Splitting the Difference: The Historical
Necessity of Synthesis in
Software Engineering

STUART SHAPIRO

For the last quarter of a century, software technologists have worked to ad-
dress the “software crisis” identified in the 1960s. Their efforts have focused
on a number of different areas, but have often been marked by the search
for singular “best” solutions. However, the fundamental nature of software—
involving basic and poorly understood problem-solving processes combined
with unprecedented and multifaceted complexity—weighs heavily against
the utility of singular approaches. Examination of the discourse of software
technologists in a number of key professional and trade journals over the
last 25 years illuminates various disputes central to the development of
software engineering and highlights the necessity of a more pluralistic mind-
set revolving around synthesis and trade-offs.

Introduction
y the end of the 1960s, it was becoming obvious to the comeould be traced to one principal cause—complexity engendered by
puting community that software was a big problem andsoftware’s abstract nature and by the fact that it constitutes a digital

growing bigger. While the cost of hardware steadily declined eve(discrete state) system based on mathematical logic rather than an
as hardware performance steadily increased, software seemadalog system based on continuous functions. This latter character-
headed in the opposite direction. Large software projects welistic not only increases the complexity of software artifacts but also
consistently late, over budget, and full of defects. Today, the conseverely vitiates the usefulness of traditional engineering techniques
plaints remain much the same. This is not to deny that the curreotiented toward analog systerznsp.\lthough computer hardware,
situation represents a drastic improvement over the state of affainsost notably integrated circuits, also involves great complexity (due
that prompted the North Atlantic Treaty Organization (NATO)to both scale and state factors), this tends to be highly patterned
software engineering conferences of the late 1960s. What wemmmplexity that is much more amenable to the use of automated
problems then are still problems now, but they tend to be (but ndbols. Software, in contrast, is characterized by what Fred Brooks
always) relatively less frequent and less disastrous, especially tmas labelled “arbitrary complexitﬁ”
the context of the vastly expanded size and ambitions of much The complexity associated with software technology, however,
contemporary software. Indeed, Andrew Friedman has argued thist not that straightforward. Instead, it involves numerous facets
while software was previously the key stumbling block for sys-and dimensions. Complexity’s various contexts include algo-
tems development, the focus has now shifted to user heedsithmic efficiency, the structure of procedures and data, and the
While Friedman is right to call attention to the current emphasipsychological effort of problem comprehension, translation, and
on user needs, though, his periodization based on successive beystem design. Those contexts have manifested themselves in
tlenecks is a little too tidy and belies the complexity and heteroissues concerning structured programming, software metrics,
geneity of the issues and arguments that have surrounded systepnegram verification, formal methods generally, programming
development from the early days to the present. languages, the software life cycle, and programming environ-

Events of the late 1960s enhanced comprehension of thments. No solution aimed at a single area could provide the de-
breadth and depth of the problems plaguing software developmegtee of relief many were seeking. Moreover, agreeing on singular
while only hinting at solutions. Still, the growing recognition that approaches with respect to any of these issues also frequently
a collection of interrelated problems existed, together with amproved difficult in the face of incommensurable philosophies and
awareness of the importance of process, constituted a turningescapable trade-offs. Recognition of the futility of technical
point in the history of software technology. The “software crisis”singularity in any realm of software technology was slow in
provided a context for the development of software technology imlawning.
the 1970s and beyond. The basic nature of software vis-a-vis hardware complicates

From the 1960s onward, many of the ailments plaguing softwarmatters in this respect. Hardware, in computing and in general,
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refers to something solid, inflexible, and not easily altered. The first methodological problem is the unavoidable one of
Software is soft precisely because its descriptors—ephemeradpurce self-selection. Those individuals who submit articles or
flexible, malleable—contrast with those of hardware. Theywrite letters are by definition moved to do so by a variety of mo-
make software an excellent source of leverage—the power ttivations, ranging from the pursuit of tenure to passionately held
act effectively. The ability to fashion a means of problem soluviews on a certain topic. However, this does not automatically
tion adapted to the specifics of a problem constitutes leverage oénder their views unrepresentative. Moreover, while a number of
a high order. Obviously, software by itself, while maximizing names appear on a regular basis, a larger number appear on a
flexibility, is of limited utility since it then amounts to only a set much more ad hoc basis. In other words, while a body of elites is
of instructions on how to accomplish a certain task. While suctelearly in evidence, so, too, is wide participation from the rest of
codification is useful, it fails to supply the leverage that resultghe computing and software communities.

when it is combined with mechanization. Slmllarly, a Special- ]

purpose machine with no capacity for variation is of little use The powerful desire for dramatic
outside its narrow area of application. Hardware and software . .

have a synergistic effect on problem solution. The former smgular solutions therefore
mechanizes narrowly but deeply, the latter mechanizes broadly hindered rather than helped
but shallowly. Together, they are capable of exerting a high .

degree of leverage on problems. software technologists.

The trade-off between breadth and depth also pertains to soft-

. " The second methodological difficulty arises out of the circum-
ware per se. Programming languages, application programs, tools, . . .
. - ; scribed geographic range of the sources. This reflects several
methods, and environments (including cultural factors) all em:

body it. The essence of the tension is the degree to which allg)ra\ctlcal limitations, including language barriers and time con-

. . e . raints. It most certainly should not be taken as implying the
given piece of software technology “fits” the circumstances sur: = . .
N . . _.insignificance of work done outside the United States and Great
rounding its use. To the extent that the piece of technology is cits ™ *. . - .
L . .. Britain. Two factors, though, in the one case explain and in the
cumstance-specific, it incorporates knowledge and characteristic - S .
; . ) ; other case mitigate this bias. With respect to the former, the
that help it function more effectively, affording the user greater” " . .
. ) o United States has long been and continues to be the acknowledged
problem-solving leverage under those particular conditions. How- :
X : world leader in software technology. In terms of the latter, many
ever, the corollary to this property is that the technology becomes o . . . .
. . . L f the publications surveyed circulate widely outside their country
correspondingly less suitable for use in other situations, depend-

ing on how far they deviate from the original target situation. IfOf origin and routinely carry articles, news, and correspondence

the original circumstances are narrowly defined, problematic def_rom around the world. Therefore, building this study on the par-

viation occurs relatively rapidly, while if the circumstances aretlcmalIr literature employed seems eminently justifiable.

