reliability,
H.J. Jeffrey of Bell Labs contended that if one examined what peo-
ple actually did, “what emerges is that formal correctness is really a
peripheral issue in software reliability, which is primarily concerned
with how to do a good software job without formal correctness
proofs.”107 Here again was a view concerned with practical accom-
plishment rather than the enshrinement of absolutes.

Even if it was not a chimera, program correctness still guaran-
teed only that the implementation matched the specifications. This
was of dubious value, as the Tacoma Narrows Bridge so amply
demonstrated, if the specifications themselves were flawed. A
1975 Transactions article examined data from both real and ex-
perimental software with the aim of better understanding software
errors. The authors concluded that “the ability to demonstrate a
program’s correspondence to its specification does not justify
complete confidence in the program’s correctness since a signifi-
cant number of errors are due to incomplete or erroneous specifi-
cation....”108 The difficulty of producing complete and correct

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 33

specifications was at the heart of a 1977 Transactions article by
Douglas Ross and Kenneth Schoman, Jr., of SofTech. While con-
tending that the problem was not insurmountable, they neverthe-
less observed that software designers “attempt to do the same
[requirements definition as manufacturers] of course, but being
faced with greater complexity and less exacting methods, their
successes form the surprises, rather than their failures! Experience
has taught us that system problems are complex and ill-defined.
The complexity of large systems is an inherent fact of life with
which one must cope.”109

Why, then, was formal verification so appealing? Gerhart prof-
fered a telling observation at a 1978 Workshop on Software Test-
ing and Test Documentation. Academic researchers, she sug-
gested, “have found program proving far more attractive, with its
logical mathematical origins and possible integration with the
programming process, than testing with its statistical and experi-
mental origins and a posteriori programming phase.”110 But even
Dijkstra had expressed some doubts about the hope held by a
number of academic researchers that the verification process
could somehow be made easy, that one could enjoy the fruits of
formal mathematics without paying a price. In a 1975 essay in
SIGPLAN Notices, he contemplated attempts to automate the
process:

We see automatic theorem provers proving toy theorems,
we see automatic program verifiers verifying toy pro-
grams and one observes the honest expectation that with
faster machines with lots of concurrent processing, the
life-size problems come within reach as well. But, honest
as these expectations may be, are they justified? I some-
times wonder....111

Clearly, though, the stance people took with regard to testing ver-
sus formal verification was at least partially a function of how
they perceived themselves. Self-perceived scientists might de-
velop a very different view than self-perceived engineers. Where
you sit sometimes determines where you stand.

Somewhere between the true believers and the heretics resided
what a number of practitioners regarded as the pragmatic middle
ground. Andrew Tanenbaum suggested that correctness proofs
“have their place, but they can easily lull one into a false sense of
security, and therein lies the potential danger.” He viewed testing
and formal verification as complementary rather than competing
approaches.112 Likewise, Gerhart and Lawrence Yelowitz con-
cluded after examining a variety of supposedly correct programs
that “experience with both testing and mathematical reasoning
should convince us that neither type of evidence is sufficient and
that both types are necessary.”113 In a similar vein, Parnas opined,
“both sides hold to such extreme positions that convergence on
the truth, which both are seeking, is not possible.” He attributed
this divergence to a misguided analogy between programming and
mathematics; the proper analogy compared programming with
engineering.114 Yet, either analogy was bound to discomfit those
left out. Moreover, as has been noted, not everyone subscribed to
the distinction. Acknowledging the somewhat “dirty” nature of
engineering, Parnas maintained that engineering mathematics
“need not meet the standards set by mathematicians because it is
not the only way to test an engineering design.” He, too, advo-
cated a combination of testing and formal verification as a means
of increasing confidence in software.114 A 1985 Transactions

article proposed a method—partition analysis—that attempted just
such an integration.115

For almost a decade following DeMillo, Lipton, and Perlis’s
attack, the formal verification issue remained relatively quiescent,
with each camp seemingly content to go its own way. The peace
was shattered once again, though, in the pages of Communica-
tions in 1988. James Fetzer, a professor of philosophy at the Uni-
versity of Minnesota, proceeded to drop another bombshell on the
formal verificationists. In “Program Verification: The Very Idea,”
Fetzer argued that DeMillo et al. had reached the right conclusion
for the wrong reason. While acknowledging their point about the
necessity of social processes in proof validation, Fetzer contended
that such processes could in principle be incorporated into formal
verification and were therefore not an intractable obstacle to it.
According to Fetzer, there was still an inescapable problem that
cast doubt on the claims of the verificationists. Fetzer argued for

the theoretical necessity to distinguish programs as encod-
ings of algorithms from the logical structures that they rep-
resent. . . . Algorithms, rather than programs, thus appear to
be the appropriate candidates for analogies with pure
mathematics, while programs bear comparison with applied
mathematics. Propositions in applied mathematics, unlike
those in pure mathematics, run the risk of observational and
experimental disconfirmation.116

Clearly, though, the stance people took
with regard to testing versus formal

verification was at least partially
a function of how they
perceived themselves.

To simplify a fairly complex argument, Fetzer’s case centered on
distinctions between absolute and relative verification and be-
tween abstract and physical machines. Absolute verification con-
cerns conclusions derived only from primitive axioms while rela-
tive verification concerns conclusions derived from premises
whose truth cannot be absolutely verified. Thus,

the properties of abstract machines that have no physical
machine counterparts can be established by definition, i.e.,
through stipulations or conventions, which might be for-
malized either by means of program rules of inference or by
means of primitive program axioms. . . . By comparison,
programs [meant to be compiled and run on real machines]
 . . . are merely subject to relative verification, at best, by
means of deductive procedures. Their differences from al-
gorithms arise precisely because, in these cases, the proper-
ties of the abstract machine they represent, in turn, stand for
physical machines whose properties can only be established
inductively.116,p.1,058

In other words, programs intended for execution on computers
“cannot be subject to absolute verification, precisely because the
truth of these axioms depends upon the causal properties of physi-
cal systems, whose presence or absence is only ascertainable by
means of inductive procedures. . . . This conclusion strongly sug-
gests the conception of programming as a mathematical activity
requires qualification in order to be justified.”116,p.1,059 The gist of

Splitting the Difference

34 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Fetzer’s argument, then, was that because programs run on actual
computers in an empirical reality subject to all kinds of complex
and often unexpected interactions, rather than on abstract comput-
ers in a closed, mathematical system, programming had to be seen
as applied (and thus less than certain) mathematics rather than as
pure mathematics (amenable to absolute verification) as many
formal verificationists seemed to view it.

Whether the resulting furor exceeded that prompted by the
“Social Processes” paper is arguable, but it was certainly the equal
of it. One of the strongest salvos was a joint attack launched by 10
distinguished computer scientists. The “Gang of Ten,” as Fetzer
dubbed them, included Basili, Gerhart, David Gries, Nancy
Leveson, and Peter Neumann. According to this outraged group,
Fetzer’s article “is not a serious scientific analysis of the nature of
verification. The article distorts the practice and goals of program
verification and reflects a gross misunderstanding on the part of
the author about the nature of program verification. This article
does not meet minimal levels of serious scholarship.” They went
on to damn the editors as well, contending that “by publishing the
ill-informed, irresponsible, and dangerous article by Fetzer, the
editors of Communications have abrogated their responsibility, to
both the ACM membership and to the public at large....”117 The
editors stood by their decision, while Fetzer, displaying no second
thoughts either, proceeded to return fire. After inviting the Gang
of Ten to accompany cruise missiles on future flights in order to
demonstrate the feasibility of constructing verifications of dy-
namic (self-modifying) programs, Fetzer declared that “in its in-
excusable intolerance and insufferable self-righteousness, this
letter exemplifies the attitudes and behavior ordinarily expected
from religious zealots and ideological fanatics, whose degrees of
conviction invariably exceed the strength of the evidence.” Fetzer
was supported in this view by one reader who “having read the
vitriolic, unjustified, unreasoned attacks on Fetzer,” suspected that
“at least some defenders of program verification can find no real
arguments to rebut Fetzer’s contentions and resort to meaningless
insults in a desperate attempt to defend a position that cannot be
logically defended.”118

Beneath all the verbal barbs, however, lay a legitimate point of
contention. One of the principal criticisms leveled at the Fetzer
article, by the Gang of Ten and by others in somewhat more
measured terms, was that it attacked a straw man, a “parody” of
formal verification. For example, one reader commented that the
article “does a disservice to the cause of the advancement of the
science of programming by belaboring the rather obvious fact that
programs which are run on real machines cannot be completely
reliable, as though advocates of verification thought other-
wise.”119 Another contended that it “makes one important but
elementary observation and takes it to an absurd conclusion.”120

Fetzer responded that such complaints were without merit inas-
much as “the principal position under consideration with respect
to program verification, no doubt, is that of C.A.R. Hoare and
those [such as Dijkstra] who share a similar point of view, a mat-
ter about which my article is quite explicit.”121 John Dobson and
Brian Randell at the University of Newcastle Upon Tyne sug-
gested that the problem was essentially one of misleading rheto-
ric, that although formal verificationists did not truly believe in
the possibility of absolute verification, they nevertheless sounded
as if they did, hence the confusion.122 This, however, seemed to
ignore a distinction Fetzer had made earlier. “I am not promoting

the view that program verification purports to provide absolute
certainty, but rather attacking the belief that this might be possi-
ble.”123 A couple of readers, though, apparently felt the problem
was more than one of miscommunication, with one commending
Fetzer on exposing “the naivete of computing researchers in gen-
eral and their illusions concerning the relevance of mathematical
formalisms in particular.”124 In this, though, he seemed to go far
beyond Fetzer’s own views, for Fetzer repeatedly emphasized that
he was not arguing that formal verification was, by definition,
illegitimate, but rather that its use had to be accompanied by an
understanding of its limitations, limitations that suggested that
“the techniques of program verification have to play a much more
limited role in assuring the production of high quality software
than its advocates suggest.”125 Such an attitude seems to place
Fetzer, despite the view of the formal verification community,
closer to the pragmatic middle ground than to the antiverification
extreme.

Pragmatism also manifested itself in the explicit observation
that dogmatic insistence on perfect programs was likely to pro-
duce more frustration than achievement. In a 1976 Transactions
editorial, Leon Stucki of McDonnell Douglas advocated a design
philosophy aimed not at producing error-free programs but at
producing easily testable software.126 Later that year, C.V.
Ramamoorthy and colleagues suggested what they termed “partial
validation.” “Partial validation is a practical approach which can
be used to establish a sufficient degree [emphasis added] of confi-
dence in the reliability of a program. This approach partitions
program characteristics into a number of classes and then vali-
dates each class to a specified extent.”127 A similar point of view
was articulated two years later in a Transactions article on soft-
ware reliability models. The authors stated flatly, “It is neither
necessary nor economically feasible to get 100 percent reliable
(totally error-free) software in large, complex systems.”128

Accepting this, however, raised the question of what could be
done to ensure that residual errors would be merely inconvenient
rather than disastrous. The answer was to make software “fault-
tolerant.” As Leveson of the University of California at Irvine
asserted in a 1982 piece in Software Engineering Notes,

since removal of all faults and perfect execution environ-
ments cannot at this point in time, and perhaps never will,
be guaranteed . . . there is incentive to make software fault-
tolerant. In this approach, it is assumed that run-time errors
will occur, and techniques are used to attempt to ensure that
the software will continue to function correctly in spite of
the presence of errors.129

Software fault tolerance differed from traditional engineering
safety factors, however, in that the latter is a matter of physical
tolerances while the former involves detection of and recovery
from unforeseen errors. One approach Algirdas Avizienis and
John Kelly of UCLA championed was to develop multiple inde-
pendent versions of a program—N-version programming. Inde-
pendent development efforts would supposedly produce programs
unlikely to contain the same errors. “The obvious advantage of
design diversity is that reliable computing does not require the
complete absence of design faults, but only that those faults not
produce similar errors in a majority of the designs.”130 The space
shuttle program employed a similar scheme in the development of
its basic flight software to guard against “generic” software errors.

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 35

One can only imagine the reaction of those involved when, in the
second half of the 1980s, doubts were raised as to the validity of
the assumption underlying multiversion programming. Writing in
IEEE Transactions on Software Engineering, two National Aero-
nautics and Space Administration researchers observed that recent
research had “demonstrated that programmers given the same task
are prone to make mistakes that potentially reduce the effective-
ness of a fault-tolerant approach.”131 Such mistakes could poten-
tially produce “coincident failures” in which two or more program
versions would fail (albeit not necessarily in precisely the same
way) given identical input. This raised the possibility, in a major-
ity voting scheme, of correct versions of the program being out-
voted by the incorrect versions.

While probably no one expected that an assumption of statisti-
cally independent failures could ever fully hold, it was neverthe-
less the theoretical heart of the argument. If failures were not at
least highly independent, the utility of N-version programming
was seriously undermined. Leveson and John Knight of the Uni-
versity of Virginia raised more doubts the following month when
they described an experiment that seemed to confirm this. They
noted:

it is assumed in some analyses of the technique that the N dif-
ferent versions [of a particular program] will fail independ-
ently; that is faults in the different versions occur at random
and are unrelated. . . . We are concerned that this assumption
might be false. Our intuition indicates that when solving a dif-
ficult intellectual problem (such as writing a computer pro-
gram) people tend to make the same mistakes . . . even when
they are working independently. Some parts of a problem may
be inherently more difficult than others.132

Their experiment confirmed their fears, revealing a surprisingly
high number of coincident failures in a set of independently de-
veloped programs. They cautioned, however, against overgener-
alization, emphasizing that the independence-of-errors assumption
had only been shown invalid for the particular problem that was
programmed. Their caveats, however, did not deter Avizienis and
his colleagues from repeatedly charging that their findings were
flawed as a result of key experimental differences and inadequate
development methods. Knight and Leveson finally felt compelled
to answer this constellation of criticisms with an in-depth re-
sponse in Software Engineering Notes in 1990. They contended
not only that the criticism was unfounded but also that in many
respects their experiment more accurately reflected the ideas Avi-
zienis et al. espoused than the latter’s own work.133 In any event,
other researchers suggested it might be more effective to pursue
directly a quality other than statistical independence. In 1989, Bev
Littlewood of City University London and Douglas Miller of
George Washington University argued, “the achieved level [of
diversity of program versions] will depend on the diversity of the
processes (software development methodologies) used in their
creation.”134 They contended that statistical independence of pro-
gram versions was a misleading goal; the real goal had to be di-
versity, including diversity of development method. The following
year, however, Knight, Leveson, and another colleague suggested
diversity of process was not necessarily of much help. In a follow-
up to the 1986 article, they maintained:

simple methods to reduce correlated failures arising from
logically-unrelated faults (i.e., input-domain related faults)

do not appear to exist. The faults that induced coincident
failures were not caused by the use of a specific program-
ming language or any other specific tool or method, and
even the use of diverse algorithms did not eliminate input-
domain related faults. In most cases, the failures resulted
from fundamental flaws in the algorithms that the pro-
grammers designed. Thus we do not expect that changing
development tools or methods, or any other simple tech-
nique, would reduce significantly the incidence of corre-
lated failures in N-version software.135

Here again was evidence that fundamental problem-solving proc-
esses lay at the heart of software development. It also amounted to
rediscovery of a fact that had been intimated years before: Statis-
tical reliability techniques developed for hardware would not
work for software.

Pragmatism thus moved the question
from one of correctness to

one of confidence.