) o . With the exception of the following section discussing the
more broadly defined, deviation is less rapid. However, by th . . o .
; . ATO software engineering conferences, the organization of this

same token, software technology suitable for a wide range o

. . . .~ ‘essay is thematic but chronological for each theme. The first
circumstances will aford less leverage by way of highly partlcu_theme focuses on the central role of complexity in software tech-
lar knowledge embodied within the technology. This, then, is the piexity

essential tension within software in all its aspects: the trade-o#pl()gy and its manifestation in design and measurement strate-

between specificity and generality. It underlies software technol9'®>- Thls. \.M” .be foIIowgd b.y discussion O.f thg debate over pro-
ogy in all its manifestations. gram verification, leading into an examination of the formal

methods movement more generally. Issues arising out of pro-

_ The powerful desire for dramatic singular solu_tions the_refqregramming languages, life cycle models, and programming envi-
hindered rather than helped software technologists. Difficultie$,,ments will then be discussed. All of this will highlight the

were exacerbated by the exaggerated and sweeping claims thatyiem of making choices in a pluralistic technological world, a
often accompanied particular techniques, claims that frequentlyy,ic that will be addressed toward the end. While this work does

generated an equal and opposite reaction. The problems plaguig; assume expertise in software engineering on the part of the

software technology were usually fuzzy, variable, and mUIt'faC'reader, some basic appreciation of software technology would

eted, and thus rarely proveql amenable tp any one approach; il'}ﬁdoubtedly prove helpful in making sense of it.
stead, they demanded hybrid and adaptive solutions. Messy re-
sponses, though, were less than satisfying to those who sou@*etting the Stage: The NATO Conferences
sweeping breakthroughs. Effective action required a spirit offhe NATO software engineering conferences of 1968 and 1969
pragmatic accommodation, a kind of technical pluralism that waset an agenda and a context that even today continue to make their
not always evident. presence felt.In the fall of 1967, the NATO Science Committee
What follows is not intended to be a comprehensive history ohad established a Study Group on Computer Science to assess the
software engineering since the engineering appellation was firdteld. The attention of the study group was drawn to the problems
formally used. Rather, it is an attempt to capture the flavor oéndemic in the area of software. Around the end of 1967, it rec-
some of the key concerns and arguments as they have manifestsdmended that a working conference be held on software engi-
themselves in the discourse contained within some of the moseering. The conference report noted that “the phrase ‘software
influential professional and trade literature. These sources senangineering’ was deliberately chosen as being provocative, in
as a primary forum in which the issues of the day are raised arichplying the need for software manufacture to be based on the
debated. Clearly, though, this poses a couple of methodologictfpes of theoretical foundations and practical disciplines that are
problems. traditional in the established branches of engineeringtérna-
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tional experts from a wide variety of backgrounds gathered imlesign problem™3* More concretely, H.R. Gillette of Control

Garmisch, Germany, in October 1968 to consider problems in thBata suggested that the three fundamental design concepts of
design, production, and maintenance of software. modularity, specification, and generality were essential to a
Although the participants agreed that problems existedmaintainable syster?1‘.’p'39'4°IBM’s Brian Randell suggested that
opinions varied on the seriousness of the “software crisis” antthere are two distinct approaches to the problem of deciding in

the extent of the problems. Typical of the exchanges was thehat order to make design decisions,” top-down and bottoPn-up.
one between Ken Kolence of Boole and Babbage Inc. ané&rofessor Stanley Gill contended, however, that “in practice nei-
Douglas Ross from the Massachusetts Institute of Technologther approach is ever adopted completely; design proceeds from
(MIT). Kolence did not like the use of the wodtlisis. “It's a the top and bottom, to meet somewhere in between, though the
very emotional word. The basic problem is that certain classelseight of the meeting point varies with circumstandem’other

of systems are placing demands on us which are beyond owmords, one’s approach to software design had to be flexible rather
capabilities and our theories and methods of design and produthan doctrinaire. Effectiveness required combining perspectives.
tion at this time. There are many areas where there is no such A year later, a follow-up conference on software engineering
thing as a crisis... > 1?1 Ross responded that “it makes no dif- techniques took place in Rome under NATO auspices. The editors
ference if my legs, arms, brain and digestive tract are in finef the conference report observed, however:

working condition if | am at the moment suffering from a heart
attack. | am still very much in a crisig#™?! Most, however,
could agree with E.E. David of Bell Laboratories that
“production of large software has become a scare item for man-
agement. By reputation it is often an unprofitable morass, costly
and unending "%’

The resulting conference bore little resemblance to its
predecessor. The sense of urgency in the face of common
problems was not as apparent as at Garmisch. Instead, a
lack of communication between different sections of the
participants became a dominant feature. Eventually, the

; ) . seriousness of this communication gap, and the realization
With regard to the underlying causes of the crisis, at least some that it was but a reflection of the situation in the real

of the participants appreciated the ephemeral nature of the me- world, caused the gap itself to become a major topic of
dium and the difficulties it created. David noted that with respect <. ssion. Just as the realization of the full magnitude of

to problems of scale, the software crisis was the main outcome of the meeting at

the uninitiated sometimes assume that the word “scale” re- Garmisch, the realization of the significance and extent of
fers entirely to the size of code. . . . This dimension is in- the communication gap is the most important outcome of
deed a contributory factor to the magnitude of the problems, the Rome conferencge.

but there are others. One of increasing importance is the
number of different, non-identical situations which the
software must fit. Such demands complicate the tasks of
software desigh and implementation, since an individually
programmed system for each case is imprac?i%"a??'eg

This perceived gap was generally regarded as one between theory
and practice, i.e., between computer science and software engi-
neering. |.P. Sharp opined that theory and practice translated into
architecture and engineering and that design was the key activity.
“Within that framework programmers or engineers must create
Moreover, he noted, “there is no theory which enables us to cabomething. No engineer or programmer, no programming tools,
culate limits on the size, performance, or complexity of softwareare going to help us, or help the software business, to make up for
There is, in many instances, no way even to specify in a logicallg lousy design.a'p'lzR.M. Needham of the Cambridge University
tight way what the software product is supposed to do or how it iMathematical Laboratory and J.D. Aron of IBM argued that
supposed to do it®%9 on the subject of design criteria, J.W. “much theoretical work appears to be invalid because it ignores
Smith observed that there was parameters that exist in practicgeReality, they seemed to feel,
was a messy and complex business, and that messiness and com-
plexity could not simply be wished away. They had to be dealt
with.

The NATO conferences set the stage for many of the debates of
the next decade: language generality versus specificity, testing
versus verification, practice versus theory. But they also high-
lighted the problem of complexity and the pivotal activity of de-
sign. In short, the NATO meetings revealed and sparked concern
not only for the structure of programs but also for the structure of
programming.

Heterogeneity, fuzziness, lack of discipline, lack of theory—such
complaints persist to this day. : e

Because problem solving is such a basic activity and becaus%ommg to ans' .
complexity is such a fundamental phenomenon, attempts to a@>€tting a Handle on Complexity
dress these dilemmas tended to produce conceptually broad rfiéentral to the software development process, both literally in
tions. Peter Naur suggested that “software designers are intarms of the life cycle and figuratively in terms of profile, soft-
similar position to architects and civil engineers, particularly thosvare design drew much of the attention in the years immedi-
concerned with the design of large heterogeneous constructiorsgtely following the NATO software engineering conferences.
such as towns and industrial plants. It therefore seems natural thEe problem of complexity was particularly evident in the proc-
we should turn to these subjects for ideas about how to attack tiess of design and so generated much thought as to how to con-