This did not mean, though, that statistically based approaches
to reliability had no applicability to software. But they had to
approach things from a different perspective, one that incorpo-
rated the local knowledge and attributes of particular programs
operating in particular environments. While a variety of software
reliability models existed by the mid-1980s, hopes for a single
definitive universal model had not been fulfilled. No single model
seemed to perform well in all situations. “More importantly,” a
1986 article contended, “it does not seem possible to analyze the
particular context in which reliability measurement is to take
place so as to decide a priori which model is likely to be trust-
worthy. . . . [However] if a user knows that past predictions ema-
nating from a model have been in close accord with actual be-
havior for a particular data set then he/she might have confidence
in future predictions for the same data.”136 The authors proceeded
to describe some tools to assist in the selection of an appropriate
model. Indeed, in his introduction to a special section on software
testing in the June 1988 issue of Communications, the guest editor
argued that while particular types of statistical approaches might
be problematic, nevertheless “probabilistic analysis seems appro-
priate for testing theory because it is capable of comparing meth-
ods and assessing confidence in successful tests.”137 In this con-
text, as in so many others related to software, the dictum
“different horses for different courses” found increasing favor.
Even so, speaking at the 1989 World Computer Congress, Parnas
still felt compelled to decry narrow focuses and false dichotomies
when dealing with issues of software reliability.138

Complexity proved inhospitable to dogmatism regarding both
the means and goal of verification. Neither testing nor proofs
could guarantee a “correct” program at reasonable cost, if at all,
and some practitioners questioned the necessity of error-free
software. Inhabitants of the middle ground advocated strategies
combining both testing and formal proofs, while admitting the
unlikelihood of total confidence. Pragmatism thus moved the
question from one of correctness to one of confidence. For those
who viewed their work ultimately in terms of science and mathe-
matics, though, the operative notions were those of truth and fal-
sity. MacKenzie illustrates just how problematic this dichotomy is

Splitting the Difference

36 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

for both hardware and software.139 Those more conscious of the
nature of engineering accommodated themselves to the notion of
confidence. As the 1983 National Bureau of Standards guidelines
for federal information processing systems admonished, “No sin-
gle VV&T [validation, verification, and testing] technique can
guarantee correct, error-free software. However, a carefully cho-
sen set of techniques for a specific project can help to ensure the
development and maintenance of quality software for that proj-
ect.”140 Similarly, in their introduction to a special 1989 issue of
IEEE Software focusing on verification and validation, the guest
editors observed that “a V&V effort selects tasks from a broad
spectrum of analysis and test techniques to tailor each V&V effort
to the project’s needs.”141 A complex reality did not easily ac-
commodate desires for absolutes; instead, practitioners were
forced to accommodate the limitations that complexity of both
program and process imposed.

In Search of Rigor:
The Formal Methods Movement
While in one sense the issue of formal verification was one facet
of the reliability question, in another sense it was the most promi-
nently divisive aspect of a larger debate over formal methods
more generally. Such methods eventually covered the full spec-
trum of software development and maintenance activities. What
linked them was their emphasis on mathematically based nota-
tions and methods of reasoning. This addressed what many of
their advocates viewed as the principal deficiency of software
practice: sloppy, fuzzy, and ad hoc thinking. Formal methods, they
believed, would counteract such tendencies. They would enforce
disciplined approaches to problem solving by requiring precise
logical reasoning. Their use would by definition make would-be
software engineers more scientific and thus more professional.
The result would be better software and a better public image for
those producing the software.

Not surprisingly, Hoare was one of the most prominent stan-
dard-bearers for formal methods (along with Mills and Dijkstra).
(Recently, Hoare has softened his view considerably, admitting
that less formal methods, including engineering intuition, have
proven surprisingly effective in producing relatively reliable sys-
tems. He still feels, however, that formal methods have a role to
play in the development of safety-critical and security-critical
systems.) One of his first major declarations in this regard came in
his famous 1969 Communications article, “An Axiomatic Basis
for Computer Programming.” It was here, in the wake of the 1968
NATO conference on software engineering, that Hoare argued that
programming was “an exact science in that all the properties of a
program and all the consequences of executing it in any given
environment can, in principle, be found out from the text of the
program itself by means of purely deductive reasoning.”142 He
went further in 1981, claiming:

we have only recently come to the realisation of the mathe-
matical and logical basis of computer programming; we can
now begin to construct program specifications with the
same accuracy as an engineer will survey a site for a bridge
or road, and we can now construct programs proved to meet
their specification with as much certainty as the engineer
assures us his bridge will not fall down. Introduction of
these techniques promises to transform the arcane and error-

prone craft of computer programming to meet the highest
standards of a modern engineering profession.143

If nothing else, Hoare’s remarks suggest a limited appreciation of
the history of bridge building, which, like virtually every other
realm of engineering practice, has never enjoyed the sort of cer-
tainty that Hoare seems to attribute to it. The assumption of im-
perfect knowledge and the use of approximations are part and
parcel of civil engineering. Indeed, that is one of the main ration-
ales for incorporating safety factors into design calculations. The
sentiments Hoare expressed illustrate the misconceptions that
continued to plague software engineering regarding science, engi-
neering, and the relationship between them.144

Formal methods advocates such as Hoare left little doubt that
they equated “informal” methods with “arcane and error-prone”
programming. Others, however, saw a role for both perspectives.
For instance, among the benefits Leveson ascribed to formal
methods in her introduction to a special issue of Transactions
were “rigor and precision including unambiguous communication,
prediction, evaluation, and better understanding and control over
software products and the software development process.” Note-
worthy, however, was her attendant observation:

We need not only better formal methods but also ways of
interfacing them to human abilities and less formal meth-
ods. There is much to be gained from investigating the
process of integrating formal methods with informal soft-
ware engineering procedures, e.g., determining how they

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 37

can be used together in a complementary fashion to take ad-
vantage of the strengths of each.145

Gerhart echoed this point in her introduction to a companion spe-
cial issue of IEEE Software: “[T]he next challenge is to integrate
these formal methods with the variety of informal techniques (like
design records, conceptual modeling, and graphical representa-
tions) required to achieve the goal of a formally based engineering
discipline.”146 Here, it seems, was an attempt to reconcile a plu-
ralistic reality with the singularity exhibited by the formalists’
professional rhetoric.

Increasingly, formal methods advocates were not of one mind
with respect to the sufficiency of formal methods alone. Intro-
ducing a special issue of the Software Engineering Journal de-
voted to theorem proving and software engineering, C.B. Jones of
the University of Manchester was careful to note that mathemati-
cal methods were neither “panacea” nor “quack remedy.” Rather,
“there are, in fact, many useful approaches which will make con-
tributions to various application and/or development environ-
ments. Specialist (‘fourth-generation’) languages, Prolog, func-
tional languages, prototyping and others all have a contribution to
make.”147 At a 1989 formal methods workshop, participants re-
portedly leavened their insistence on the necessity of formal
methods with the caution that formal methods alone were insuffi-
cient for development of trustworthy systems.148 That year’s In-
ternational Conference on Software Engineering presented the
formal methods debate in microcosm, with believers emphasizing
the need for greater attention to formal methods, skeptics arguing
the superiority of “intuition and guessing,” and others calling for
“considered application” of formal methods depending on indi-
vidual circumstances.25,p.109

Articles appearing in the late 1980s and early 1990s lent sub-
stance to this sort of pragmatism. Writing in IEEE Software in
1990, Anthony Hall related experience with formal methods at
Praxis, a British software engineering company. He noted that
“even though we have undertaken very few proofs or completely
formal development steps, we have found that inspections of for-
mal specifications reveal more errors than those of informal speci-
fications, and it is more effective to inspect designs or programs
against formal specifications than against other kinds of design
documentation [emphasis added].” He made it clear that “program
verification is only one aspect of formal methods. In many ways,
it is the most difficult. For non–safety-critical projects, program
verification is far from the most important aspect of a formal de-
velopment.”149 Moreover, he argued that it was unrealistic to ex-
pect most software engineers to easily and routinely carry out
formal proofs and that proof tools were primitive and possibly
condemned to remain that way.149,p.17 An article in that month’s
Computer suggested that such pragmatism could be found in aca-
demia as well. In a broad introduction to formal specification,
Jeannette Wing of Carnegie Mellon University noted, “Although
you may never completely verify an entire system, you can cer-
tainly verify smaller, critical parts.”150 Another way around the
difficulties of formal verification, though, was to change the na-
ture of formal verification. This was a key part of an integrated
process dubbed Cleanroom software engineering.

An approach Mills and others developed at IBM, Cleanroom
software engineering, was presented as “a practical process to
place software development under statistical quality control.”151

While highly formalized, the Cleanroom process nevertheless

embodied several concessions to practicality. Foremost among
these was the verification process used:

The method of human mathematical verification used in
Cleanroom development, called functional verification, is
quite different from the method of axiomatic verification
usually taught in universities. It is based . . . on the reduc-
tion of software verification to ordinary mathematical rea-
soning about sets and functions as directly as possible. . . .
By introducing verification in terms of sets and functions,
you establish a basis for reasoning that scales up.151,p.22

A related key feature of the Cleanroom was that development and
verification were both iterative and cumulative. Incremental de-
velopment meant in theory that only relatively small pieces of
programming would ever have to be verified. A further aid to
formal verification was the use of a limited set of design primi-
tives within the software. Another sign of pragmatism in the
Cleanroom scheme was that “structural testing that requires
knowledge of the design is replaced by formal verification, but
functional testing is retained.”151,p.22 A statistical usage profile
provided the basis for this testing. An experiment reported in
Transactions seemed to provide support for the efficacy claims
made by advocates of the Cleanroom.152 However, it should be
noted that the size of the programs used as examples of the suc-
cess of the Cleanroom approach represented both how far the
technique had come and how far it still had to go. Most of these
programs involved fewer than 50,000 lines of instructions, which
was still an impressive amount of formally verified code. Never-
theless, with major systems requiring hundreds of thousands and
even millions of lines of code, the practicality of using the Clean-
room approach for such systems was still an open question. More
importantly, one aspect of the Cleanroom process that was dis-
tinctly unpragmatic was its insistence on stable specifications.151

Clearly, while this demand may be relatively easy to meet in some
contexts, it may be virtually impossible in others.

Mathematical methods were neither
“panacea” nor “quack remedy.”

Thus the issue of applicability raised its head once again. Some
formal methods advocates, though, were beginning to display a
heightened awareness of its importance. Wing, for instance, ex-
plicitly acknowledged the issue of applicability as pertaining to
both specification languages specifically and formal methods
generally, emphasizing that “an advocate of a particular formal
method should tell potential users the method’s domain of appli-
cability. . . . Without knowing the proper domain of application, a
user may inappropriately apply a formal method to an inapplica-
ble domain.”150,pp.12-13 Indeed, a 1987 Computer Journal piece
compared two different approaches to formal specification: the
Vienna Development Method and OBJ. The authors concluded,
“The two approaches each lend their own insights to a problem.
VDM [Vienna Development Method] encourages a more ‘top-
down’ approach to viewing a problem, while OBJ may be used in
a more ‘bottom-up’ style which gives fresh ideas on how to parti-
tion the problem and how to structure the specification. The over-
all experience was that the two methods complemented each
other.”153 Even Hoare seemed to be mellowing somewhat, admit-
ting in Computer in 1987 that the small and familiar example that

Splitting the Difference

38 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

had been used to illustrate some formal methods for program
design

revealed (all too clearly) the full weight of the notations and
complexity of the mathematical proofs involved in formali-
zation of the process of program design. The reader may
well be discouraged from applying these methods to prob-
lems of a scale more typical of software engineering. And
there are many other serious concerns which are not ad-
dressed directly by formalization, for example, cost estima-
tion, project management, quality control, testing, mainte-
nance, and enhancement of the program after delivery.154

Nevertheless, in 1990 the associate editor-in-chief of IEEE Soft-
ware deplored what he saw as the ever-widening divide between
software engineering purists and real-world practitioners, “The
consequence is that practitioners are drifting toward the north pole
and purists toward the south pole (or vice versa—either side is
very cold). Those researchers who do take a more pragmatic ap-
proach and those practitioners who see the value of formal meth-
ods are trying to decide if they should move north or south.”155

While there was clearly some movement toward the equator, it
seemed there was still a great deal of drift toward the poles.

The formal methods debate embodied virtually every type of
tension extant in the software engineering and computer science
communities: academia versus industry, research versus practice,
science versus engineering. From the other side of the road, for-
mal methods often appeared as the esoteric playthings of an elite
unconcerned with the circumstances of real-world software de-

velopment. Formal methods advocates viewed their critics as
stubborn and archaic craftsmen, either unwilling or unable to
adopt self-evidently superior techniques built on science and
mathematics. Nevertheless, there did exist a middle ground that
sought a balanced, integrated approach combining formal meth-
ods with other techniques so as to most effectively deal with the
particular problem at hand. By the 1990s, the population of this
middle ground was slowly growing, but the underlying tensions
still remained.

The Sound and the Fury:
Language Disputes
Just as verification proved unamenable to any one approach, so,
too, did programming (and, more importantly, programmers) ap-
pear resistant to any single language. The area of programming
languages has always provided rich grounds for controversy, per-
haps because the issue of programming language is so basic and
inescapable for practitioners that it inevitably generates strong
emotions. The enduring tension between language generality and
specificity played itself out in several arenas. The concept of a
universal language effective in virtually all circumstances
(ALGOL, PL/I) continued to attract hearts and minds as it had in
the 1960s, while others touted powerful application-oriented lan-
guages usable by nonprogrammers (so-called fourth-generation
languages) as well as special-purpose languages aimed at par-
ticular domains (such as NewSpeak, intended for safety-critical
programs156). At the same time, the old-guard languages—
principally Fortran and COBOL—continued to thrive and, to the
distress of many, evolve.157

Those who enjoyed a good language controversy soon enough
had one to rival the disputes over ALGOL and PL/I. In January
1975, the U.S. Department of Defense (DoD) Director of Defense
Research and Engineering set up a department-wide program to
develop a single common high-level military programming lan-
guage for embedded systems. (An embedded computer system is
one that is an integral part of some larger system, e.g., the com-
puters used to control a modern jet fighter.) A High Order Lan-
guage Working Group was established to carry out this program.
David Fisher of the Institute for Defense Analyses described the
effort as “based on the idea that many of the support costs for
software increase with the number of languages, and that lan-
guages must be suited to their applications. Furthermore, with a
common programming language, a software development and
maintenance environment could be built, providing centralized
support and common libraries that could be shared....”158 DoD
difficulties with software mirrored those in the larger world. A
study earlier in the decade by the Air Force Systems Command—
“Information Processing/Data Automation Implications of Air
Force Command and Control Requirements in the 1980s”—had
confirmed, as Barry Boehm conveyed to Datamation readers, that
“for almost all applications, software . . . was ‘the tall pole in the
tent’—the major source of difficult future problems and opera-
tional performance penalties.”159 Fisher, however, revealed un-
usually modest expectations, “The present diversity of program-
ming languages used in embedded computer systems did not
cause most of the problems—nor would a common programming
language cause them to disappear. Nevertheless, the existing lan-
guage situation unquestionably aggravates them and inhibits some
potential solutions.”158,p.26 Recalling some of the expectations that

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 39

accompanied ALGOL and PL/I, such a view seems atypical in its
pragmatism. The extent to which others shared this view of the
DoD effort was another matter.

Since no existing language satisfied all the requirements with
respect to embedded applications, reliability, maintainability, and
machine independence, the High Order Language Working Group
decided to develop a new language. From 1975 to 1977, the group
concentrated on iteratively developing a set of language require-
ments in consultation with all interested communities. In the
summer of 1977, the working group selected four contractors to
propose initial language designs. These prototype designs were
evaluated by numerous review teams from academia, government,
and industry. In the spring of 1978, the working group narrowed
the competition to two proposals, which were then further devel-
oped and refined along with prototype processors. After another
round of evaluation, the working group selected Cii-Honeywell
Bull’s language in the spring of 1979 and christened it Ada, after
Lady Ada Lovelace, the world’s “first” programmer. For the re-
mainder of 1979, Ada was subjected to additional testing and
refinement.