a tendency that designers use fuzzy terms, like “elegant” or
“powerful” or “flexible.” Designers do not describe how the
design works, or the way it may be used, or the way it
would operate. What is lacking is discipline, which is
caused by people falling back on fuzzy concepts. . . . Also
designers don't seem to realize what mental processes they
go through when they design. Later, they can neither ex-
plain, nor justify, nor even rationalize, the processes they
used to build a particular systerfy>®
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trol it. That thought devolved on the community as techniquesween intramodule and intermodule complexity. They argued that
of modularity, abstraction, management, and measurementstructuring a large collection of modules to form a ‘system’ is an
Much of it was soon ensconced in the appealing &rocture essentially distinct and different intellectual activity from that of
While some hailed the advent of the structure revolution, howeonstructing the individual modules. That is, we distinguish pro-
ever, others rebelled against the notion that these concepts agchmming-in-the-large from programming-in-the-smafl."The
techniques constituted a breakthrough that would transporuthors’ principal point was the necessity of a separate module
software development into a new world untroubled by the diffi-interconnection language. In the years to follow, however, this
culties of the past. distinction would often be invoked to distinguish software engi-
Many of the key design concepts of the period sprang from thaeering from mere programming.
elemental notion of modularity. In a 1971 articledommunica- ——
tions of the ACM(the principal journal of the Association for . . .
Computing Machinery, ACM), Niklaus Wirth described stepwise But while the notion of mOdU|a”ty had
refinement, a process of software development in which a design long been bandied about, its effective
is gradually_ decomposed in sgccesswely gre_ater detail until fully application was another matter.
expressed in the implementation (programming) language. Stepa
wise refinement constituted a basic, practical approach to the
problem of minimizing program complexity. It aimed to If benefits could be gained from treating modules as functional
“decompose decisions as much as possible, to untangle aspedstractions, which was the basic goal of information hiding,
which are only seemingly interdependent, and to defer those dederhaps there were also advantages to treating data structures in a
sions which concern details of representation as long as pos§imilar manner. A 1975 article by Barbara Liskov (MIT) and Ste-
ble.”’® In more concrete terms, stepwise refinement impliedPhen Zilles (IBM) inlEEE Transactions on Software Engineering
modular design. But while the notion of modularity had long beer{started that year by the Computer Society of the Institute of
bandied about, its effective application was another matter. Alectrical and Electronics Engineers, IEEE) explored techniques
1971 letter toDatamation(a leading data processing trade jour- for specifying data abstractions—groups of related operations that
nal) complained that many supposedly modular programs werct on a class of objects (a data type) and provide the only means
little better than the monolithic ones they replaced. Practitioner8f manipulating the objects.In other words, just as information
needed criteria for modular desiﬁh. hiding permits modules to be used only in certain well-defined
This was no sooner said than done, as David Parnas exploréys, data abstraction allows only certain well-defined operations
that very topic in the pages @ommunicationshe following 0N data structures. Most early efforts regarding data abstraction
year. Parnas argued that segments or modules should convey fRgused on achieving it in more traditional procedural languages.
minimum amount of information required to enable other parts ofohn Guttag, in a 197Communicationsarticle, described an
the program to use them properly. Parnas’s point washthag algebraic technique for the specification of abstract data types.
module accomplished its function was irrelevant to the moduleBut while such techniques “should present no problem to those
that invoked it. Information beyond the relationship betweenWith formal training in computer science,” he cautioned, “most
module input and output served only to complicate matters anpeople involved in the production of software have no such train-
tempt the programmer to play with details better left alone. Parnd. The extent to which the techniques described . . . are gener-
nas’s technique was quickly labeled “information hidifigThe  ally applicable is thus somewhat open to conjecttire.”
salutary aspect of such a strategy was inherent in the label. If the Object-oriented programming took both data abstraction and
problem was one of excessive complexity, which in practicainformation hiding to extremes. Originating with the Simula pro-
terms meant too much information for an individual to managegramming language Kristen Nygaard and Ole-Johan Dahl devel-
intellectually, then the obvious solution was somehow to reduceped in Norway in the 1960s and typified by the Smalltalk system
the amount of information that had to be considered at any giveteveloped at Xerox during the 1970s, object-oriented program-
time. Parnas followed up on this in another article later that yeaming revolved around objects that embodied a data type and the
He cited the benefits of modular programming as manageriaiperations applicable to it. Rather than acting directly on its uni-
(reduced communication requirements between module developerse of objects, a program (as well as the objects) dispatched
ers), flexibility (changes in one module need not necessitatmessages that each object interpreted and acted on in accordance
changes in others), and comprehensibility (the system could beith its internal rules. This was data abstraction in the extreme,
studied one module atatirnleq’). because in theory the program did not require any knowledge
The next year, 1973, Glenford Myers tackled the subject ofvhatsoever of the implementation specifics of the objects; it did
criteria to guide program decomposition. He suggested that thaot even need to know whether thevere any objects. Object-
objective was to minimize module coupling (interdependenceoriented enthusiasts, though, contended that the approach was
between modules) and to maximize module strengthdifferent not simply in degree but also in kind. In contrast to tra-
(intradependence within modules). Correct modularization, helitional methods, “rather than factoring our system into modules
asserted, would lead to increased reliability, decreased developitat denote operations, we instead structure our system around the
ment costs, increased extensibility, increased project control, arabjects that exist in our model of realif}?"l’his led to “the claim
off-the-shelf parts, with a large measure of these benefits resultirthat the thinking process inherent in OOD [object-oriented design]
from a reduction in complexit&f In a paper two years later in is more ‘natural’ than that of SD [structured development], i.e., in
1975, Frank DeRemer and Hans Kron of the University of Calibuilding an abstract model of reality it is more natural to think in
fornia at Santa Cruz expanded the meaning of the distinction béerms of objects than in terms of functionOn the other hand,
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there is very little that one can say with much confidence software engineerinﬁs. Application domain has repeatedly been
about a “most natural” way that people think about the re- seen as one of the principal contexts of which software technolo-
alities of their universe. Thus, to say that the object model gists must be cognizant. It is one of the key areas in which the
is a more natural way to think involves a rather sizeable tension betweeen specificity and generality plays itself out.
leap of faith. Undoubtedly, the truth of the matter is that In any case, the important point was that in the mid-1970s,
both paradigms are “natural,” and that the proper synthe- many concepts that applied to procedures or functions could also
sis of the two, in relation to a particular problem, is what apply to data. Around the mid-1970s, Michael Jackson, one of the
should be striven for. . . . The task ahead is to move the European structured programming disciples, developed an ap-
debate to a higher level—not arguing about which is more proach that centered around the data rather than the operations.
“natural”—but exploring how we best take advantage of Jackson’'s method produced a program whose structure corre-
both approache’sc’.’p'47 sponded to the data structure of the prolﬁ%fﬁhis was also the
In the mid-1980s, in fact, several proposals were made to Conp__remzi;se behind a method Jean Wgrnier devise_d ?round t_he same
bine object-oriented and conventional procedural techniques. In4ne- Ken Orr developed a variation of Warnier’s technique a
1984 article inlEEE Software(started that year by the IEEE few years later that became known as the Warnier—Orr approach.

Computer Society), Brad Cox proposed adding object-orienteé‘ 1978 article inSoftware Engineering Notdthe publication of

concepts “on top” of conventional programming IanguagesS'GSOFT_the ACM Special Interest Group on Software I_Engi-
“the data-structured/process oriented

“Hybrid languages just add a new power tool to the programmer8€€ring) - concluded that
kit, a tool that can be picked up when it fits the task at hand or s@PProach is the one that has the best prospects for system and
aside when conventional techniques are sufficighir the same
vein, the authors of an article @omputer(the principal journal
of the IEEE Computer Society) the following year suggested tha
“just as a combination of top-down and bottom-up development i
appropriate to many applications, a combination of functiona
[Fortran-like] and object-oriented design might well be most ap
propriate.” Likewise, a 1989 article described how to integrate” @
the object-oriented approach with structured developﬁ%éﬁmm
proposals reinforced the notion that synthesis might prove mor:«
beneficial than revolution. Rather than treat distinct approaches (
concepts as universal dogma, a more pragmatic approach mig
entail employing a combination of techniques as circumstance:
warranted.

program design in the future.”