If anyone believed the product of this effort would be uncon-
troversial, they soon learned otherwise. No less a personage than
Dijkstra took a dim view of the proceedings:

It is so illuminating because it shows in a nutshell what
havoc is created by not stating your goals but only pre-
scribing partial means intended to solve your problems. . . .
It makes also quite clear why the new programming lan-
guage cannot be expected to be an improvement over PAS-
CAL, on which the new language should be “based.” . . .
You cannot improve a design like PASCAL significantly by
only shifting the “centre of gravity” of the compromises
embodied in it; such shifts never result in a significant im-
provement. . . . Why does the world seem to persist so stub-
bornly in being such a backward place?160

A 1979 report in Datamation noted that while the Ada re-
quirements study suggested that one language could in theory
support most application areas, that “does not, of course, imply
that it is desirable.” 161 “The Ada language control people will
have a very difficult task. They must attract the reluctant services,
hold the language stable but correct . . . and not let multiple im-
plementations create language anomalies by different interpreta-
tions of the language. Historically, this latter problem has seldom,
if ever, been solved.”161,p.150 Writing in SIGPLAN Notices, Rob
Kling and Walt Scacchi expressed skepticism on sociological
grounds. Noting the attractiveness of technical fixes that allowed
one to “focus on designing technologies which can be high spir-
ited fun rather than upon the human dilemmas which can be woe-
fully depressing,” they saw “little reason to believe that projects
which use DoD-1 [which would become Ada] are guaranteed
lower life-cycle costs than similar projects which do not, when the
projects are executed in routine production environments under
routine contractual and market arrangements (and not as show-
cases for DoD-1 use).”162

Given that Ada was intended to be almost all things to all peo-
ple, language complexity was a bone of contention, just as it had
been in the cases of ALGOL and PL/I. Paul Eggert of UCLA
suggested that Ada was yet another example of the “Wish List

Syndrome.” He accused Ada of being to Pascal what PL/I was to
Fortran—an unwieldy conglomeration of features.163 In a similar
vein, another SIGPLAN Notices reader contended that the com-
plexity of the language would encourage the use of language sub-
sets leading to incompatible implementations and styles and per-
haps even dialects.164 In fact, one of the most hotly debated issues
concerned the question of language subsets as a means of reduc-
ing the effective complexity of the language.

In his 1980 Turing Award Lecture,
Hoare despaired that with Ada, the

“mistakes which have been made in the
last twenty years are being repeated

today on an even grander scale.”

The ACM voted against approval of Ada as an American Na-
tional Standards Institute (ANSI) standard, partly in reaction to
the absence of subsets that were reliable (i.e., produced identical
results across compilers) and efficient (in terms of compilation).
The organization argued that if there were, in fact, “numerous
potential commercial applications—not limited to ‘embedded
systems’—and . . . these applications cover a broad range of com-
plexity, then there is a strong and—we believe—valid argument
for the definition of one or more ‘authorized’ subsets.”165 In 1982,
Ledgard and Andrew Singer advocated in Communications either
scaling down or subsetting Ada, “As strong supporters of the Ada
effort, we are concerned that in the long run the language will fail
with users for the same reason that other large languages have
failed—not enough was left out.”166 Robert Glass agreed that
“simplicity is to be sought. Practitioners, however, have ever more
complex problems to solve. The goal of simplicity must never
take precedence over the goal of problem-solving.”167 Randall
Leavitt did not care for the idea of Ada subsets, but acknowledged
that Ada might be a little too substantial, “My experiences with
Fortran transportability and maintenance indicate that a subset is
only another problem to overcome, not a solution. However, Ada
would benefit from some pruning.”168 DoD, not surprisingly, also
took issue with the notion of Ada subsets, arguing that subsetting
“would potentially defeat the portability of applications software,
libraries, reusable components, and programmers.”165 As for
pruning the language, Brian Wichmann, a member of the Ada
design team, asserted that while Ada could be simplified by re-
ducing its facilities, “it is far from clear . . . that the resulting lan-
guage will be as useful to the user community especially in the
long run.”169 The question, though, was useful in what sense?

Clearly, Ada, with its smorgasbord of features, was potentially
of great utility. But potential utility does not automatically trans-
late into practical utility. The potential utility of Ada could well be
vitiated by its bulk and complexity. In other words, Ada, like
other attempts at a universal language, might be too far beyond
the pivot between generality and specificity—the point at which
trade-offs seem to balance—to appeal to as wide an audience as
its proponents hoped.

Ada certainly did have its proponents. William MacGregor of
the University of Texas, responding to Dijkstra’s complaints about
the four candidate designs, opined, “Alternatives to the common
language being what they are, there is room for a great deal of

Splitting the Difference

40 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

imperfection in the new language while still achieving a substan-
tial economic advantage.”170 Peter Wegner, while admitting Ada
was comparable in complexity to PL/I and thus vulnerable to the
same kind of criticisms, contended that Ada was “better engi-
neered than Pascal or PL/I. . . . The resulting language has more
expressive power and greater security and reliability than either
Pascal or PL/I.”171 Hoare, however, believed that reliability and
the kind of complexity Ada exhibited were mutually exclusive. In
his 1980 Turing Award Lecture, Hoare despaired that with Ada,
the “mistakes which have been made in the last twenty years are
being repeated today on an even grander scale.”172 The depth of
Hoare’s concern was evident in his appeal to

not allow this language in its present state to be used in ap-
plications where reliability is critical, i.e., nuclear power
stations, cruise missiles, early warning systems, anti-
ballistic missile defense systems. . . . An unreliable pro-
gramming language generating unreliable programs consti-
tutes a far greater risk to our environment and to our society
than unsafe cars, toxic pesticides, or accidents at nuclear
power stations.172,p.83

None of this, of course, was likely to derail a language DoD
was pushing. Just as DoD backing had compelled commitment to
COBOL on the part of manufacturers courting the Pentagon, so,
too, did firm DoD commitment to Ada serve to propel the lan-
guage forward. The ANSI Ada standard was issued in early 1983.
That same year, the Under Secretary of Defense for Research and
Engineering issued a DoD directive concerning programming

language policy that reiterated the department’s commitment to
Ada: “The Ada programming language shall become the single,
common, computer programming language for Defense mission-
critical applications.”173 The directive specified 1984 milestones
toward adoption.

Unhappiness over Ada was matched by irritation over the con-
tinued popularity of Fortran (and to a lesser extent COBOL). In a
1972 retrospective, Saul Rosen suggested, “The most striking fact
about programming languages . . . has been the continued over-
whelming acceptance of Fortran and COBOL.”174 Indeed, both
languages were expanding to provide increased functionality, thus
tightening their hold on users. A 1974 Communications article
offered techniques addressing the absence of facilities in Fortran
for handling character strings.175 The previous year, programming
guru Dan McCracken had admitted that although “nobody would
claim that Fortran is ideal for anything, from teachability, to un-
derstandability of finished programs,” nevertheless “Fortran is
very thoroughly entrenched, and . . . not likely to be displaced in a
big way any time soon.”176 More than a decade later, McCracken
could still assert, “Fortran is still the language of choice for engi-
neering and scientific calculations. (Those who deplore this fact
should at least admit that it is a fact.)”177 Perhaps the most elo-
quent expression of resignation was heard at a 1975 National
Computer Conference session at which Ben Wegbreit of Xerox
observed with a distinct lack of enthusiasm, “Ah, . . . Fortran will
be around until the end of time....”178

The infatuation with structured programming heightened the
discontent, as proposals aimed at permitting Fortran devotees to
enjoy the fruits of SP began to circulate midway through the
1970s. Calls for “structured Fortran” were not greeted with waves
of enthusiasm. Much of the debate was played out, appropriately
enough, in the pages of SIGPLAN Notices. One reader harkened
back to the old days, declaring that Fortran “should have died in
the early sixties with the appearance of Algol 60. I am thus ap-
palled by the time and effort invested by so many people in
keeping it alive.”179 Another reader suggested that attempts to use
Fortran for structured programming were “like trying to make a
tack hammer suitable for driving railroad spikes.”180 Stuart Row-
land of the State University of New York contended, “there is
really only one problem with structured Fortran—it is still For-
tran.”181 Fortran was not without defenders, though. One asserted,
“Fortran has not outlived itself. Fortran is still quite tolerable for a
broad spectrum of problems and the transferability makes its use
of continued economic importance in our industry.”182 While
constituting a less than ringing endorsement, such comments il-
lustrate well the nature of the attachment to Fortran. Fortran re-
mained entrenched less because it was powerful and elegant than
because it remained a practical means of accomplishing a wide
variety of work and represented a substantial investment in soft-
ware and training. In much the same way, the QWERTY keyboard
continues to resist replacement by the ergonomically superior
Dvorak keyboard. Anthony Ralston and Jerrold Wagner recog-
nized this in their 1976 Transactions article, calling for the exten-
sion of Fortran IV into Structured Fortran (SF). They argued,
“attempts to ‘kill’ Fortran, however well intentioned and, even
however desirable such a result might be, are doomed to failure.
Revolution in higher level languages is no longer possible; evolu-
tion is the only—and necessary—alternative.”183 Similar argu-
ments were taking place over COBOL. Once again, McCracken

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 41

attempted to put things in perspective. He made his plea for
pragmatism with respect to COBOL in a 1976 Datamation essay:

COBOL is the most widely used language in the world by a
very wide margin, and it will stay that way for at least a
decade. So let’s work to make the best of it, and to improve
it gradually but steadily. . . . I say, let’s get on with it and not
sit around moaning about the horrible state of programming
languages while waiting for some utopian solution that
never seems to get any closer.184

What should not be overlooked in the recognition of language
inertia, however, is how Fortran and COBOL attained such inertia
in the first place—by occupying the pivot between generality and
specificity.

The tension between generality and specificity surfaced repeat-
edly over the years. The arguments over a universal language
were simply cases of the larger issue. In an unusually philosophi-
cal 1975 paper, Naur compared and contrasted programming lan-
guages with mathematics and natural languages. He argued that
the lack of precision in natural languages, far from being a defect,
in fact made it possible for natural language to continually de-
velop and to express an endless succession of new ideas. The
development of natural language, he felt, could be used as a guide
for the design of programming languages. Programming lan-
guages “should preferably be built from a few, very general, very
abstract concepts, that can be applied in many combinations,
thereby yielding the desired flexibility of expression.”185 A 1977
Communications article seemed to express the opposite point of
view:

Members of this new generation of languages still strive to
be general purpose, trying to be applicable to a wide variety
of problem domains; and it is here that they may encounter
some inherent limitation. For in attempting to span a wide
range of potential users with the facilities of a single lan-
guage, a language designer will either end up with an enor-
mously complex language or one which is only moderately
well adapted to any one of the application areas.186

Mark Crispin of MIT had made more or less the same point in
Datamation the previous year. “APL [a highly mathematical lan-
guage developed around 1960] is a nice language when used as a
programmable calculator. Similarly, COBOL is best for large
business data base crunching. Neither is very good for the other’s
type of usage. Let us recognize this rather than try to have the
seminationalistic banner of absolute superiority of one over the
other!”187 Writing in a similar vein with respect to ALGOL and
Fortran, A.C. Larman had struck the same chord in a more color-
ful way in the Computer Bulletin (published by the BCS) in 1971,
“One cannot state, unequivocally, that . . . a racehorse is ‘superior
to’ a dray-horse or a show-jumper; it depends entirely on the pur-
pose for which one requires it....”188 All these statements seem to
recognize implicitly the existence of a pivot along the generality–
specificity axis. A 1976 overview of computer technology sug-
gested, however, that the pivot had shifted in theory if not in fact.
Ware Myers argued “for people whose primary emphasis is on
their own work, the so-called higher-level languages are still or-
ders of magnitude too primitive. The gap between this kind of
user and the present languages is staggering. Languages need to
become more application-oriented.”189

Ask and thou shalt receive. As computing entered the 1980s, ap-
plications development remained a major headache. A 1981 Data-
mation report observed that applications development “remains one
of the dp industry’s thorniest problems. Since the ’50s, when higher
level languages emerged, there’s been only slow, piecemeal prog-
ress.”190 The following year, though, the magazine heralded a new
approach that was easing applications backlogs, “The key to this
new trend is the appearance of simpler step-by-step program devel-
opment languages that are making it possible for users without de-
tailed programming expertise to develop their own applications.”191

Known as nonprocedural or fourth-generation languages (4GLs),
these systems, which were sophisticated and powerful descendants
of packages such as IBM’s Report Program Generator, supposedly
permitted a user to specify what he or she wanted done without
detailing how to go about doing it. Often used in conjunction with a
database, systems such as RAMIS and Nomad made it easier to
develop custom applications that manipulated and distilled the in-
formation in the database (e.g., sales figures). One could, for exam-
ple, order the system to produce a chart or table without specifying
exactly what a chart or table looked like or how to go about assem-
bling one. Moreover, one could do this in a language whose syntax
bore at least a passing resemblance to normal English. Fourth-
generation languages had the potential to remove the programming
middleman.

“4GLs are as major a technological
advance to computer programming

as integrated circuits were to
computer hardware and orbiting

satellites to data communications.”

Predictably, some practitioners gushed with enthusiasm while
others were less enraptured. Perhaps the ultimate kudos were
bestowed by Nigel Read and Douglas Harmon in a 1983 Datama-
tion essay in which they proclaimed, “4GLs are as major a tech-
nological advance to computer programming as integrated circuits
were to computer hardware and orbiting satellites to data commu-
nications.”192 James Martin, czar of the consultants, was also a
devout proponent of 4GLs. Others, however, were more reserved
in their attitudes. John Cardullo and Herb Jacobsohn, for example,
felt that Read and Harmon had overstated their case, “We resist
the implication that the use of 4GLs will solve all the problems
that are raised by Read and Harmon. They are merely one more
very valuable means to help address, define, and solve the myriad
problems that face managers.”193 Similarly, Bill Inmon of Coo-
pers & Lybrand contended that while 4GLs were “certainly ap-
propriate for decision support, prototyping, and environments
where there is a limited amount of data and/or processing,” there
was evidence that “for operational systems, fourth generation
languages and application development without programmers
don’t deliver the productivity gains their advocates claim.”194

Michael Brown of Hewlett-Packard disputed Inmon’s contention,
though in fairly moderate terms, “The use of fourth generation
languages does allow an increase in the number of individuals
with an applications bias to successfully develop programs. While
the organization still needs a balance of computer science types,
some production gains are accomplished by getting people with

Splitting the Difference

42 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

real application experience and competence closer to the devel-
opment process.”195 Consultant F.J. Grant came at it from the
opposite direction, but seemed to end up in more or less the same
place. Grant declared that 4GLs were not “a solution to the intel-
lectual and infrastructural problems of traditional MIS
[management information systems] implementations,” but ac-
knowledged that they “must be taken seriously.”196

Most people agreed that 4GLs were, in fact, effective in certain
situations. The key question had to do with which situations.
Fourth-generation languages derived their power from incorpo-
rated knowledge of the application domain. As Wegner noted in a
1984 article in IEEE Software, the “choice of a domain of dis-
course for an application generator and the design of a generic
program generator and parameter interface require a deep under-
standing of the problem domain.”197 The previous year in Data-
mation, Alex and Dan Pines had observed that the “problem with
the programmerless approach [embodied by application genera-
tors] is that it institutes a simple software solution that attempts to
achieve two conflicting goals: universal flexibility and extreme
ease of use.”198 This point was echoed in a 1988 article in IEEE
Software, which concluded that “a user can save application-
development time if the problem matches the assumptions in the
tool’s predefined nonprocedural facilities. If the problem is not the
kind the tool was designed for, the user may pay development and
performance penalties. In these cases, conventional programming
is a better alternative.”199 Nonprocedural languages could greatly
facilitate the development of certain applications in well-defined
problem domains by “nonprogrammers,” but they were not a uni-
versal answer to the problem of software productivity; they were a
palliative rather than a cure.

The fact that 4GLs were nonprocedural did not exempt them
from the tension between generality and specificity. Instead, they
were an excellent example of the trade-off between breadth and
depth. Fourth-generation languages provided relatively high-
powered (in terms of productivity) development capability, i.e.,
leverage in depth, within a limited range of applications. In con-
trast, languages such as Fortran and COBOL provided less con-
ceptual power within a much broader range, while languages such
as PL/I provided little application-specific capability but virtually
“universal” range, i.e., leverage in breadth.

Attempts at programming language synthesis were highlighted
in a 1986 issue of IEEE Software. Noting the difficulties engen-
dered by trying to use the wrong tool for a particular purpose, the
guest editor described a new class of programming languages
aimed at solving the problem. These languages “do not restrict the
programmer to only one paradigm . . . rather they are multipara-
digm systems incorporating two or more of the conventional pro-
gram paradigms.”200 As Pamela Zave of Bell Laboratories ob-
served in a 1989 article describing one approach to multiparadigm
programming, “By definition, a paradigm offers a single-minded,
cohesive view—this is, in fact, how the popular paradigms help us
think clearly, offer substantial analytic capabilities, and achieve
their reputations for elegance. The corresponding disadvantage is
that each paradigm is too narrowly focused to describe all aspects
of a large, complex system.”201 Such “paradigms” included data
flow, functional, imperative (embodied in popular procedural
languages such as Fortran and Pascal), and object-oriented pro-
gramming. Multiple paradigms, though, were not cost-free. As the
paradigms multiplied, so, too, did the complexity of the language.

The real question, then, was just how many different paradigms
one could lump together within one language before the complex-
ity of the language vitiated the gains derived from the availability
of more than one paradigm. While there has been some success in
augmenting existing languages with a new type of language con-
struct representing a different paradigm, such as the addition of
object-oriented constructs to C (C++), it is unclear just how many
such balls a programmer can successfully juggle. If complexity
has been an issue for the large “universal” languages, it cannot
help but be an issue for truly multiparadigm languages. Moreover,
such paradigms differentiate languages in a manner not necessar-
ily congruent with differences in application domain. Fortran and
COBOL, for example, are aimed at different application domains
(science and engineering in the case of the former, commercial
data processing in the case of the latter) but both are imperative
languages. Therefore, language paradigms, which represent styles
of thought, are not necessarily the same as orientation toward a
particular application domain. Thus, multiparadigm languages
may represent synthesis on one level but not another.

Others took a dim view of the language skirmishes altogether.
In his 1977 Turing Award Lecture, John Backus, the originator of
Fortran, complained, “discussions about programming languages
often resemble medieval debates about the number of angels that
can dance on the head of a pin instead of exciting contests be-
tween fundamentally differing concepts.”202 Backus considered
von Neumann architecture (sequential computing) an “intellectual
bottleneck” restricting thinking about programming languages. In
a 1979 Computer essay, R.N. Caffin suggested an even higher
level of irrelevance for language debates, “The solution for more
general work does not lie in fool-proof, very high level, pseudo-
English languages. We must accept, for the present at least, that
programming requires thought.”203 Commenting on Caffin’s es-
say, Jim Haynes of the University of California at Santa Cruz
suggested the problem lay in the fact that “inventing new lan-
guages and arguing their relative merits is easier and more fun
than solving real problems.”204 Similarly, David Feign asserted
that the “much harder problem of understanding how people
really think and express themselves, and translating this into a
machine language, has been dropped by computer scientists.
Solving the harder problem would mean more work....”205 Wil-
liam Wulf of Carnegie Mellon University summarized the situa-
tion in a 1980 article on programming language trends, “Choosing
the proper balance between the generality of individual features
and the cost of their interaction is what has often turned out to be
more difficult than expected, and what has often been done
badly.”206 But Wulf also recognized that programming languages
could not cure the basic problem, “The fundamental problem of
constructing reliable, maintainable software is that of reducing its
complexity to a level with which humans can cope. . . . Program-
ming is intellectually tough. A programming language can, at
most, alleviate the difficulty of the task.”206,pp.21-22

Nevertheless, programming languages continued to be a prime
source of contention. While disputes such as that concerning testing
versus formal verification were at least theoretically amenable to
resolution via pragmatic synthesis, language scraps tended to be
more a matter of trade-offs. The tension between generality and
specificity could often not be resolved, but merely accommodated
by the development and use of languages residing near the pivot
point. While some practitioners used the behemoth universal lan-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 43

guages and others employed application-specific 4GLs or nonpro-
cedural languages such as LISP, vast numbers found practical ac-
complishment (if not spiritual fulfillment) in the class of languages
that included Fortran, COBOL, and Pascal. For the most part, the
trade-off between breadth and depth in high-level languages has
been inescapable. Pragmatism for many practitioners has been a
matter of splitting the difference with languages at the pivot. To the
extent that language paradigms are distinct from application orien-
tation, multiparadigm programming, were it to prove viable, would
not necessarily alleviate this tension. The same holds true for soft-
ware development methodologies.

Mixing and Matching:
Redefining the Life Cycle
Pragmatism concerning the limitations of human intellectual capac-
ity and the utility of any particular approach had also infiltrated
thinking about the traditional software life cycle. Not only was
software itself growing increasingly complex, so, too, was the effort
required to produce it. Attempts to rationalize the process had to
recognize that software development was a complex and multifac-
eted activity intimately related to human social and cognitive proc-
esses. The traditional, essentially sequential (allowance was gener-
ally made for some degree of feedback between stages) model of
the development process, while mitigating problems of complexity,
embodied little appreciation of the intellectual difficulties inherent
in system specification and design. The obvious alternative, an it-
erative or cyclical process, addressed the cognitive problems but
was less effective in lending order and coherence to development
activity. Once again, combination and accommodation appeared
more profitable than any singular approach.

By the mid-1970s, doubts began to surface in some quarters as
to the realism of a principally sequential model of the develop-
ment cycle. Researchers at the University of Maryland suggested
that this ideal was often difficult to achieve. In Transactions in
1975, Basili and Albert Turner observed, “building a system using
a well-modularized, top-down approach requires that the problem
and its solution be well understood. . . . Furthermore, design flaws
often do not show up until the implementation is well under way
so that correcting the problems can require major effort.”207 In-
stead, Basili and Turner suggested implementing a simplified
version of the system and iteratively enhancing it until the full
system was implemented, “‘Iterative enhancement’ represents a
practical means of applying stepwise refinement.”207,p.391 What
this amounted to was a kind of prototyping, a development strat-
egy that would attract great attention down the road. A more ex-
plicit call for prototyping appeared in a 1980 essay in Computer
by W.P. Dodd. The notion of prototype programs had been dis-
cussed at the previous year’s International Conference on Soft-
ware Engineering but had been more or less dismissed on the
basis of cost. Dodd, however, suggested that the vast resources
expended on program maintenance reflected the fact that software
developers were producing prototypes but refusing to admit it, “In
any case, why should we complacently assume we don't need
prototypes when more established branches of engineering . . .
wouldn’t dream of not producing a prototype?”208 Such senti-
ments signaled growing recognition that the basically sequential
nature of the classic “waterfall” life cycle imperfectly modeled a
reality in which foreknowledge in system specification and design
was usually incomplete at best and sheer guesswork at worst.

(Patrick Hall et al. have written on the difficulty of making the
waterfall model work and on the social functions it performs that
help keep it in place.209)

This helped explain why so many highly planned projects
seemed to fall on their faces. Indeed, Fletcher Buckley of RCA
suggested in 1982 that software plans were often ineffective be-
cause the idealized software life cycle was just that—an unattain-
able ideal.210 McCracken and Jackson went even further, asserting
that the “life cycle concept is simply unsuited to the needs of the
1980s in developing systems.”211 Honeywell’s G.R. Gladden was
also of the opinion that “the concept of a ‘software life-cycle’ is
no longer helpful, indeed may be harmful to our software devel-
opment profession.”212 On the other hand, Patrick Hall argued
that life cycles, in general, were a good thing. Rather, “it is pe-
dantic defenders of particular life-cycles that are bad. Just as pe-
dantic defenders of particular development methods, or anything
else of that matter, are bad.”213 Bruce Blum of Johns Hopkins
articulated a similar view.214 Either way, some serious questions
were being raised concerning the applicability of a predominantly
sequential development cycle.

Such sentiments signaled growing
recognition that the basically

sequential nature of the classic
“waterfall” life cycle imperfectly

modeled a reality in which
foreknowledge in system specification
and design was usually incomplete at
best and sheer guesswork at worst.

The obvious alternative to a sequential process was a cyclical
one. In a 1983 letter to Communications, Joseph Chambers ech-
oed Basili and Turner from nearly a decade before, “Development
of any software system is essentially an iterative process.”215 That
the waterfall model was unrealistic was explicitly acknowledged
in sessions at the 1984 International Conference on Software En-
gineering, while a report on the 1985 International Workshop on
the Software Process and Software Environments observed signs
of “some emerging consensus that process models have some
inherently cyclic nature.”216 As IBM’s Stefano Nocentini argued,
“in complex environments, problems are solved through succes-
sive approximations rather than through precise, invariant defini-
tions.”217 Prototyping, clearly accommodating such a view, had
been steadily picking up interest; a 1982 Software Engineering
Symposium sponsored by ACM SIGSOFT, the IEEE Computer
Society’s Technical Committees on Software Engineering and
VLSI (Very Large Scale Integration), and the National Bureau of
Standards had focused on rapid prototyping. Accompanying much
discussion of the technique, though, were words of caution. In a
1983 Communications article, R.E.A. Mason and T.T. Carey
noted that there were also “disadvantages to the use of prototypes,
such as higher initial cost for the requirements phase of the devel-
opment cycle and the possible loss of distinction between this
phase and the design phase. But for certain types of applications,
there is a growing consensus that prototypes form an effective
component of an application development methodology.”218 Jerry

Splitting the Difference

44 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

Schulz of Northwestern National Insurance also warned that pro-
totyping was not a magical elixir, “Although prototypes will be a
great help in developing decision support systems, much of data
processing work consists of systems whose primary purpose is not
decision support but rather the everyday operations of the busi-
ness. While prototyping may also be of value here, the pressure
will still remain to develop precise project specifications, spelling
out such things as each needed calculation.”219 As was so often
the case in software, it was just a matter of time before someone
seized the pragmatic middle ground with an argument for synthe-
sis. In 1984, Boehm, Terence Gray, and Thomas Seewaldt de-
scribed in Transactions an experiment comparing the prototyping
approach to software development with the specification-driven
approach. While, by their own admission, the experiment could
hardly be considered definitive, they nevertheless found the re-
sults to suggest that “both prototyping and specifying have valu-
able advantages that complement each other. For most large proj-
ects, and many small ones, a mix of prototyping and specifying
will be preferable to the exclusive use of either by itself.”220 Pro-
totyping seemed to result in smaller programs, reduced effort, and
ease of use, while the traditional approach lent more coherence,
functionality, and robustness.221 Therefore, a synthetic approach
could use prototyping to compensate for intellectual limitations
with respect to problem definition and system specification and to
employ the traditional specification approach to ameliorate com-
plexity by increasing coherence and fault tolerance.

In a more radical departure from the conventional development
process, prototyping combined with program transformations in
what was dubbed the operational approach. The operational ap-
proach represented yet another attempt to apply computational
leverage to the problem of software development. The concept of
program transformations had been batted around for a number of
years in various forms. One of the most ambitious was that envi-
sioned by Zohar Manna and Richard Waldinger in a 1979 Trans-
actions article in which they considered the principles to be incor-
porated into an automatic program synthesis system:

Our basic approach is to transform the specifications repeat-
edly according to certain transformation rules. Guided by a
number of strategic controls, these rules attempt to produce
an equivalent [program] description composed entirely of
constructs from the target language. Many of the transfor-
mation rules represent knowledge about the program’s sub-
ject domain; some explicate the constructs of the specifica-
tion and target languages; and a few rules represent basic
programming principles.222

In other words, once the program specification had been devel-
oped at some highly conceptual or abstract level, the computer
would then be used in a multistage process to transform the speci-
fication into the programming language. The transformation proc-
essor would automatically bridge the gap between specification
and code. This got around one of the key trade-offs in software
generally and for formal methods in particular: understandability
versus efficiency. The argument, as articulated at a 1979 British
conference on the topic, was that “transforming specifications of
programs into efficient algorithms . . . [was preferable] rather than
having to prove correctness of clever and probably ‘unnatural’
programs.”223

A few years later, David Wile of the University of Southern
California proposed a somewhat more modest approach in which
the implementer would manually choose the transformations to be
applied, leaving the computer to carry out the transformations. He
admitted, however, that producing a large and useful catalog of
transformations was a mountain yet to be climbed.224 A more
pivotal problem, though, was one that also vitiated the usefulness
of formal verification—achieving a correct program specification
in the first place. The transformations would presumably preserve
program correctness, but that assumed that the initial program
specification had been correct at the start.

This was where rapid prototyping came in. According to Zave
in a 1984 Communications article, in the operational approach,
“the specification itself can be used as a prototype, since it is ex-
ecutable. This type of prototype can be produced rapidly and will
be produced as an integral part of the ordinary development cycle.
. . . In the conventional approach a prototype is produced by iter-
ating the entire development cycle.”225 The approach Zave de-
scribed was “operational” presumably because the problem-
oriented specification was executable (albeit inefficiently) and
thus operational. One could therefore experiment with the specifi-
cation, which in effect was a prototype of the program, until the
prototype and thus the specification appeared satisfactory. The
implementer would then guide the application of transformations
to produce an efficient implementation of the system. All of
which was fine if you could develop a system that could do it. A
1981 Transactions article had noted that “the construction of
software by applying only formally verified rules is a time-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 45

consuming and highly sophisticated activity even for an expert
programmer.”226 As Zave admitted, one of the major weaknesses
of the operational approach was that “transformational imple-
mentation is a relatively untried approach, and the necessary theo-
retical supports are only beginning to be developed. The idea of
program transformations has been with us for a long time . . .
without noticeable impact.”225,p.117

Ideally, practitioners required not just an appreciation for the
limitations of particular models but a framework for choosing the
most appropriate model at the most appropriate time. The spiral
model of software development purported to furnish just such a
framework. As Boehm described it in Computer in 1988, the spi-
ral model was oriented around the notion of risk assessment.
Rather than revolving around a particular element such as the
executable code or the documentation, a quality that characterized
other life cycle models, the spiral model focused on making well-
considered choices to employ approaches embodied in particular
models at different times in the development process. According
to Boehm:

this risk-driven subsetting of the spiral model steps allows
the model to accommodate any appropriate mixture of a
specification-oriented, prototype-oriented, simulation-
oriented, automatic transformation-oriented, or other ap-
proach to software development. In such cases, the appro-
priate mixed strategy is chosen by considering the relative
magnitude of the program risks and the relative effective-
ness of the various techniques in resolving the risks.227

The model is spiral in the sense that it is a cyclic process in
which each cycle expands in terms of cost and commitment, yet
involves the same sequence of identification of alternatives,
assessment and choice, production, and evaluation. Each itera-
tion brings one closer to the operational system through succes-
sively greater elaboration. A particularly appealing aspect of the
spiral model was that, under certain circumstances, it could
become equivalent to one of the other process models, thus
rendering those other models effectively special cases of the
spiral model.227,p.69 Boehm admitted, however, that the spiral
model was not without problems, being difficult to reconcile
with typical software development contracts and relying on the
risk-assessment expertise of the people involved. Moreover, the
model required further elaboration before people without sub-
stantial experience with it could use it effectively.227,pp.70-71

Still, the spiral model represented a milestone in that it formally
embraced the notion of technical pluralism with respect to life
cycle models. It viewed accommodation and synthesis as the
normal state of affairs.

Thus, a key insight of this period in terms of software devel-
opment models was of a kind with those in aforementioned areas.
Although the evolution of an alternative view of the development
process as cyclical as opposed to sequential was vital, its impor-
tance would have been diminished if the community of practition-
ers had either bifurcated with respect to the two approaches and
their variants or simply adopted the newer ones in wholesale
fashion. While some practitioners no doubt did definitively opt for
one approach over another, many displayed the same essential
insight that was evident in other important disputes over software
technology—that rewards often flowed from pragmatic accom-
modation based on appreciation of the limitations of singular so-

lutions. The advent of an articulated framework for achieving
such accommodation was an even more sophisticated manifesta-
tion of technical pluralism.

Establishing the Milieu:
Toward a Development Environment
Assuming the absence of a magic wand in the form of a truly
automatic programming system such as the synthesis system
Manna and Waldinger proposed, the various activities comprising
the development process could still benefit from less ambitious
tools. Compilers applied computational leverage to one aspect of
software development; computer-based tools could benefit other
aspects. Editors, debuggers, and other equally modest yet useful
tools significantly assisted in the performance of various devel-
opment and maintenance activities. Grouping the necessary tools
together into a development environment would clearly facilitate
the development process.