AL

principal problem for this approach was finding the objects, i.e.
identifying the relevant objects in the problem domain that mus
then be defined along with their properties within the soft-
ware®P*4* This often required fairly deep knowledge of the ap-
plication domain. After alleven ifobject-oriented programming
was exceptionally effective at modeling the “real world,” the real
world is a complex place, and what should be construed as ¢
object for programming purposes is often not obvious. Writing in
Communicationsn 1987, Russell Abbott emphasized the crucial
role of domain knowledge in software developrr?énT.he fol-

projects noted that

the deep application-specific knowledge required to suc-
cessfully build most large, complex systems was thinly
spread through many software development staffs. Although
individual staff members understood different components
of the application, the deep integration of various knowl-
edge domains required to integrate the design of a large,

complex system was a scarcer attridite. The termstructuredhad quickly assumed the status of an icon,

The importance of domain-specific knowledae was also reco representing salvation in the eyes of some and just one more du-
ne imp In-specit wiedge was ais Yious quick fix in the eyes of others. The arrival of the structured
nized at the 1989 International Conference on Software Eng

. Victor Basili of the Uni itv of Marvland dqf I[:-)rogramming “revolution” was heralded in a collectionDzfta-
neering. victor basill of the Lniversity ot Maryland argued Ior i articles at the end of 1973. James Donaldson of Control
application-specific research in academia, while Bill Curtis of th

Data indicated that the name of the game was complexity man-
Microelectronics and Computer Technology Corporation (known g plexity

. ; LN agement. “A technique known as structured programming has
as MCC) made a case for developing domain specializations oen developed which offers improvements in both program
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complexity and program claritﬁg The following year, a seminal utes very much to the real underlying problem, which is clear
article by Stevens, Myers, and Constantine in Bl Systems thinking in the area of problem solvify.

Journal brought together many of the basic tenets and attached a ) ) ]
slightly different but revealing label to them—structudesign™® ~ Likewise, Dick Butterworth of General Electric cautioned that

Many articles and books on structured programming, structurec>P [Structured Programming] is no panacea—it really consists of
design, and structured analysis followed, but they were essentialfyformal notation for orderly thinking—an at‘%lt’)ute not commonly
variations on a theme. That theme consisted of concepts that diherent in programmers nor any other tyBeJohn Fletcher of
mon has suggested are fundamental, universal principles of de@wrence Livermore Laboratory was more scathing. He acidly
sign—hierarchical decomposition and modularity. It is hard|y§uggested that the Iabellpg as revolutionary of the ideas underly-
surprising that so many seized on “structured” as the adjective ¢f9 Structured programming was “clear commentary on the sad
choice. Design, from Simon’s viewpoint, consists of exercises ifftate into which the practice of programming has fallen in many
divining the structure of a problem and systematically structuringiu@rters and in which it apparently will remaftt Fletcher appar- _

an appropriate solutioH. ently felt the concepts falling under the structured programming

Another aspect of the structure “revolution” addressed the tasi/Pric consisted of long-standing fundamentals rather than reve-
of carrying out the design process in an efficient and controllabltOry innovations.

fashion. In other words, this aspect concerned management of the

process. One management strategy in particular became close_
associated with structured programming. As IBM's F. Terry Baker 1€ term structured [programming] had
and Harlan Mills discussed in the 19@atamationcollection, the quickly assumed the status of an icon,

chief programmer team approach, while “made possible by recent

technical advances in programming, . . . also incorporates a fun- representing salvation in the eyes of
damental change in managerial framework which includes re- some and just one more dubious

structuring the work of programming into specialized jobs, de- ick fix in th f oth
fining relationships among specialists, developing new tools to quick fix In the eyes of others.

permit these specialists to interface effectively with a developing,

visible project....**P*'By placing a single master programmer in  Experiences with structured programming, if not earth-
charge of design, providing appropriate support in terms of toolghattering, were nevertheless reasonably positive. A session on
and personnel, and employing structured programming techexperiences and accomplishments with SP at the 1974 Lake Ar-
niques, the chief programmer team approach could supposedigwhead Workshop on Structured Programming produced the
result not only in an “entirely new technical standard for desigrconclusion that programs were generally more reliable, under-
quality” but also in a “true professional discipline with a recog-standable, and maintainatifeJames Elshoff of General Motors
nized, standard methodolog}”(Such arguments illustrate the compared sets of actual production programs to ascertain the ef-
function that “techniques” play in the process of professionalizafect of structured techniques and found the SP programs much
tion.) This focus on group structure and dynamics was not altanore comprehensibfé. Nevertheless, a 1976 book review in
gether new; Gerald Weinberg had taken the same perspective @omputer observed that the “ideas underlying the subject
The Psychology of Computer Programmiiy 19713 But [structured programming] have been intensively debated for al-
whereas Weinberg had emphasized decision by consensus, Bakgst a decade. . . . Yet there has been little sign of any real con-
and Mills saw advantages in a more authoritarian style. As evisensus emerging from this debate. On the contrary, it often seems

dence, the authors pointed to the development of an informatiohat discussions of the merits of structured programming are be-
bank for theNew York Timesa project characterized by high pro- coming more acrimonious as time goes @y

ductivity and very low error rates_. Questiqns were raised, how- 1.0k of the caustic commentary over structured programming
ever, concerning the extent to which the circumstances surroungiy not constitute rejection of its basic tenets. As several individuals
ing the project were in fact typical. Moreover, it seems the systefoted no one was in favor of unstructured programs. Rather, the
eventually proved unsatisfactory and was replaced some yearsy ment concerned relative value. Many practitioners objected to
later by a less ambitious systéf.‘n(lt should be noted, though, herceived attempts to deify a set of useful but less than omnipotent
that in recoun_tlng_ the prOJect, Mills presented it as an “”qual'f'eqechniques. Many sought not to discredit structured programming
success, making its ultimate outcome unclear.) _ but simply to bring it and its overly zealous advocates back down to
Given the fanfare with which structured programming (Orgar paul Abrahams of the Courant Institute indicted the sociology
whatever other activity one cared to attach) was introduced, g syryctured programming rather than its content. “There are two
substantial amount of skepticism was virtually guaranteed to gregfyefy| aspects of this sociology: the elevation of good heuristics
it. Fred Gruenberger's reaction was typical: into bad dogma, and the creation of the illusion that difficult prob-
So now it's structured programming and chief programmer lems are eas;f." In a similar vein, Daniel Berry of the University of
teams that will clear up all the troubles and make master pro- California at Los Angeles (UCLA) declared that it “seems prepos-
grammers of all us clods. Pardon me while | yawn; I've been terous to me (and to others) that the programs described in the pub-
here so many times. . . . Every single advance in software . . . lished descriptions of structured programming were developed as
has been introduced with exactly the same claims. Each such cleanly as described in the paperé? A decade later, Parnas and
advance (and the totality of structured programming may well Paul Clements made a similar charge regarding the rationality of
be one) adds to our bag of tricks. And none of them contrib- design processes generally:
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The picture of the software designer deriving his design in a estimation. The results were revealing insights into, for example,
rational, error-free way from a statement of requirements is the overheads inherent in large organizations, the difficulty of
quite unrealistic. No system has ever been developed in that producing coherent designs, and the virtual impossibility of get-
way, and probably none ever will. Even the small program ting a software product right the first time. His epilogue concisely
developments shown in textbooks and papers are unreal. sums up his analysis:

They have been revised and polished until the author has
shown us what he wishes he had done, not what actually did
happen".3

The tar pit of software engineering will continue to be
sticky for a long time to come. One can expect the human
race to continue attempting systems just within or just be-
Numerous practitioners took such arguments a step further, con- yond our reach; and software systems are perhaps the most
tending that the benefits of design techniques and software engi- intricate and complex of man’s handiworks. The manage-
neering in general were principally in the state of mind they pro- ment of this complex craft will demand our best use of new
duced. In his software keynote address at COMPCON (the IEEE languages and systems, our best adaptation of proven engi-
Computer Conference) in 1975, William McKeeman of the Univer- neering management methodieral doses of common
sity of California at Santa Cruz “described structured programming sense, and a God-given humility to recognize our fallibility
as a problem-solving process—'a human activity that needs to be and limitationgemphasis addec?]{
structured....** Peter Denning contended that the
‘structured programming’ is to set up mental patterns according tg
which we write programs from the beginning using the prescribed
forms. The whole point is to establish ordered and disciplined.,
thinking leading to clearly structured prograrﬁ%.(:. Wrandle
Barth of the Goddard Space Flight Center observed the
“catastrophes can be constructed from the top down. A chief prc
grammer team can still design a horse as a camel. The real less
of software engineering are much more in the realm of attitude
approach, and emphasis than on techniques and ?Elemhey-
well's David Frost suggested more explicitly a psychological ration
ale for structured programming, relating the concept of chunking t
programming. (Chunking refers to the process in which huma
store information in their memories by structuring or coding it.)
“What all this boils down to is that psychology provides a powerfu
argument for modularity in systems design. But it is also a powerfif;
argument for the hierarchical design process called top-down d
composition, as well as for hierarchical program structures, becau:.
chunking results in essentially hierarchical structures in the rifnd.” 5o
A 1976 Datamationarticle by Lawrence Peters and Leonard Tripp 5
of Boeing placed such views in still larger perspective. They char =
acterized software design as a “wicked problem,” i.e., one théf;?
changes during resolution and for which it is not always clear hov-
to proceed. Specific techniques could ease but not remove the
sential difficulty of the design proce‘éssPeters and Tripp made the
point even more explicitly in the pageslidtamationthe following
year. “Software design methods merely assist in solving routin
aspects of a problem. Using a methodology only reveals the critic
issues in a design effort and gives us more time to address them.
[Dlesigning is problem solving—a fundamental, personal isle.” 3 E ¥ S
Indeed, Dennis Geller in a 1979 letter $oftware Engineering = ekl \"_ : 2
Notessuggested that modularity and top-down be viewed “as u GURGE * BELL PRIZE = HATURAL LAHGUAGE URDERSTAHDIG » PATENT
derlying principles which reflect our understanding of our own psy: S N
chological and organizational limitations, rather than as¥:
‘methodologies....’E’0 In other words, such concepts constituted
fundamental problem-solving strategies precisely because they ad- A new age, though, was exactly what many practitioners
dressed basic human limitations in dealing with complexity. sought and believed would result from formalized mathematical
Dealing with limitations in a realistic manner was certainly thegttacks on the programming problem. One of the principal carriers
thrust of the landmark 1975 bodkhe Mythical Man-Monthin  of this torch was Mills. (It should be noted that while formal
which Brooks analyzed his experience as manager of the OS/3gRathematics in programming was most prominently associated
project that developed the operating system for IBM's famousyith particular advocates—including Mills, Edsger Dijkstra, and
System/360 computers. Writing in an engaging and accessible A.R. Hoare—who were often mentioned in the same breath,
style, Brooks addressed issues involving such things as the dyey were certainly not all of one mind. Dijkstra, for example,
namics of programming teams, scaling up, design principles, angisassociated himself from what he considered the “empty but

“whole point of 5hgerations of this sort, however, seemed unlikely harbingers of
new age.

—ck
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impressive slogans” of Mills regarding structured program- of Dijkstra and Mills, who have advocated the strict use of

ming.sz) In a 1975Communicationsarticle, Mills presented a the if-then-else and while-do control structures and their

mathematical model of structured programming to “simplify and variants. On the other side, we have the views of Knuth,

describe programming objects and processes. It is applied mathe-who has recently presented interesting arguments on the
matics in the classic tradition, providing greater human capability utility of the goto®*

through abstraction, analysis, and interpretation in application (¢ 5 thors remained convinced that the basic structures Dijkstra
computer programming.” Such efforts would supposedly transy,cated—sequence, selection, and repetition—were sufficient

form programming from “an instinctive, intuitive process to Afor the practicing programmg}’p'e?’s/.\ 1978 Workshop on the
more systematic, constructive process that car?\?ge taught arglionce of Design also concluded that efficiency was no longer
shared by intelligent people in a professional activit\Writing  ng N matter how elegant proving and testing techniques are,
the following year inlEEE Transactions on Software Engin€er- oy cannot replace design correctness. . . . In this regard, design

ing, he Iame”nted_ the “legacy Of‘ heuristic thinking in software ., qiaints that result in better testability and better verification
development” while lauding the “powerful tools in mathematics o\, though the hardware may be used less efficiently should be

for expressing and validating logical design on a rigorous bag, .o yraged® In other wordsgood software implied more than
sis.”™" He was particularly taken with Dijkstra’s constructive ap- efficientsoftware
! .

proach to program correctness (in which a program and its proo

are developed concurrently) as articulated iBiscipline of Pro- w . .
gramming,which came out that same y&ar rigorous, formal We need approaCheS to des'Qn which,

approach of this type stood in contrast to a mere “attitude.” in the hands of ordinary mortals, yield
While debate swirled around structured programming in gen- "
programs that work.

eral, the goto statement continued to serve as lightning rod. Goto
statements unconditionally transfer program execution to some o h f the 1970 i her th ffici
other instruction out of sequence. In the late 1960s, Dijkstra had ver the course of the s, attributes other than efficiency

called attention to the deleterious and unnecessary complexifyt9an to dominate concern over software characteristics. Effi-
their use engendered; avoidance of goto statements quickly b lency remained a legitimate concern, but it could no longer be

came one of the most prominent mantras of the structured pnr)_e only concern. The vast increases in complexity nece;sitated a
gramming movement. The goto drew so much attention, in facfpore complex value structure. A fast but incomprehensible pro-

that sometimes it seemed as if practitioners were incapable gram was no bargain; errors and maintenance difficulties rendered

seeing the forest for the trees. The flap over the goto was in fufipeedy execution far less advantageous. Tools such as structured

display at the 1972 ACM National Conference, with several notat_echniques were means toward satisfying the demands of the new

bles taking side® |n a 1974 piece, Donald Knuth argued that it value structure, but difficulties arose in evaluating the results of
was indeed possible to write well-structured programs with gotré_he'r application. L|I_<e so much else n the developing software
statements. He advocated limited, disciplined use, hoféue ield, sgftware metrics quickly settled into the motherhood and
1976 article inSIGPLAN Noticegthe publication of the ACM’s gpple pie category. Evel_'yo_n_e agreed on th? mp_ortance of proper-
Special Interest Group on Programming Languages), Richarlies such as clarity, reliability, and maintainability for software