Here too, one discovers the basic trade-off between breadth
and depth. On the one hand, one could form a programming envi-
ronment that mainly resembled a development tool kit, involving
a wide selection of tools minimally coordinated in terms of inter-
tool communication. Such an environment would embody little
specific orientation in the way of language, methodology, or ap-
plication area and could be applied to a broad range of develop-
ment efforts. On the other hand, an environment could be inte-
grated to the extent that it revolved around a particular language,

Splitting the Difference

46 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

methodology, and application type and thus provide high degrees
of functionality directly related to those particulars. When tool
sets were not so oriented, clearly some amount of their combined
effective leverage was vitiated; their leverage in depth suffered for
the sake of leverage in breadth. If, however, one combined tools
into a single environment integrated in terms of languages, meth-
odology, and/or application area, one constrained the range of the
environment's utility; leverage in breadth was sacrificed for lever-
age in depth. This inescapable trade-off produced programming
environments of all stripes. The popularity of the Unix system,
however, suggests that tool kit environments may reside at a pivot
similar to that of high-level languages. On one side of the pivot
lies broad, completely ad hoc collections of tools with virtually no
coordination among them. On the other side lies the realm of
relatively narrowly oriented, tightly integrated environments. As
in other areas of software technology, practitioners often opted for
the middle ground.

In a development on a par (at least in hindsight) with the intro-
duction of Fortran, a 1974 Communications article introduced the
Unix time-sharing system. What Bell Labs colleagues Dennis
Ritchie and Ken Thompson had wrought was much more than an
operating system. Unix constituted a programming environment.
Programs available under Unix included an assembler, editor,
symbolic debugger, text formatter, macro processor, C (a new
language that would quickly become identified with Unix), and
Fortran compilers, as well as a collection of maintenance and
utility programs.228 The system also facilitated the funneling of
one tool’s output directly into another tool. In a 1977 article, Bell
Labs’ Evan Ivie took things even further. He suggested that the
programming community “develop a program development
‘facility’ (or facilities) much like those that have been developed
for other professions (e.g., carpenter’s workbench, dentist’s office,
engineer’s laboratory). Such an approach would help focus atten-
tion on the need for adequate tools and procedures; it would serve
as a mechanism for integrating tools into a coordinated set....”229

Furthermore, the workbench concept encompassed the entire
software life cycle. Part of Ivie’s motivation stemmed from his
perception (widely shared) that the programming community had
yet to produce “a software development methodology that is suf-
ficiently general so that it can be transferred from one project to
another and from one machine to another.”229,p.753 Colleagues
Kernighan and Plauger had made a similar argument the previous
year, suggesting, “few programmers think to use or build pro-
grams as tools. If they maintain a set of utilities at all, such pro-
grams tend to be high personalized and must be modified for each
new application.”230 The authors urged the development and use
of general-purpose tools.

Unix represented only one of a number of approaches falling
under the rubric of programming environments. Unix was (and is)
the quintessential toolkit type of environment. Unix supported
neither a particular development methodology nor a specific lan-
guage, although the C language is closely associated with it.
(Ritchie developed C at Bell Labs in 1972 as a tool for creating
Unix, evolving out of the B language Thompson developed.)
Rather, as Anthony Wasserman put it in 1981 in his introduction
to a set of Computer articles on development environments, “the
facilities of Unix may be thought of as a tool kit from which the
developer can select tools that are appropriate for a particular task
and for which a toolsmith can easily build additional tools.”231

This kind of approach was not without its drawbacks. In a 1981
Datamation sidebar, Michael Lesk of Bell Labs noted:

Unix has grown more than it has been built, with many people
from many places tossing software into the system. . . . Much
of the attractiveness of Unix derives from its hospitality to
new commands and features. This has also meant a diversity
of names and styles. To some of us, this diversity is attractive,
while to others the diversity is frustrating, but to hope for the
hospitality without the diversity is unrealistic.232

A Datamation article three years later emphasized the negative
aspects, complaining, “all the improvements to Unix simply seem
to add to the confusion—there are now a bewildering number of
Unix versions from AT&T and other vendors, each with its own
special features.”233 Dennis Barlow and Norman Zimbel of Arthur
D. Little concurred, “It is clear that Unix is not a single operating
system, but rather a generic identifier for a clan of operating sys-
tems sprung from a common root.”234 A sidebar indicated, how-
ever, that AT&T viewed Unix as the solution rather than the
problem:

A standard operating system that could be used on many
different vendors’ hardware would be an important boost to
interchangeability. AT&T believes the Unix operating sys-
tem to be a strong candidate for such a standard for several
reasons, including portability, flexibility for diverse proj-
ects, versatility from micros to mainframes, and the exis-
tence of a large group of experienced users to feed the
growing marketplace.235

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 47

Indeed, in 1981 ACM President Denning had used Unix as an
example of what was needed to promote software reuse, “In short,
to foster a new attitude—that programs are potentially public,
sharable, and transportable—we need operating systems that are
hospitable toward saving and reusing program parts. I will cite
Bell Labs’ Unix operating system to illustrate that the technology
is at hand.”236 A Datamation reader suggested in 1984 that the
bottom line with regard to Unix was the same as in the cases of
COBOL and Fortran, “Unix users like Unix for the same reasons
that PC/DOS users like their operating system—it works. We do
not claim any mystical properties over other operating sys-
tems....”237 (The author admitted, though, that as was the norm for
any significant development in software, Unix had its share of
self-righteous zealots.) Unix might not have been the end-all and
be-all of programming environments, but it enabled users to get
useful work done. In other words, Unix may well represent the
pragmatic pivot region in terms of programming environments.

Other environments consciously focused on a specific lan-
guage. The Cornell Program Synthesizer was a modest step along
these lines. As described in 1979 in SIGPLAN Notices, the
Cornell project was a self-contained programming environment
tailored to the grammar of the host programming language, pro-
viding, among other things, automatic language-specific syntactic
checks.238 One of the more popular language-oriented approaches
was the Interlisp environment, which provided tools specially
designed to facilitate the development of LISP programs.231 More
ambitious, in keeping with its language, was the Ada Program
Support Environment. A 1981 Computer article noted, “potential
benefits of the language and environment can only be fully real-
ized if the two are properly integrated.”239 The emphasis, as one
would expect given the hopes and rationale for Ada, was on port-
ability, “Tool portability, project portability, retargetability, re-
hostability, and programmer portability are all important.”239,p.28

Like Unix though, the Ada environment would be open-ended,
permitting modification and extension at any time. Just as Unix
tools were written in C, Ada environment tools would be written
in Ada to ensure portability and coordination.

Yet another tack one could take in designing a development
environment was to focus on the domain of application. The LISP
Programmer’s Apprentice under development in the late 1970s at
MIT, although dedicated to LISP, focused on providing assistance
in particular application domains. The apprentice would cooperate
with the user in the design, implementation, and maintenance of
programs by performing various checks on the program design
and code.240 Reflecting pragmatic recognition of the facts of life
in software technology, the developers saw this as a “realistic
interim solution to the current software problems and as an evolu-
tionary path towards the more ambitious goals of automatic pro-
gramming.”240 As the potential of expert systems began to seize
imaginations in the 1980s, the notion of knowledge-based pro-
gramming assistants became increasingly attractive. In a paper
presented at a 1984 SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
Elliot Soloway of Yale University concluded that, based on pro-
gramming experiments,

the software aids that we see relevant to enhancing the de-
sign process are those that can digest the information pro-
vided by the designer. In particular, one aspect in which de-
signers seemed to need assistance was in keeping track of

the “notes” they made (the assumptions, expectations, and
constraints) and recalling them at just the appropriate time.
Software that could perform this type of assistance would
require considerable understanding of the design process it-
self, and information that is problem specific.241

Such bookkeeping assistance seems to fall somewhere between
toolkits and automatic program synthesis in terms of ambition and
usefulness. MCC’s Software Technology Program seemed to be
aiming for this type of environment in the mid-1980s, one that
would “aid all aspects of complex software development, includ-
ing requirements capture, exploration, and early design.”242 In-
deed, this sort of approach has come to be known as “exploratory”
software development. At its core, exploratory software develop-
ment was a means of accommodating design uncertainty whereas
more traditional methods aimed to combat it.243 Winston Royce of
TRW recently asserted, “the exploratory approach is instinctively
correct to programmers, who use the act of coding to examine a
problem and code execution to test a requirements hypothesis.”244

At its core, exploratory software
development was a means of

accommodating design uncertainty
whereas more traditional methods

aimed to combat it.

However, embedding any form of localized knowledge
(including characteristics of the work culture) within a develop-
ment environment constituted a substantial problem in and of
itself. Reconfiguring the environment for every project could
potentially involve a large amount of effort. This was the rationale
behind the Gandalf project described in Transactions in 1986. The
authors noted, “hand-crafting a software development environ-
ment for each project is economically infeasible. Gandalf solves
this problem by generating sets of related environments.” More
specifically, “Gandalf promotes the creation of project-oriented
software development environments in which many traits, such as
protection policies, are tuned to groups of persons working on a
project rather than to the entire computing community or to par-
ticular individuals.”245 Two years later, also writing in Transac-
tions, Jayashree Ramanathan and Soumitra Sarkar discussed a
similar idea featuring a project-specific assistant that was pro-
duced through interpretation of a conceptual modeling language
used to specify process, data, tool, and user models specific to a
particular project.246 Sophisticated development environments
such as these were early examples of what has been labeled
“metaCASE.” Whereas computer-aided software engineering
(CASE) involved the use of programming tools aimed at sup-
porting a particular method or approach, metaCASE aimed at
supporting a variety of approaches in a variety of settings. As the
guest editors of a special issue of Communications noted in 1992:

it is becoming apparent that a single design method will not
adequately address all application domains. . . . Also, differ-
ences in skill levels, styles, attitudes, cultures, goals, and
constraints demand highly tailorable CASE tools. The goal
is a technology that can accommodate many methods, nota-
tions, styles, and levels of sophistication....247

Splitting the Difference

48 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

CASE tools that could be tailored to accommodate the specific
circumstances of a given project effectively embodied and en-
dorsed the notion of technical pluralism.

Along with this came slow acceptance that salvation was not to
be found in analogies with other design processes, most obviously
those related to computer hardware. A 1974 Computer article
pointed out that this insight had produced more frustration than
anything else, “Unfortunately, while the theory underlying the
application of computers in the design of computing hardware has
developed thoroughly, keeping pace (or nearly so) with the devel-
oping technology, the implementation of this theory remains a
difficult, mostly manual exercise in the design of programs and
programming systems.”248 On the other hand, Peter Freeman
noted later that year that

when talking about the automation of software design, we
are in fact talking about the automation of software crea-
tion—that is, the design, production, testing, and redesign of
software using the traditional meanings of those terms. Be-
cause of the totally symbolic nature of software, it may turn
out that techniques applicable to the design of other objects
will apply to the entire creation process of software.249

According to Freeman, the areas requiring work included problem
representation, solution representation, and problem solving. The
fundamental nature of these areas reflects the level of cognitive
activities involved in software development. Their fuzziness sug-
gests the difficulty of reducing software problems to clearly de-
lineated critical technical problems subject to systematic attack.
Freeman himself cautioned, “unless software design problems can
be formulated in detail exactly like some other class of design
problems, the use of techniques from other areas may require a
good deal of work.”249 A decade later, at a 1985 MCC interdisci-
plinary symposium on complex design, design expert J. Christo-
pher Jones suggested that software design was indeed unique.
According to a report in IEEE Software, Jones contended, “the
complexities of software give rise to a new situation beyond the
scope of the previous engineering efforts, obliging students of the
subject to ‘go outside the rules.’”243,p.70

Thus, while programming environments applied additional
computational leverage to the problem of software production and
supported the imposition of structure and coherence onto the de-
velopment process, they still suffered limitations arising from
software’s ephemeral nature. The fundamental, complex, and
fuzzy processes involved in software development rendered com-
parisons with other technologies of dubious value. No single ap-
proach would suffice, leading many practitioners to split the dif-
ference at the pivot. Environments that could be relatively easily
customized to fit the problem at hand represented an even more
pragmatic response to the diversity of project characteristics. Such
pragmatism may not have been overly satisfying, but practitioners
could at least accomplish more than they could before.

Picking and Choosing:
The Essence of Engineering
The 1980s witnessed a growing realization that effective software
development is contingent on a whole range of factors and influ-
ences. Recognition of the necessity and reality of technical plural-
ism, though, also led to an inescapable question. If there was seldom
(if ever) a manifestly single best approach, how did one go about

choosing an approach from the array of available options? This
question had three facets to it. First, how did one go about charac-
terizing different approaches so as to facilitate reasoning about
them? Second, and similarly, how did one go about characterizing
the attributes of the situation at hand in terms of problem or task,
organization, culture, etc.? Finally, how did the qualities of the for-
mer relate to those of the latter? Any type of selection entailed de-
termining in some fashion the most appropriate match between the
characteristics of various approaches and the characteristics of the
problem and its associated circumstances.

Jones contended, “The complexities of
software give rise to a new situation

beyond the scope of the previous
engineering efforts, obliging students

of the subject to ‘go outside the rules.’”

This necessitated turning away from the search for a philoso-
pher’s stone, from the hope of universalism. As Brooks argued in
1987, “building software will always be hard. There is inherently
no silver bullet.”250 Paul Rook of GEC Software had observed in
the first issue of the Software Engineering Journal the previous
year:

differences in organization structures, applications and ex-
isting approaches make it impractical to prescribe a single
scheme that can be universally followed. Methods, tools,
management practices or any other element of the total de-
velopment environment cannot be chosen without consid-
ering each element in its relationship to the other parts of
the development system.251

A similar, albeit somewhat less nuanced conclusion had been
reached earlier at a London Comparative Review of Information
Systems Design Methodologies conference, one of a series of
such conferences. In his summary of the conference in the Com-
puter Bulletin, Anthony Finkelstein reported that practitioners
“were shown that the search for a best methodology is futile and
that they should be able to draw from an armoury of approaches
which they can integrate.”252 Left unanswered, though, as such
conclusions often did, was how to go about practically differenti-
ating and selecting approaches.

A number of articles in the 1980s and 1990s attempted to pro-
vide frameworks and procedures for making such choices. In
1982, for example, A.T. Wood-Harper and G. Fitzgerald identified
six major approaches to systems analysis—general systems the-
ory, human activity systems, participative (sociotechnical), tradi-
tional, data analysis, and structured systems (functional)—and
attempted to classify them according to paradigm, conceptual
model, and objectives.253 A finer granularity characterized an
article appearing three years later that compared the features of
seven specific techniques or methods on the basis of analysis and
design features but also with respect to philosophy, assumptions,
and objectives. The seven examined techniques ranged over five
countries and 12 years and differed in significant ways.254 Even
seemingly unitary approaches such as prototyping could be and
were broken down into several subtypes.255 In this realm as well,
formalism raised its head in the form of a 1992 IEEE Software

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 49

article in which two researchers at the University of California at
Irvine sought to scientifically compare software design method-
ologies such as the Jackson method, structured design, and object-
oriented design according to Grady Booch. Their approach was,
first, to distill a set of key features (base framework) and, then, to
describe those features as manifested by the methodologies in
terms of a meta-language or modeling formalism. They felt this
would provide a basis for “objective” comparisons.256

All of these efforts, though, were static in the sense that they
offered only a structured description of a number of particular
approaches or techniques, giving little guidance as to how to go
about doing the selecting. It was in this spirit that D.M. Episkopou
and Wood-Harper proposed a framework, that is, a process model,
for matching a particular method to a particular environment,
“[N]o one approach can be classed as ‘superior’ to the others—
rather the art is in applying a suitable approach contingent on
variables within and around the problem situation.”257 Their sys-
tem involved identifying and describing roles in the problem-
solving process and their environments and then matching these
with a particular methodology. A 1988 Transactions article placed
the idea of project-based selection in the context of life cycle
models, arguing that project managers needed to choose an ap-
propriate life cycle model for each project based on such factors
as requirements volatility, the shape of that volatility, and the
longevity of the application.258 Pushing the selection issue even
further, some technologists argued that even this was too simplis-
tic a view. For example, Bo Sanden of George Mason University
disputed that

design problems can be grouped according to method, and
that each method addresses a particular type of problem
better than any other method. While this may be true for
some well-understood problem categories, generally, the
fact of the matter is that one method will seldom cover all
the essential aspects of any real-world problem. Rather, it is
important to have at one’s disposal a number of design prin-
ciples (from different methods) and apply those which result
in important statements about the problem at hand.259

Sanden proceeded to show how the problem Booch used to illus-
trate object-oriented design in 1986 could be better handled using
the Jackson approach in conjunction with Booch’s object-oriented
one. Apparently sympathetic to this sort of eclectism was Nicho-
las Zvegintzov, the editor of Software Maintenance News, who
declared at the 1989 International Conference on Software Engi-
neering a few months later, “we may as well abandon the dream
of getting the whole under control. Various methods will work for
localized problems. You will always be working on parts of the
system.”25,p.109 Interestingly, if one elevates this attitude to the
level of the life cycle model, one ends up with something resem-
bling Boehm’s spiral approach.

If software engineering is to become an actuality rather than
a wish, it will require more than simple acknowledgment of the
necessity of choice. It will also need a basis for choice. If, in
fact, the dominant trend in software technology since 1970 has
been a slowly increasing willingness to embrace the notion of
technical pluralism (perhaps owing to a combination of project
failures and competitive pressures), it is difficult to escape the
implication that the key trend of the 1990s must be development
of a thoughtful basis for choice. That basis, moreover, must

consider the myriad factors that characterize any particular
software solution. A thoughtful basis, though, should not be
taken to mean an exclusive or overwhelming reliance on science
and mathematics. For while these will undoubtedly play impor-
tant roles in software engineering, as they have in other engi-
neering fields, they are no substitute for experience and aes-
thetics, intuition and heuristics. Accepting the necessity of
choice, developing a basis for choice, and carrying out that
choice in a nondogmatic manner demonstrate the height of
pragmatism. As such, pragmatism is the essence of engineering.

Conclusion
The closing panel at the 1978 International Conference on Soft-
ware Engineering had concluded rather dolefully, “the problems
of the ’80s look very much like the problems of the ’70s and de-
pressingly similar to the problems of the ’60s.”260 At the 1985
conference, Geoffrey Pattie, Britain’s minister of state for industry
and information technology, seemed to confirm it, “To put it very
bluntly . . . too much delivered software is still unsatisfactory. It is
still too often delivered late, costs more than expected, sometimes
fails to work in the way required, and quite often consumes exces-
sive resources in what is euphemistically called maintenance.”261

Almost a decade later, an article in Scientific American sought to
explain “software’s chronic crisis.”262 For all the achievements of
the previous quarter century, the software problem, as Denning
had labeled it, had not gone away. In 1992, one practitioner ob-
served that more than half of the projects of which she was aware,
in diverse application areas, were late, over budget, unreliable,
and difficult to maintain, “The persistency of the [software] crisis
is discouraging.”263

It often seemed, in fact, that virtually
nothing in the realm of software

qualified as straightforward.

To some extent this can be attributed to the steadily increasing
ambitions of software developers and users. Clearly, significant
progress has been made; systems that would have defied the
imagination not long ago can now be attempted with the expecta-
tion of at least some modicum of success. Nevertheless, the basic
problems remain. Doing software was difficult in the 1960s, and it
is still difficult in the 1990s. Software has become more ordered
internally, as has the development process that produces it. But as
steadily increasing ambitions have compensated for the mitigating
effects of structure on software’s complexity, software developers
have not found their work any easier.

Consider all the critical areas in which software’s malleability,
discreteness, and concomitant complexity served to frustrate at-
tempts to hurdle problems rather than wrestle with them. A uni-
versal language might have done wonders for communication,
transportability, and tool development, except that it was, by defi-
nition, too complex and cumbersome for the tastes of many. On
the other hand, highly application-specific languages were con-
ceptually powerful, but enhanced productivity only in narrow
areas. Exhaustive testing would have greatly increased software
reliability, but combinatorial explosion would not permit it. For-
mal verification would have done the same, but the complexity of
the proofs vitiated its usefulness. Furthermore, a proof was only

Splitting the Difference

50 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

as good as the program specification, and developing specifica-
tions was a rather fuzzy process, human foresight being far from
perfect. The problem of human cognitive limitations hindered the
development of complete and appropriate program specifications,
while iterative development tended to reduce overall design co-
herence. Simple, comprehensive measurements would have pro-
vided an objective check on program complexity, but that very
complexity limited the validity of straightforward measurements.
It often seemed, in fact, that virtually nothing in the realm of
software qualified as straightforward.

Complexity may be a fundamental phenomenon and problem
solving a fundamental activity, but neither is simple. On the con-
trary, both are complicated and multifaceted, often defying
straightforward understanding or response. The salience of these
facts stems directly from both software’s ephemeral nature and
the potential derived therein for broad computational leverage.
Because software is abstract, it can be effectively applied to a
wide range of problems. This entails, in turn, basic notions of
design and problem solving—hierarchical decomposition, ab-
straction, and so forth—that, while highly useful, defy translation
into exact technical doctrine equally effective under all circum-
stances. No single approach in any single aspect of software tech-
nology could fully satisfy the needs or desires of practitioners.
Precise dogma finding its expression in a single programming
language, design technique, metric type, or management method
is no doubt more emotionally satisfying, but nevertheless imprac-
tical. Effective technological practice demands technical pluralism
operating in the context of local knowledge and within a frame-
work for choice.

The story of software engineering since the label came into use
is thus a story of compromise among generality and specificity,
heuristics and formalism, procedures and data, sequence and cy-
cle. The practical response was combination and accommoda-
tion—covering all bases or splitting the difference, synthesizing
complementary approaches or accommodating inescapable trade-
offs. Pragmatists argued for mixed strategies of testing and prov-
ing, the use of tailored reliability models and development envi-
ronments, the use of a full set of metrics, and the synthesis of life-
cycle models. But while seizing the middle ground appeared to be
a practical way to cope with difficulties, it seemed unlikely to
produce a revolution. If software technologists are nowadays
devoting more effort to engaging in a pragmatic fashion with the
complexity of their problems, it is to their credit. That is sympto-
matic of maturity and of real engineering.

Acknowledgments
This research was supported in part by the Charles Babbage In-
stitute for the History of Information Processing and by the
Leverhulme Trust.

References
[1] Andrew L. Friedman with Dominic S. Cornfeld, Computer Systems

Development: History, Organization and Implementation. New
York: John Wiley & Sons, 1989.

[2] David Lorge Parnas, “Software Aspects of Strategic Defense Sys-
tems,” Am. Scientist, vol. 73, no. 5, pp. 432-440; reprinted in Com-
puterization and Controversy: Value Conflicts and Social Choices,
Charles Dunlop and Rob Kling, eds. New York: Academic Press,
1991, pp. 593-611.

[3] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidents
of Software Engineering,” Computer, vol. 20, p. 12, Apr. 1987.

[4] Eloina Pelaez, “A Gift from Pandora’s Box: The Software Crisis,”
PhD diss., Univ. of Edinburgh, 1988.

[5] Peter Naur and Brian Randell, eds., Software Engineering: Report on
a Conference Sponsored by the NATO Science Committee, Gar-
misch, Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs Divi-
sion, North Atlantic Treaty Organization (NATO), 1969, p. 13.

[6] B. Randell, “Towards a Methodology of Computing System De-
sign,” Peter Naur and Brian Randell, eds., Software Engineering:
Report on a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs
Division, North Atlantic Treaty Organization (NATO), 1969, p. 205.

[7] Stanley Gill, “Thoughts on the Sequence of Writing Software,” Peter
Naur and Brian Randell, eds., Software Engineering: Report on a
Conference Sponsored by the NATO Science Committee, Garmisch,
Germany, Oct. 7–11, 1968. Brussels: Scientific Affairs Division,
North Atlantic Treaty Organization (NATO), 1969, p. 186.

[8] J. N. Buxton and B. Randell, eds., Software Engineering Techniques:
A Report on a Conference Sponsored by the NATO Science Com-
mittee, Rome, Italy, Oct. 27–31, 1969. Brussels: Scientific Affairs
Division, NATO, 1970, p. 7.

[9] R. M. Needham and J. D. Aron, “Software Engineering and Com-
puter Science,” J. N. Buxton and B. Randell, eds., Software Engi-
neering Techniques: A Report on a Conference Sponsored by the
NATO Science Committee, Rome, Italy, Oct. 27–31, 1969. Brussels:
Scientific Affairs Division, NATO, 1970, p. 114.

[10] Niklaus Wirth, “Program Development by Stepwise Refinement,”
Comm. ACM, vol. 14, p. 221, Apr. 1971.

[11] Alan Cohen, “Letter,” Datamation, vol. 17, p. 15, Feb. 1, 1971.
[12] D. L. Parnas, “A Technique for Software Module Specification with

Examples,” Comm. ACM, vol. 15, p. 330, May 1972.
[13] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems

into Modules,” Comm. ACM, vol. 15, p. 1,053, Dec. 1972.
[14] Glenford J. Myers, “Characteristics of Composite Design,” Datama-

tion, vol. 19, p. 102, Sept. 1973.
[15] Frank DeRemer and Hans Kron, “Programming-in-the-Large Versus

Programming-in-the-Small,” SIGPLAN Notices, vol. 10, p. 114, June
1975.

[16] Barbara H. Liskov and Stephen N. Zilles, “Specification Techniques
for Data Abstractions,” IEEE Transactions on Software Engineering,
vol. 1, p. 7, Mar. 1975.

[17] John Guttag, “Abstract Data Types and the Development of Data
Structures,” Comm. ACM, vol. 20, p. 404, June 1977.

[18] Grady Booch, “Object-Oriented Development,” IEEE Transactions
on Software Engineering, vol. 12, p. 212, Feb. 1986.

[19] Patrick H. Loy, “A Comparison of Object-Oriented and Structured
Development Methods,” Software Eng. Notes, vol. 15, p. 46, Jan.
1990.

[20] Brad J. Cox, “Message/Object Programming: An Evolutionary
Change in Programming Technology,” IEEE Software, vol. 1, p. 51,
Jan. 1984.

[21] Victor R. Basili et al., “Characterization of an Ada Software Devel-
opment,” Computer, vol. 18, p. 64, Sept. 1985.

[22] Paul T. Ward, “How to Integrate Object Orientation with Structured
Analysis and Design,” IEEE Software, vol. 6, pp. 74–82, Mar. 1989.

[23] Russell J. Abbott, “Knowledge Abstraction,” Comm. ACM, vol. 30,
p. 666, Aug. 1987.

[24] Bill Curtis, Herb Krasner, and Neil Iscoe, “A Field Study of the
Software Design Process for Large Systems,” Comm. ACM, vol. 31,
p. 1,271, Nov. 1988.

[25] Galen Gruman, “ICSE Assesses the State of Software Engineering,”
IEEE Software, vol. 6, pp. 110–111, July 1989.

[26] M.A. Jackson, Principles of Program Design. New York: Academic
Press, 1975.

[27] Jean Warnier, Logical Construction of Programs, translation by
B.M. Flanagan. New York: Van Nostrand Reinhold, 1976.

[28] John Parker, “A Comparison of Design Methodologies,” Software
Eng. Notes, vol. 3, p. 19, Oct. 1978.

[29] James R. Donaldson, “Structured Programming,” Datamation, vol.
19, p. 53, Dec. 1973.

[30] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems J., vol. 13, pp. 115–139, May 1974; reprinted in Clas-

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 51

sics in Software Engineering, Edward N. Yourdon, ed. New York:
Yourdon Press, 1979, pp. 207–232.

[31] Herbert A. Simon, The Sciences of the Artificial, 2nd ed. Cambridge,
Mass.: MIT Press, 1981.

[32] F. Terry Baker and Harlan D. Mills, “Chief Programmer Teams,”
Datamation, vol. 19, p. 58, Dec. 1973.

[33] Gerald M. Weinberg, The Psychology of Computer Programming.
New York: Van Nostrand Reinhold, 1971.

[34] Laton McCartney, “Data for Rent,” Datamation, vol. 23, p. 167,
May 1977.

[35] Fred Gruenberger, “Letter,” Datamation, vol. 20, pp. 27–28, Feb.
1974.

[36] Dick Butterworth, “Letter,” Datamation, vol. 20, p. 158, Mar. 1974.
[37] John G. Fletcher, “Letter,” Datamation, vol. 20, p. 29, Mar. 1974.
[38] R. R. Brown, “1974 Lake Arrowhead Workshop on Structured Pro-

gramming,” Computer, vol. 7, p. 62, Oct. 1974.
[39] James L. Elshoff, “The Influence of Structured Programming on

PL/I Program Profiles,” IEEE Transactions on Software Engineer-
ing, vol. 3, p. 367, Sept. 1977.

[40] Frank P. Mathur, “Review of Infotech State of the Art Report:
Structured Programming,” Computer, vol. 9, p. 116, Dec. 1976.

[41] Paul Abrahams, “‘Structured Programming’ Considered Harmful,”
SIGPLAN Notices, vol. 10, p. 13, Apr. 1975.

[42] Daniel M. Berry, “Structured Documentation,” SIGPLAN Notices,
vol. 10, p. 9, Nov. 1975.

[43] David L. Parnas and Paul C. Clements, “A Rational Design Process:
How and Why to Fake It,” IEEE Transactions on Software Engi-
neering, vol. 12, pp. 251–252, Feb. 1986.

[44] “Address on Structured Programming Keynotes Compcon Software
Sessions,” Computer, vol. 8, p. 7, Mar. 1975.

[45] Peter J. Denning, “Comments on Mathematical Overkill,” SIGPLAN
Notices, vol. 10, p. 11, Sept. 1975.

[46] C. Wrandle Barth, “STRCMACS—an Extensive Set of Macros to
Aid in Structured Programming in 360/370 Assembly Language,”
SIGPLAN Notices, vol. 11, p. 31, Aug. 1976.

[47] David Frost, “Psychology and Program Design,” Datamation, vol.
21, p. 138, May 1975.

[48] Lawrence J. Peters and Leonard L. Tripp, “Is Software Design
Wicked?” Datamation, vol. 22, p. 127, May 1976.

[49] Lawrence J. Peters and Leonard L. Tripp, “Comparing Software
Design Methodologies,” Datamation, vol. 23, p. 94, Nov. 1977.

[50] Dennis P. Geller, “Letter,” Software Eng. Notes, vol. 4, p. 18, Jan.
1979.

[51] Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Soft-
ware Engineering. Reading, Mass.: Addison-Wesley, 1982, p. 177.

[52] Edsger W. Dijkstra, Selected Writings on Computing: A Personal
Perspective. New York: Springer Verlag, 1982, pp. 126–128.

[53] Harlan D. Mills, “The New Math of Computer Programming,”
Comm. of the ACM, vol. 18, p. 44, Jan. 1975.

[54] Harlan Mills, “Software Development,” IEEE Transactions on Soft-
ware Engineering, vol. 2, pp. 268–269, Dec. 1976.

[55] Edsger W. Dijkstra, A Discipline of Programming. Englewood
Cliffs, N.J.: Prentice Hall, 1976.

[56] M. E. Hopkins, “A Case for the GOTO,” Proc. 25th Nat’l ACM
Conf., 1972, pp. 787–790, reprinted in Yourdon, Classics in Soft-
ware Engineering, pp. 101–109; W. A. Wulf, “A Case Against the
GOTO,” Proc. 25th Nat’l ACM Conf., pp. 791–797, reprinted in
Yourdon, Classics in Software Engineering, pp. 85–98.

[57] Donald Knuth, “Structured Programming With Go To Statements,”
Computing Surveys, vol. 6, pp. 261–301, Dec. 1974.

[58] R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, “Can Structured
Programs Be Efficient?” SIGPLAN Notices, vol. 11, p. 16, Oct.
1976.

[59] Ronald E. Jeffries, “Letter,” SIGPLAN Notices, vol. 11, p. 1, Dec.
1976.

[60] William Rosenfeld, “Letter,” SIGPLAN Notices, vol. 11, p. 3, Dec.
1976.

[61] Henry F. Ledgard and Michael Marcotty, “A Genealogy of Control
Structures,” Comm. ACM, vol. 18, p. 629, Nov. 1975.