DeMillo, S. Eisenstat, and Richard Lipton set out to determin&-:g_ualllty but nobody was sure how to measure them. While effi-

formally whether structured control mechanisms could ef‘ficientlyClency lent itself to relatively straightforward measurement in

simulate programs using the goto construct. They developed foferms of execution times, more nebulous criteria proved less

mulas indicating that a significant loss of efficiency occurred,Ob”gir?g' Traditional measurement methods that concentrat(_ed on
which manifested itself either in increased program size or jptatistical anaIys_es O.f defe_cts and breakdowns were C'%T”y |nad_e-
slower execution® Ronald Jeffries responded that his firm’s re- quate for a medium in which many problems originated in speci-

written code did not suffer in such a fashion and asserted that “V\ﬂacation and design rather than physical deterioration. The concept

need approaches to design which, in the hands of ordinary mo?j a physical breakdown is a non sequitur in the realm of soft-

tals, yield programs that work. The technigues of ‘structured pro\_/vare. Of concern, rather, is how to determine, for instance, which

gramming’ seem to help us meet those go%?lsléffries obviously design is less complgx than another and thus likely to be Igss
found theoretical debates over the goto of less concern than finélf’“’veoI gnd more m_amtamable. By 1978, con;ultar_wt Tom Gilb

ing design techniques of practical value. SofTech’s William Ro-COUId still complain in the pages Sbftware Engineering Notes
senfeld also suggested that the authors “seem to have missed [EE
point of the structured programming debate. It is not the objectiv ) . .
of structured programming to improve the efficiency of control " this sphere also, many found the allure of the *hard” sci-

structures but rather to improve program readability. . . . Tocfncis irresistible. Kalence z_arg_ued ID_atiTnal_tlokm(;] 19:11 tha(; f
much time is spent making programs efficient and not enoug er ormanlcle measurement Ihs |rt1)e>;]tr|cg yfln ?twtOt' e"stu y o
time is spent making them useful and corré®t.” the natural laws governing the behavior of softwiarsity,” an

Indeed, a 197€ommunicationsrticle by Henry Ledgard and area_he dubbed software ph_ys%s_Around the same t_|me,_
Michael Marcotty suggested that the whole debate over contr(BYIaurlce Halst_ead of Purdue Unlve_r5|ty began experimenting with
structures was getting out of hand. Nevertheless, formulas relating structural propertle§ of programs (e.g., numbers

of operators and operands) to coding time and expected error
while it may be argued that the control structure issue has counts. Halstead laid out his findings and arguments in 1977 in
been entirely overworked, the debates and polarized opin- Elements of Software ScierfGe.The year before, Thomas
ions remain. On the one side we have the well-known views McCabe of the National Security Agency, whose work is often

at “quality goals are like the weather; everybody talks about
em, but nobody quantifies thef?”
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mentioned in the same breath as Halstead's, describHeER plex, manifesting itself in a variety of interrelated ways. The real
Transactions on Software Engineerirgg measure of program world would not even accommodate a straightforward notion of
complexity he termed the cyclomatic numBeiThe cyclomatic  complexity. Therefore, Elshoff and Marcotty concluded, “the use
number was a function of the number of potential logical execuef [an] empirically determined bound for complexity as a pro-
tion paths through a structured program. But even here the shegramming guideline . . . seems to be reasonable. On the other
complexity of the object forced a compromise. The impracticabil-hand, the use of the cyclomatic complexity for the direct compari-
ity of attempting to calculate the total humber of paths led to @on of programs . . . is fraught with dangeegrf"e’gThat one of the
definition based on “basic paths,” which when combined wouldbest software metrics available was not useful as a basis for pro-
generate every possible path. A 1977 articl8IBPLAN Notices gram comparison reflected the individualistic nature of programs,
by Glenford Myers of IBM provided evidence of the utility of the which was in turn a reflection of the malleability of the software
cyclomatic metric. In Myers's opinion, “McCabe’s proposal medium. A 197 Datamationessay voiced a similar theme, ques-
seems to be . . . one of the most intuitively satisfying, simplistictioning “the wisdom of attempting to discover universal measures
and easy-to-apply complexity measur‘gsMyers noted that the for problems which are, perhaps inherently and certainly practi-
cyclomatic metric confirmed the subjective judgments of B. Ker-cally, local in charactef®
nighan and P. Plauger ihhe Elements of Programming Style  The malleability of the medium was even more explicitly rec-
(1974) as to the relative complexity of various control structures. ognized in a 1978 piece ifransactionsEdward Chen of Travel-
ers Insurance argued that complexity metrics generally ignored
the fact that “there exist, in general, multiple solutions, and the
programming process can be envisaged as a combination of both
— analysis and synthesis processes aimed at identifying the most
Cwm desirable solution among a large number of feasible alterna-
tives.””® In other words, the problem was not simply the com-
plexity of the resulting artifact, but the inherent complexity in-
volved in the design of the artifact. One derived benefits from a
design of relatively low complexity, but arriving at that design
was a complex matter itself. Several General Electric scientists
put forward a similar view the following year. Differentiating
between the computational complexity of the algorithm and the
psychological complexity of the programming process, they con-
cluded that “assessing the psychological complexity of software
appears to require more than a simple count of operators, oper-
ands, and basic control paths. If the ability of complexity metrics
to predict programmer performance is to be improved, then met-
" rics must also incorporate measures of phenomena related by
Hightights of the psychological principles to the memory, information processing,
1974 and problem solving capacities of programmé?’s‘l’he apparent
Lake Arrowhead necessity of such measures suggests the importance of funda-
Workshop mental cognitive processes and strategies in dealing with soft-
) ware. Nevertheless, N.F. Schneidewind and H.-M. Hoffmann
concluded that same year that “for similar programming environ-
ments and assuming a stable programming personnel situation,
structure would have a significant effect on the number of errors
made and labor time required to find and correct the errors. . . . It
would be worthwhile to use complexity measures as a program
design control to discourage complex programs and as a guide for
: allocating testing resourceS."They also suggested that while no
@ e single measure of program complexity had proven “best” in their
experiment, the cyclomatic metric appeared most practical due to
Measuring software complexity, however, turned out to be ats relative ease of computation.
complex business in and of itself. Myers had puzzled over the The notion that no single metric qualified as “best” received
existence of structured programs that registered a greater comeinforcement in the 1980s. A 19&bmputerarticle that dis-
plexity than their unstructured equivalents. In 1978, Elshoff andussed the relationship of complexity metrics to software main-
Marcotty attempted, also iBIGPLAN Noticesto explain such tenance observed that while measures based on program size
apparent aberrations. They suggested that things were even maverked well in differentiating programs of widely varying sizes
complicated than they appeared, “Cyclomatic complexity is onlywith respect to maintenance costs, measures dealing with data
one component in the measurement of the overall complexity of structure, data flow, and flow of control were needed to rank
program. A reduction in one measure of complexity will oftenprograms of similar size. "The hybrid approach to measuring
result in an increase in another aspect of compleXty other  software complexity is clearly the most sensible approach,”
words, the very phenomenon of software complexity was comeoncluded the authors. “Software complexity is caused by so
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many different factors that measuring only one of them cannadifferent products, environments, domains, goals, and custom-
help but give unreliable results for a general cddeédmerican  ers, so developers have different needs. The metrics collected
Bell's William Evangelist voiced a similar view i8IGPLAN  should reflect the project’s process maturity and needs. It is not
Noticesthe following year, suggesting the need to “represenbnly natural but desirable for different projects to collect differ-
software complexity as a combination of quantities derivedent metrics.®

from both static and dynamic program properties.” He also Clearly, software complexity was itself complex, with a multi-
noted, however, the sticky problem of “precise identification oftude of facets that defied management or measurement by any
those quantities of importance and the relative weight eachingle method. Simple, singular approaches were unlikely to do
should have.” Indeed, an analysis of several metrics, includingthe trick in a complicated and messy reality. Complexity was a
those of Halstead and McCabe, by a team at the University dflippery concept, and while various “structured” techniques
Maryland using an experimental database produced the concliielped control the complexity of both design activity and the de-
sion that “none of the metrics examined seem to manifest aign itself, they hardly constituted a panacea. Moreover, deter-
satisfactory explanation of effort spent developing software omining the complexity of a particular design in some absolute
the errors incurred during that proce%g.A 1988 critigue of sense as well as relative to other designs was a tricky business. A
cyclomatic complexity in th&oftware Engineering Journgh number of practitioners even acknowledged the essential fuzzi-
joint publication of the British Computer Society [BCS] and the ness of design activity, suggesting that the principal benefits of
Institution of Electrical Engineers) went even further, suggeststructured programming derived from general mental patterns
ing that “it is arguable that the search for a general complexityather than specific techniques. Structured techniques constituted
metric based upon program properties is a futile task. Given thene important pragmatic response to the problems of software
vast range of programmers, programming environments, pratechnology. Their promotion by some practitioners as dogma
gramming languages and programming tasks, to unify them inteather than as practical tools served only to stiffen resistance.

the scope of a single complexity metric is an awesome t&sk.”

However, while many technologists seemed to agree with suc NoVEMBER 1975

sentiments in principle, J. Paul Myers, Jr., of Trinity University Cwm
complained in 1992 that “new metrics are introduced nonethe

less as ‘all-purpose’ measures of software compleﬂty.”

An IEEE Softwarearticle later that year attempted to finesse
the problem by using factor analysis to aggregate individua
complexity metrics into one overall complexity value. Many of
the more than 100 existing metrics, the authors contendec
“measure many of the same things. Our research leads us
believe that existing metrics probably measure no more tha
four or five distinct types of complexity. Assuming this is true,
the best metric would represent as much variance in these u
derlying complexity domains as possibl&."They therefore
proposed a metric called “relative complexity,” the product of
mapping individual complexity metrics into independent com-
plexity domains—control, size, modularity, information content,
and data structure—the resulting weighted values (relative sic
nificance for that program) of which were then converted into &
single complexity score for each program module. In a sense¢
though, such a scheme begged the question, since in order
make sense out of any given relative complexity, the scor
would have to be unpacked to give the scores in the differer
complexity domains. Moreover, it did not address the issue o
whether particular metrics might prove more or less suitable fo
given settings. While the metrics in one complexity domain
might all be measuring the same type of complexity, some coul [FYjeSuu——" ;"‘,",ﬁgpfejﬂe:
prove more meaningful than others depending on circumstance gF’rogram Key

X ) K ehavior Developments in

such as application type and the particulars of the developmel Computer

. . . Technology
environment. These more meaningful metrics would then b¢
diluted by the presence of less appropriate ones. Indeed, writir %
in IEEE Softwarein 1988, Basili had criticized the tendency of
organizations to employ metrics that “are bottom-up and baseg: . .
blindly on models and metrics in the literature, rather than top- orrectness Versus Confidence:
down and based on an understanding of their own processe®rogram Verification
products, and environment® The importance of such context The issues of complexity, pragmatic accommodation, and self-
sensitivity was affirmed by the former director of Contel’s soft-image were nowhere so apparent as in the area of program verifi-
ware metrics program five years later. “Different projects havecation. But while people could disagree over software metrics
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with little rancor, the question of how to determine a program’s Making testing a more integrated part of the development
“correctness”—whether the program met its specifications—process was all well and good, but testing proved just as vulner-
aroused passions. The controversy pitted the advocates of prable to the pernicious effects of mounting complexity as other
gram testing against the promoters of formal verification. That thaspects of software development. One can test software both stati-
former was often viewed as the “engineering” approach while theally and dynamically, and both are problematic. Static tests focus
latter was seen as more “scientific” or mathematical is suggestiven program structure, while dynamic tests focus on program exe-
of both the nature of the techniques and the self-images of practiution. Put another way, static tests checked the program’s logic,
tioners. The nature of the solution sometimes seemed to bewehile dynamic tests checked the program’s function. Ideally, this
function of the perceptions of the practitioner as to what he or shmeant checking every possible logical path, in the case of the
was (scientist or engineer) and just what that entailed. What béermer, and testing with every possible set of inputs (with respect
came apparent to at least a handful of practitioners, however, wés the program specification), in the case of the latter. Complexity,
the existence of a middle ground. Complexity took its toll in everyhowever, could easily defeat both strategies; combinatorial explo-
venue and defied singular or absolutist approaches. Just as it hsidn rendered both complete path testing and exhaustive dynamic
in the case of software design and metrics, pragmatism in the catssting totally impractical in most instances.
of verification translated into accommodation and synthesis.

There was little disagreement in the 1970s that software qualit
was too often a contradiction in terms. People agreed less on pt aoriL 1978
cisely what to do about it. Quality assurance techniques develope . ' ) = »
for hardware were of dubious applicability. As a 1@dmputer \ il S
article noted, it “would indeed be fortunate if the well-developed
theory of hardware reliability could be used to predict or enhanc
the reliability of software. Unfortunately, this is not to be the case
as hardware reliability theory is based mainly upon the statistice
analysis of random failures of components with ddeNever-
theless, something had to be done. In a 1Ddtamationpiece,
Tom Steel of Equitable Life Insurance declared:

I3

N
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[T]he major critical problem in the [computer] industry is, in
my view, the quality of software, whether vendor or user pro-
duced. . . . It is usually inadequate functionally, inconsistent
between actuality and documentation, error-ridden and inex-
cusably inefficient. Beyond all that, it costs far too much. |
can think of no other products (aside, perhaps, from pornog-
raphy and telephone service in New York) that have all these
failings to anything like the degree found in softwHre.

¥

\%

The search for a “back-end” answer followed two distinct paths—
testing and formal verification. Testing sought to develop reaso
able confidence that a program or system would behave as w .
intended by “exercising” the program. Formal verification (also:3u% ot e l Special features:

Progress in computer
referred to as program proving and proofs of correctness) soug components, p. 64.
to prove mathematically that a program matched its specification

1978 NCC program
preview, p. 116.
These two approaches tended to attract and foster often antag @
nistic mind-sets.
The idea of testing a program was hardly new, but the rela

tively new emphasis on the software development process The problem of test data selection attracted much attention. As
prompted increased emphasis on more systematic testingas noted irDatamationin 1977:
throughout the development cycle. A 19Dhtamation article ] o ]
advised readers to “think testing’ right from the start—modules, the key to constructing a minimal yet logically complete set of
programs, systems—all designed to be tested along the®Hvay.” test data is the accurate and explicit enumeration of all cases
Mirroring the increasing fashionability of structured programming ©F conditions handled by the program or system. . . . The
as the decade progressed, the late 1970s saw numerous calls fofluality of the systems test often breaks down precisely at this
structured testing. Complaining in 1977 that testing continued to Starting point. The complete definition of test cases is viewed
be a “witch-hunt,” Dorothy Walsh advocated a structured ap- @S an m_possmle task, so no attempt at an orderly enumeration
proach to testing that “formalizes the intuitive good practices that ©f conditions to be tested is made abll.
are its foundation and provides procedures for using them thai other words, the complexity of typical software precluded the
may be carried out even by inexperienced programrﬁérs." economical derivation of test data that would completely exercise