[62] Mario J. Gonzalez, Jr., “Workshop Report: The Science of Design,”
Computer, vol. 12, p. 113, Dec. 1979.

[63] Tom Gilb, “Letter,” Software Eng. Notes, vol. 3, p. 28, July 1978.

[64] Kenneth W. Kolence, “A Software View of Measurement Tools,”
Datamation, vol. 17, p. 32, Jan. 1, 1971.

[65] Maurice H. Halstead, Elements of Software Science. New York:
Elsevier, 1977.

[66] Thomas J. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, vol. 2, p. 308, Dec. 1976.

[67] Glenford J. Meyers, “An Extension to the Cyclomatic Measure of
Program Complexity,” SIGPLAN Notices, vol. 12, p. 61, Oct. 1977.

[68] James L. Elshoff and Michael Marcotty, “On the Use of the Cyclo-
matic Number to Measure Program Complexity,” SIGPLAN Notices,
vol. 13, p. 38, Dec. 1978.

[69] Alonzo G. Grace, Jr., “The Dimensions of Complexity,” Datama-
tion, vol. 23, p. 317, Sept. 1977.

[70] Edward T. Chen, “Program Complexity and Programmer Productiv-
ity,” IEEE Transactions on Software Engineering, vol. 4, p. 188,
May 1978.

[71] Bill Curtis et al., “Measuring the Psychological Complexity of Soft-
ware Maintenance Tasks with the Halstead and McCabe Metrics,”
IEEE Transactions on Software Engineering, vol. 5, p. 103, Mar.
1979.

[72] N. F. Schneidewind and Heinz-Michael Hoffmann, “An Experiment
in Software Error Data Collection and Analysis,” IEEE Transactions
on Software Engineering, vol. 5, p. 283, May 1979.

[73] Warren Harrison et al., “Applying Software Complexity Metrics to
Program Maintenance,” Computer, vol. 15, p. 78, Sept. 1982.

[74] W. M. Evangelist, “Relationships Among Computational, Software,
and Intuitive Complexity,” SIGPLAN Notices, vol. 18, p. 58, Dec.
1983.

[75] Victor R. Basili, Richard W. Selby, Jr., and Tsai-Yun Phillips,
“Metric Analysis and Data Validation Across Fortran Projects,”
IEEE Transactions on Software Engineering, vol. 9, p. 662, Nov.
1983.

[76] Martin Shepperd, “A Critique of Cyclomatic Complexity as a Soft-
ware Metric,” Software Eng. J., vol. 3, p. 35, Mar. 1988.

[77] J. Paul Myers, Jr., “The Complexity of Software Testing,” Software
Eng. J., vol. 7, p. 13, Jan. 1992.

[78] John C. Munson and Taghi M. Khoshgoftaar, “Measuring Dynamic
Program Complexity,” IEEE Software, vol. 9, pp. 48-49, Nov. 1992.

[79] Victor R. Basili, “Tailoring SQA to Fit Your Own Life Cycle,” IEEE
Software, vol. 5, p. 87, Mar. 1988.

[80] Shari L. Pfleeger, “Lessons Learned in Building a Corporate Metrics
Program,” IEEE Software, vol. 10, p. 74, May 1993.

[81] Bernard Elspas, Milton W. Green, and Karl N. Levitt, “Software
Reliability,” Computer, vol. 4, p. 22, Jan./Feb. 1971.

[82] John L. Kirkley, “The Critical Issues: A 1974 Perspective,” Data-
mation, vol. 20, p. 65, Jan. 1974.

[83] T. J. Vander Noot, “Systems Testing ... a Taboo Subject?” Datama-
tion, vol. 17, p. 64, Nov. 15, 1971.

[84] Dorothy A. Walsh, “Structured Testing,” Datamation, vol. 23, p.
111, July 1977.

[85] Paul F. Barbuto, Jr., and Joe Geller, “Tools for Top-Down Testing,”
Datamation, vol. 24, p. 178, Oct. 1978.

[86] Laura L. Scharer, “Improving System Testing Techniques,” Data-
mation, vol. 23, p. 117, Sept. 1977.

[87] John B. Goodenough and Susan L. Gerhart, “Toward a Theory of
Test Data Selection,” IEEE Transactions on Software Engineering,
vol. 1, p. 165, June 1975.

[88] B. Chandrasekaran, “Guest Editorial,” IEEE Transactions on Soft-
ware Engineering, vol. 6, p. 235, May 1980.

[89] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward,
“Hints on Test Data Selection: Help for the Practicing Programmer,”
Computer, vol. 11, p. 41, Apr. 1978.

[90] Elaine J. Weyuker and Thomas J. Ostrand, “Theories of Program
Testing and the Application of Revealing Subdomains,” IEEE
Transactions on Software Engineering, vol. 6, p. 245, May 1980.

[91] Nathan H. Petschenik, “Practical Priorities in System Testing,” IEEE
Software, vol. 2, p. 18, Sept. 1985.

[92] Simeon C. Ntafos, “On Required Element Testing,” IEEE Transac-
tions on Software Engineering, vol. 10, p. 795, Nov. 1984.

[93] Samuel T. Redwine, Jr., “An Engineering Approach to Software Test
Data Design,” IEEE Transactions on Software Engineering, vol. 9,
p. 192, Mar. 1983.

Splitting the Difference

52 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

[94] Robert W. Floyd, “Assigning Meanings to Programs,” Mathematical
Aspects of Computer Science, Proceedings of Symposia in Applied
Mathematics. Providence, R.I.: American Mathematical Society,
1967, pp. 19–32. For a more in-depth discussion of the history of re-
search on formal verification, see C. B. Jones, The Search for Trac-
table Ways of Reasoning About Programs. Manchester, England:
Dept. of Computer Science, Manchester Univ., 1992, UMCS-92-4-4.

[95] C. A. R. Hoare, “Proof of a Program: FIND,” Comm. ACM, vol. 14,
p. 39, Jan. 1971.

[96] M. Foley and C. A. R. Hoare, “Proof of a Recursive Program:
Quicksort,” Computer J., vol. 14, p. 391, Nov. 1971.

[97] C. A. R. Hoare, “Proof of a Structured Program: ‘The Sieve of Era-
tosthenes,’” Computer J., vol. 15, p. 321, Nov. 1972.

[98] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Social
Processes and Proofs of Theorems and Programs,” Comm. ACM, vol.
22, p. 271, May 1979.

[99] Leslie Lamport, “Letter,” Comm. ACM, vol. 22, p. 624, Nov. 1979.
[100] W. D. Maurer, “Letter,” Comm. ACM, vol. 22, p. 625, Nov. 1979.
[101] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,”

Comm. ACM, vol. 22, p. 630, Nov. 1979.
[102] Henry Petroski, To Engineer Is Human: The Role of Failure in Suc-

cessful Design. New York: St. Martin’s Press, 1985, p. 165.
[103] Richard Hill, “Letter,” Comm. ACM, vol. 22, p. 621, Nov. 1979.
[104] H. Lienhard, “Letter,” Comm. ACM, vol. 22, p. 622, Nov. 1979.
[105] Edsger W. Dijkstra, “On a Political Pamphlet from the Middle

Ages,” Software Eng. Notes, vol. 3, p. 14, Apr. 1978.
[106] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,”

Software Eng. Notes, vol. 3, pp. 16–17, Apr. 1978.
[107] H. J. Jeffrey, “Letter,” Software Eng. Notes, vol. 3, p. 18, Apr. 1978.
[108] Raymond J. Rubey, Joseph A. Dana, and Peter W. Biche,

“Quantitative Aspects of Software Validation,” IEEE Transactions
on Software Engineering, vol. 1, p. 152, June 1975.

[109] Douglas T. Ross and Kenneth E. Schoman, Jr., “Structured Analysis
for Requirements Definition,” IEEE Transactions on Software Engi-
neering, vol. 3, p. 6, Jan. 1977.

[110] Susan Gerhart, “Workshop Report: Software Testing and Test
Documentation,” Computer, vol. 12, p. 99, Mar. 1979.

[111] Edsger W. Dijkstra, “Correctness Concerns and, Among Other
Things, Why They Are Resented,” SIGPLAN Notices, vol. 10, p.
547, June 1975.

[112] Andrew S. Tanenbaum, “In Defense of Program Testing or Correct-
ness Proofs Considered Harmful,” SIGPLAN Notices, vol. 11, p. 68,
May 1976.

[113] Susan L. Gerhart and Lawrence Yelowitz, “Observations of Fallibil-
ity in Applications of Modern Programming Methodologies,” IEEE
Transactions on Software Engineering, vol. 2, p. 206, Sept. 1976.

[114] David L. Parnas, “Letter,” Software Eng. Notes, vol. 3, p. 20, Oct.
1978.

[115] Debra J. Richardson and Lori A. Clarke, “Partition Analysis: A
Method Combining Testing and Verification,” IEEE Transactions on
Software Engineering, vol. 11, p. 1,488, Dec. 1985.

[116] James H. Fetzer, “Program Verification: The Very Idea,” Comm.
ACM, vol. 31, p. 1,057, Sept. 1988.

[117] Mark Ardis et al., “Letter,” Comm. ACM, vol. 32, p. 287, Mar. 1989.
[118] Richard Hill, “Letter,” Comm. ACM, vol. 32, p. 790, July 1989.
[119] James C. Pleasant, “Letter,” Comm. ACM, vol. 32, p. 374, Mar.

1989.
[120] Lawrence Paulson, Avra Cohen, and Michael Gordon, “Letter,”

Comm. ACM, vol. 32, p. 375, Mar. 1989.
[121] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 378, Mar. 1989.
[122] John Dobson and Brian Randell, “Program Verification: Public

Image and Private Reality,” Comm. ACM, vol. 32, pp. 420–422, Apr.
1989.

[123] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 381, Mar. 1989.
[124] David A. Nelson, “Letter,” Comm. ACM, vol. 32, p. 792, July 1989.
[125] James H. Fetzer, “Letter,” Comm. ACM, vol. 32, p. 381, Mar. 1989.
[126] Leon Stucki, “Guest Editorial,” IEEE Transactions on Software

Engineering, vol. 2, p. 194, Sept. 1976.
[127] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen, “On the

Automated Generation of Program Test Data,” IEEE Transactions
on Software Engineering, vol. 2, p. 293, Dec. 1976.

[128] George J. Schick and Ray W. Wolverton, “An Analysis of Compet-
ing Software Reliability Models,” IEEE Transactions on Software
Engineering, vol. 4, p. 105, Mar. 1978.

[129] Nancy G. Leveson, “Software Safety,” Software Eng. Notes, vol. 7,
p. 21, Apr. 1982.

[130] Algirdas Avizienis and John P. J. Kelly, “Fault Tolerance by Design
Diversity: Concepts and Experiments,” Computer, vol. 17, p. 67,
Aug. 1984.

[131] Dave E. Eckhardt, Jr., and Larry D. Lee, “A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coincident Errors,”
IEEE Transactions on Software Engineering, vol. 11, p. 1,511, Dec.
1985.

[132] John C. Knight and Nancy G. Leveson, “An Experimental Evalua-
tion of the Assumption of Independence in Multiversion Program-
ming,” IEEE Transactions on Software Engineering, vol. 12, p. 96,
Jan. 1986.

[133] John C. Knight and Nancy G. Leveson, “A Reply to the Criticisms of
the Knight & Leveson Experiment,” Software Eng. Notes, vol. 15,
pp. 24–35, Jan. 1990.

[134] Bev Littlewood and Douglas R. Miller, “Conceptual Modeling of
Coincident Failures in Multiversion Software,” IEEE Transactions
on Software Engineering, vol. 15, p. 1,596, Dec. 1989.

[135] Susan S. Brilliant, John C. Knight, and Nancy G. Leveson, “Analysis
of Faults in an N-Version Software Experiment,” IEEE Transactions
on Software Engineering, vol. 16, p. 245, Feb. 1990.

[136] Abdalla A. Abdel-Ghaly, P. Y. Chan, and Bev Littlewood,
“Evaluation of Competing Software Reliability Predictions,” IEEE
Transactions on Software Engineering, vol. 12, p. 950, Sept. 1986.

[137] Richard Hamlet, “Special Section on Software Testing,” Comm.
ACM, vol. 31, pp. 665–666, June 1988.

[138] Galen Gruman, “IFIP Participants Debate Programming Ap-
proaches,” IEEE Software, vol. 6, p. 76, Nov. 1989.

[139] Donald MacKenzie, “Negotiating Arithmetic, Constructing Proof:
The Sociology of Mathematics and Information Technology,” Social
Studies of Science, vol. 23, pp. 37–65, Feb. 1993.

[140] National Bureau of Standards, Guideline for Lifecycle Validation,
Verification, and Testing of Software, Washington, D.C., 1983, NBS
FIPS 101; quoted in David Gelperin and Bill Hetzel, “The Growth of
Software Testing,” Comm. ACM, vol. 31, p. 690, June 1988.

[141] Dolores R. Wallace and Roger U. Fujii, “Verification and Valida-
tion: Techniques to Assure Reliability,” IEEE Software, vol. 6, p. 9,
May 1989.

[142] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”
Comm. ACM, vol. 12, p. 576, Oct. 1969.

[143] C. A. R. Hoare, “Professionalism,” Computer Bull., 2nd series, p. 3,
Sept. 1981.

[144] Stuart Shapiro, “Its Own Worst Enemy: How Software Engineering
Has Fallen Victim to Engineering Mythology,” CRICT Discussion
Paper No. 25, Brunel Univ., 1992.

[145] Nancy G. Leveson, “Formal Methods in Software Engineering,”
IEEE Transactions on Software Engineering, vol. 16, p. 929, Sept.
1990.

[146] Susan L. Gerhart, “Applications of Formal Methods: Developing
Virtuoso Software,” IEEE Software, vol. 10, p. 10, Sept. 1990.

[147] C. B. Jones, “Theorem Proving and Software Engineering,” Software
Eng. J., vol. 3, p. 2, Jan. 1988.

[148] Susan Gerhart, “Formal Methodists Warn of Software Disasters,”
IEEE Software, vol. 6, p. 77, Nov. 1989.

[149] Anthony Hall, “Seven Myths of Formal Methods,” IEEE Software,
vol. 7, p. 13, Sept. 1990.

[150] Jeannette M. Wing, “A Specifier’s Introduction to Formal Methods,”
Computer, vol. 23, p. 13, Sept. 1990.

[151] Harlan D. Mills, Michael Dyer, and Richard C. Linger, “Cleanroom
Software Engineering,” IEEE Software, vol. 4, p. 20, Sept. 1987.

[152] Richard W. Shelby, Victor R. Basili, and F. Terry Baker,
“Cleanroom Software Development: An Empirical Evaluation,”
IEEE Transactions on Software Engineering, vol. 13, pp. 1,027–
1,037, Sept. 1987.

[153] D. A. Duce and E. V. C. Fielding, “Formal Specification—a Com-
parison of Two Techniques,” Computer J., vol. 30, p. 327, Aug.
1987.

IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997 � 53

[154] C. A. R. Hoare, “An Overview of Some Formal Methods for Pro-
gram Design,” Computer, vol. 20, pp. 90–91, Sept. 1987.

[155] Carl Chang, “Let’s Stop the Bipolar Drift,” IEEE Software, vol. 7,
p. 4, May 1990.

[156] I. F. Currie, “NewSpeak: An Unexceptional Language,” Software
Eng. J., vol. 1, pp. 170–176, July 1986.

[157] Jean E. Sammet, Programming Languages: History and Funda-
mentals. Englewood Cliffs, N.J.: Prentice Hall, 1969; and Richard L.
Wexelblat, ed., History of Programming Languages. New York:
Academic Press, 1981. These works contain in-depth histories of
these older languages.

[158] David A. Fisher, “DoD’s Common Programming Language Effort,”
Computer, vol. 11, p. 25, Mar. 1978.

[159] Barry W. Boehm, “Software and Its Impact: A Quantitative Assess-
ment,” Datamation, vol. 19, p. 48, May 1973.

[160] Edsger W. Dijkstra, “DoD-I: The Summing Up,” SIGPLAN Notices,
vol. 13, pp. 24–26, July 1978.

[161] Robert L. Glass, “From Pascal to Pebbleman ... and Beyond,” Data-
mation, vol. 25, pp. 146–147, July 1979.

[162] Rob Kling and Walter Scacchi, “The DoD Common High Order
Programming Language Effort (DoD-1): What Will the Impacts
Be?” SIGPLAN Notices, vol. 14, pp. 32–40, Feb. 1979.

[163] Paul R. Eggert, “Letter,” SIGPLAN Notices, vol. 15, p. 9, Jan. 1980.
[164] J. T. Galkowski, “A Critique of the DOD Common Language Ef-

fort,” SIGPLAN Notices, vol. 15, p. 15, June 1980.
[165] Patrick Skelly, “The ACM Position on Standardization of the Ada

Language,” Comm. ACM, vol. 25, p. 119, Feb. 1982.
[166] Henry F. Ledgard and Andrew Singer, “Scaling Down Ada (or To-

wards a Standard Ada Subset),” Comm. ACM, vol. 25, p. 121, Feb.
1982.

[167] Robert L. Glass, “Letter,” Comm. ACM, vol. 25, p. 500, July 1982.
[168] Randall Leavitt, “Letter,” Comm. ACM, vol. 25, p. 500, July 1982.
[169] Brian Wichmann, “Is Ada Too Big? A Designer Answers the Crit-

ics,” Comm. ACM, vol. 27, p. 103, Feb. 1984.
[170] William I. MacGregor, “Letter,” SIGPLAN Notices, vol. 13, p. 18,

Sept. 1978.
[171] Peter Wegner, “The Ada Language and Environment,” Software

Eng. Notes, vol. 5, p. 9, Apr. 1980.
[172] Charles Antony Richard Hoare, “The Emperor’s Old Clothes,”

Comm. ACM, vol. 24, p. 82, Feb. 1981.
[173] “DOD Interim Policy on Ada Issued,” Comm. ACM, vol. 26, p. 706,

Sept. 1983.
[174] Saul Rosen, “Programming Systems and Languages 1965–1975,”

Comm. ACM, vol. 15, p. 591, July 1972.
[175] David R. Hanson, “A Simple Technique for Representing Strings in

Fortran IV,” Comm. ACM, vol. 17, p. 646, Nov. 1974.
[176] Daniel D. McCracken, “Is There a Fortran in Your Future?” Data-

mation, vol. 19, p. 237, May 1973.
[177] Daniel D. McCracken, “Letter,” Comm. ACM, vol. 28, p. 568, June

1985.
[178] “The NCC: Reminiscent of the Late Sixties,” Datamation, vol. 21, p.

104, June 1975.
[179] Tomasz Kowaltowski, “Letter,” SIGPLAN Notices, vol. 10, p. 4,

Aug. 1975.
[180] Eric Campbell, “Letter,” SIGPLAN Notices, vol. 11, p. 2, May 1976.
[181] Stuart W. Rowland, “Some Comments on Structured Fortran,” SIG-

PLAN Notices, vol. 11, p. 45, Oct. 1976.
[182] Michael J. Viehman, “Letter,” SIGPLAN Notices, vol. 10, p. 8, Oct.

1975.
[183] Anthony Ralston and Jerrold L. Wagener, “Structured Fortran—an

Evolution of Standard Fortran,” IEEE Transactions on Software En-
gineering, vol. 2, p. 154, Sept. 1976.

[184] Daniel D.McCracken, “Let’s Hear It for COBOL!” Datamation, vol.
22, p. 242, May 1976.

[185] Peter Naur, “Programming Languages, Natural Languages, and
Mathematics,” Comm. ACM, vol. 18, pp. 678–680, Dec. 1975.

[186] Michael Hammer et al., “A Very High Level Programming Lan-
guage for Data Processing Applications,” Comm. ACM, vol. 20, pp.
832–833, Nov. 1977.

[187] Mark R. Crispin, “Letter,” Datamation, vol. 22, p. 7, Nov. 1976.
[188] A. C. Larman, “Letter,” Computer Bull., 1st series, no. 16, p. 506,

Nov. 1972.

[189] Ware Myers, “Key Developments in Computer Technology: A Sur-
vey,” Computer, vol. 9, p. 59, Nov. 1976.

[190] Linda Runyan, “Software Still a Sore Spot,” Datamation, vol. 27, p.
165, Mar. 1981.

[191] Ronald A. Frank, “Let the Users Program,” Datamation, vol. 28, p.
88, Jan. 1982.

[192] Nigel S. Read and Douglas L. Harmon, “Language Barrier to Pro-
ductivity,” Datamation, vol. 29, p. 209, Feb. 1983.

[193] John Cardullo and Herb Jacobsohn, “Letter,” Datamation, vol. 29, p.
24, May 1983.

[194] Bill Inmon, “Rethinking Productivity,” Datamation, vol. 30, p. 185,
June 15, 1984.

[195] Michael H. Brown, “Letter,” Datamation, vol. 30, p. 23, Sept. 15,
1984.

[196] F. J. Grant, “The Downside of 4GLs,” Datamation, vol. 31, p. 99,
July 15, 1985.

[197] Peter Wegner, “Capital-Intensive Software Technology, Part 2:
Programming in the Large,” IEEE Software, vol. 1, p. 31, July 1984.

[198] Alex Pines and Dan Pines, “Don’t Shoot the Programmers,” Data-
mation, vol. 29, p. 114, Aug. 1983.

[199] Santosh K. Misra and Paul J. Jalics, “Third-Generation Versus
Fourth-Generation Software Development,” IEEE Software, vol. 6,
p. 14, July 1989.

[200] Bruce Hailpern, “Multiparadigm Languages and Environments,”
IEEE Software, vol. 3, p. 6, Jan. 1986.

[201] Pamela Zave, “A Compositional Approach to Multiparadigm Pro-
gramming,” IEEE Software, vol. 6, p. 15, Sept. 1989.

[202] John Backus, “Can Programming Be Liberated From the von Neu-
mann Style? A Functional Style and Its Algebra of Programs,”
Comm. ACM, vol. 21, p. 514, Aug. 1978.

[203] R. N. Caffin, “Heresy on High-Level Languages,” Computer, vol.
12, pp. 108–109, Mar. 1979.

[204] Jim Haynes, “Comment on High-Level Heresy,” Computer, vol. 12,
p. 109, Mar. 1979.

[205] David Feign, “Letter,” Computer, vol. 12, p. 122, Sept. 1979.
[206] William A. Wulf, “Trends in the Design and Implementation of

Programming Languages,” Computer, vol. 13, p. 15, Jan. 1980.
[207] Victor R. Basili and Albert J. Turner, “Iterative Enhancement: A

Practical Technique for Software Development,” IEEE Transactions
on Software Engineering, vol. 1, p. 390, Dec. 1975.

[208] W. P. Dodd, “Prototype Programs,” Computer, vol. 13, p. 81, Feb.
1980.

[209] Pat Hall, Janet Low, and Steve Woolgar, “Human Factors in Infor-
mation Systems Development: A Project Report,” CRICT Discus-
sion Paper No. 31, Brunel University, 1992.

[210] Fletcher J. Buckley, “A Modest Proposal,” Computer, vol. 15, p.
103, Dec. 1982.

[211] Daniel D. McCracken and Michael A. Jackson, “Life Cycle Concept
Considered Harmful,” Software Eng. Notes, vol. 7, p. 32, Apr. 1982.

[212] G. R. Gladden, “Stop the Life-Cycle, I Want to Get Off,” Software
Eng. Notes, vol. 7, p. 35, Apr. 1982.

[213] Patrick A. V. Hall, “Letter,” Software Eng. Notes, vol. 7, p. 23, July
1982.

[214] Bruce I. Blum, “The Life Cycle—a Debate Over Alternate Models,”
Software Eng. Notes, vol. 7, p. 18, Oct. 1982.

[215] Joseph W. Chambers, “Letter,” Comm. ACM, vol. 26, p. 108, Feb.
1983.

[216] Ware Myers, “Can Software Development Processes Improve—
Drastically?” IEEE Software, vol. 1, p. 101, July 1984; Mark Dow-
son and Jack C. Wileden, “A Brief Report on the International
Workshop on the Software Process and Software Environments,”
Software Eng. Notes, vol. 10, p. 21, July 1985.

[217] Stefano Nocentini, “The Planning Ritual,” Datamation, vol. 31, p.
128, Apr. 15, 1985.

[218] R. E. A. Mason and T. T. Carey, “Prototyping Interactive Informa-
tion Systems,” Comm. ACM, vol. 26, p. 348, May 1983.

[219] Jerry Schulz, “Letter,” Datamation, vol. 29, p. 24, Sept. 1983.
[220] Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt,

“Prototyping Versus Specifying: A Multiproject Experiment,” IEEE
Transactions on Software Engineering, vol. 10, p. 300, May 1984.

[221] Gruia-Catalin Roman, “A Taxonomy of Current Issues in Require-
ments Engineering,” Computer, vol. 18, p. 20, Apr. 1985.

Splitting the Difference

54 � IEEE Annals of the History of Computing, Vol. 19, No. 1, 1997

[222] Zohar Manna and Richard Waldinger, “Synthesis: Dreams => Pro-
grams,” IEEE Transactions on Software Engineering, vol. 5, p. 295,
July 1979.

[223] D. J. Cooke, “Program Transformation,” Computer Bull., 2nd series,
p. 20, Dec. 1979.

[224] David W. Wile, “Program Developments: Formal Explanations of
Implementations,” Comm. ACM, vol. 26, p. 903, Nov. 1983.

[225] Pamela Zave, “The Operational Versus the Conventional Approach
to Software Development,” Comm. ACM, vol. 27, p. 113, Feb. 1984.

[226] Manfred Broy and Peter Pepper, “Program Development as a Formal
Activity,” IEEE Transactions on Software Engineering, vol. 7, p. 22,
Jan. 1981.

[227] Barry W. Boehm, “A Spiral Model of Software Development and
Enhancement,” Computer, vol. 21, p. 65, May 1988.

[228] Dennis M. Ritchie and Ken Thompson, “The Unix Time-Sharing
System,” Comm. ACM, vol. 17, p. 365, July 1974.

[229] Evan L. Ivie, “The Programmer’s Workbench—a Machine for Soft-
ware Development,” Comm. ACM, vol. 20, p. 746, Oct. 1977.

[230] B. W. Kernighan and P. J. Plauger, “Software Tools,” Software Eng.
Notes, vol. 1, p. 15, May 1976.

[231] Anthony I. Wasserman, “Automated Development Environments,”
Computer, vol. 14, p. 9, Apr. 1981.

[232] Michael Lesk, “Another View,” Datamation, vol. 27, p. 139, Nov.
1981.

[233] David Morris, “How Not to Worry About Unix,” Datamation, vol.
30, p. 83, Aug. 1, 1984.

[234] Dennis F. Barlow and Norman S. Zimbel, “Unix—How Important Is
It?” Datamation, vol. 30, p. 101, Aug. 1, 1984.

[235] T. H. Crowley, L. L. Crume, and C. B. Hergenhan, “AT&T Asks for
a Unix Standard,” Datamation, vol. 30, p. 100, Aug. 1, 1984.

[236] Peter J. Denning, “Throwaway Programs,” Comm. ACM, vol. 24, p.
58, Feb. 1981.

[237] Grover P. Righter, “Letter,” Datamation, vol. 30, p. 16, Nov. 1,
1984.

[238] Tim Teitelbaum, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment,” SIGPLAN Notices, vol. 14, p.
75, Oct. 1979.

[239] Vic Stenning et al., “The Ada Environment: A Perspective,” Com-
puter, vol. 14, p. 27, June 1981.

[240] Charles Rich and Howard E. Shrobe, “Initial Report on a Lisp Pro-
grammer’s Apprentice,” IEEE Transactions on Software Engineer-
ing, vol. 4, p. 456, Nov. 1978.

[241] Elliot Soloway, “A Cognitively-Based Methodology for Designing
Languages/Environments/Methodologies,” SIGPLAN Notices, vol.
19, p. 195, May 1984.

[242] Ware Myers, “MCC: Planning the Revolution in Software,” IEEE
Software, vol. 2, p. 72, Nov. 1985.

[243] J. Trenouth, “A Survey of Exploratory Software Development,”
Computer J., vol. 34, p. 153, Apr. 1991.

[244] Winston Royce, “Has the Exploratory Approach Come of Age?”
IEEE Software, vol. 10, p. 104, Jan. 1993.

[245] A. Nico Habermann and David Notkin, “Gandalf: Software Devel-
opment Environments,” IEEE Transactions on Software Engineer-
ing, vol. 12, p. 1,118, Dec. 1986.

[246] Jayshree Ramanathan and Soumitra Sarkar, “Providing Customized
Assistance for Software Lifecycle Approaches,” IEEE Transactions
on Software Engineering, vol. 14, p. 749, June 1988.

[247] Ronald J. Norman and Gene Forte, “CASE in the ’90s,” Comm.
ACM, vol. 35, p. 30, Apr. 1992.

[248] Arthur J. Collmeyer, “Developments in Design Automation,” Com-
puter, vol. 7, p. 11, Jan. 1974.

[249] Peter Freeman, “Automating Software Design,” Computer, vol. 7, p.
34, Apr. 1974.

[250] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidents
of Software Engineering,” Computer, vol. 20, p. 11, Apr. 1987.

[251] Paul Rook, “Controlling Software Projects,” Software Eng. J., vol. 1,
p. 8, Jan. 1986.

[252] Anthony Finkelstein, “London Open CRIS Conference,” Computer
Bull., 2nd series, p. 5, Sept. 1984.

[253] A. T. Wood-Harper and G. Fitzgerald, “A Taxonomy of Current
Approaches to Systems Analysis,” Computer J., vol. 25, pp. 12–16,
Feb. 1982.

[254] G. Fitzgerald, N. Stokes, and J. R. G. Wood, “Feature Analysis of
Contemporary Information Systems Methodologies,” Computer J.,
vol. 28, no. 3, pp. 223–230, 1985.

[255] J. Mayhew and P. A. Dearnley, “An Alternative Prototyping Classi-
fication,” Computer J., vol. 30, pp. 481–484, Dec. 1987.

[256] Xiping Song and Leon J. Osterweil, “Toward Objective, Systematic
Design-Method Comparisons,” IEEE Software, vol. 9, p. 44, May
1992.

[257] D. M. Episkopou and A. T. Wood-Harper, “Towards a Framework to
Choose Appropriate IS Approaches,” Computer J., vol. 29, p. 222,
June 1986.

[258] Alan M. Davis, Edward H. Bersoff, and Edward R. Comer, “A Strat-
egy for Comparing Alternative Software Development Life Cycle
Models,” IEEE Transactions on Software Engineering, vol. 14, pp.
1,453–1,461, Oct. 1988.

[259] Bo Sanden, “The Case for Electric Design of Real-Time Software,”
IEEE Transactions on Software Engineering, vol. 15, p. 360, Mar.
1989.

[260] “Panel on Problems of the 80s, ICSE Atlanta,” Software Eng. Notes,
vol. 3, p. 29, July 1978.

[261] Ware Myers, “New British Tool Centre a Response to Software
Complexity,” IEEE Software, vol. 2, p. 94, Nov. 1985.

[262] W. Wayt Gibbs, “Software’s Chronic Crisis,” Scientific Am., pp. 72–
81, Sept. 1994.

[263] Annie Kuntzmann-Combelles, “Software Help Wanted: Revolution-
ary Thinkers,” IEEE Software, vol. 9, p. 10, Sept. 1992.

Stuart Shapiro is a Visiting Research Fel-
low in the Centre for Research into Inno-
vation, Culture and Technology (CRICT) at
Brunel University in England. He has pre-
viously been a Research Fellow in the
Centre for Technology Strategy at the Open
University, also in England. He holds a BS
in computer science from Northwestern
University and a PhD in applied history and
social sciences from Carnegie Mellon Uni-

versity. His research has focused on the history and sociology of
software engineering. He also has interests in engineering profes-
sional development and in information technology and privacy.

The author can be contacted at
Centre for Research into Innovation, Culture and Technology
Brunel University
Uxbridge, Middlesex UB8 3PH, United Kingdom
e-mail: s_shapiro@acm.org