Datamationpiece the following year argued for top-down testingall aspects of the program. Raising confidence in software testing
in addition to top-down coding. would require more than brute force. While some advocated the
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use of randomly generated test cases, most sought a more rati@pproaches. Such remedies held little appeal, however, for those
alized solution. who saw legitimacy and efficacy as the products of formalism
In a 1975 article iMransactionsJohn Goodenough and Susan rather than heuristics.
Gerhart of SofTech sought to finesse the problem. They suggested Stemming from the fundamental work of Floyd in the 1960s,
that the input domain of a program could be partitioned intgprogram verification with its formal mathematical basis appeared
classes of inputs such that the testing of one element of a claghaven from the dirty, ad hoc world of testing. In a 1971 article in
was equivalent to testing the entire class: “This pinpoints the funEommunicationsHoare presented a proof of the correctness of a
damental problem of testing—the inference from the success @imple program. He urged the incorporation of such proofs into
one set of test data that others will also succeed, and that the stite coding process, suggesting that carrying out proofs in this
cess of one test data set is equivalent to successfully completifgshion was “hardly more laborious than the traditional practice of
an exhaustive test of a program’s input dom&in.” program testingf35 Writing in theComputer Journa(the research
This was easier said than done, principally because, despite tfmirnal of the BCS) that same year, he and a colleague attempted
attempt at systematization, particular cases of program conditiote demonstrate the practicality of employing previously proven
were nevertheless considered in an ad hoc fashion. Variations @nograms (in this case, a subroutine) in the proof of a new pro-
this approach were offered in later years. But those who awaitegram. Just as important in this case was the claim that the pro-
the arrival of a comprehensive theory of testing amenable tgram to be proved was “realistic” and “nontrividf.’Hoare ad-
automation found little encouragement in a 1980 editorial indressed the scaling-up issue even more explicitly the following
Transactionghat observed there was “increasing recognition thayear, admitting that the application of proof techniques “even to
it is unlikely there will be a grand theory of testing which will small programs is already quite laborious, so their direct applica-
lead to fully automatic testing systems. Instead the tester will bgon to large programs is out of the questi%]’here were chal-
called upon to use his intuition and problem-dependent knowllenges, however, not only with respect to the question of scaling-
edge in a disciplined manner to test for a variety of specified erraup but also with regard to the epistemological foundations of
types.™® Attempting to apply computational leverage to testingproof methods.
encountered the same difficulties as attempts t0 leverage Oth ey

problem domains; variability and complexity placed limits on Stemming from the fundamental work
effective formalization and automation. DeMillo, Lipton, and

Frederick Sayward had made a similar observation two years of Floyd in the 1960s, program
earlier: “Until more general strategies for systematic testing verification with its formal

emerge, programmers are probably better off using the tools and . .
insights they have in great abundance. Instead of guessing at mathematical basis appeared a haven

deeply rooted sources of error, they should use their specialized from the dirty, ad hoc world of testing_
knowledge about the most likely sources of error.. Here was
another acknowledgment of the importance of local, problem- The battle was formally joined on a widespread basis in 1979,
specific knowledge. when DeMillo (Georgia Institute of Technology), Lipton (Yale),

A similar spirit of pragmatism was evident in a 1980 piece inand Alan Perlis (Yale) argued in their article “Social Processes
Transactionsthat attempted to make the Goodenough-Gerharind Proofs of Theorems and Programs” that “in the end, it is a
theory “more than an unattainable ideal,” by using it to deteckocial process that determines whether mathematicians feel confi-
certain classes of error thought likely to octlirikewise, writing  dent about a theorem—and we believe that, because no compara-
in IEEE Softwarein 1985, Nathan Petschenik of Bell Communi- ple social process can take place among program verifiers, pro-
cations Research argued for the setting of “practical priorities” ilyram verification is bound to faif® In mathematics, they con-
the selection of case studies by looking for key problems thaended, the proof of a theorem constitutes a message that is dis-
would cause massive disruption rather than attempting to trackeminated, scrutinized, and commented on: “Being unreadable
down all or nearly all problems in the softwafePractical ac- and—literally—unspeakable, verifications cannot be internalized,
complishment demanded pragmatic concessions. transformed, generalized, used, connected to other disciplines,

Even more pragmatic were practitioners who, instead of pinand eventually incorporated into a community conscious-
ning their hopes on the arrival of a grand theory of testing, begafiess.?®2">Toy proofs such as Hoare's 1971 verification of the
to explore a combination of various strategies. In a T@84sac-  FIND algorithm left them cold: “There is no continuity between
tions article, Simeon Ntafos of the University of Texas describedhe world of FIND . . . and the world of production software,
an approach that combined structural (based on control flowhiling systems that write real bills, scheduling systems that
black-box (based on the program's input specifications), and ekchedule real events, ticketing systems that issue real tick-
ror-driven (based on known errors) approaches to generate tesk ?8P-277 gq many of software’s problems were so intimately
cases” The following year, Sandra Rapps and Elaine Weyuker agonnected with scale, the authors were arguing, that a toy (i.e.,
the Courant Institute proposed employing both data flow angery small-scale) proof of concept amounted to no proof at all.
control flow as a basis for determining path coverage. Mitre’sThe practicality of formal verification had yet to be demonstrated
Samuel Redwine, Jr., had explicitly suggested in 1983 afhrough application to large-scale programs. Even then, their prin-
“engineering approach” to generating test data that revolvegipal argument would remain undented; they would still lack con-
around the idea of “different domains and types or metrics ofidence in the result.
coverage.® The use of a combination of testing strategies con- Verification advocates were not slow to pick up the gauntlet.
stituted a pragmatic response to the deficiencies of individugleslie Lamport of SRI International declared, “I am one of those
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‘classicists’ who believe that a theorem either can or cannot bie ‘problems of theeal world’ are those you are left with when
derived from a set of axioms. | don't believe that the correctnesgou refuse to apply their effective solutions, they confirm the im-
of a theorem is to be decided by a general electidornw.D. pression of anti-intellectualistic reactionaries>>***> DeMillo,
Maurer of George Washington University argued essentially thatipton, and Perlis did not take this lying down, refusing to concede
it was not software engineers who should adopt the social prot¢hat their confidence in a piece of “real” software had ever been
esses of mathematics but rather the mathematicians who shoufdtreased by a proof of correctness. They also maintained that “the
make use of the computer to produce complete formal p+%°ofs. verifications . . . are long, ugly, and boring, no matter how concise,
Implicit in such an assertion was the view that all good thingelegant, and fascinating the idea of verification may be. If verifica-
flowed from rigorous formalism. (The formal methods movementtions of real programs are currently being socialized, Professor
will be discussed in the next section.) As for reliance on programijkstra should have no trouble pointing to the channels of commu-
testing, he asserted that was “the way other sciences and en[;]ieation.’;LOG In response to a Dijkstra position paper on reliability,
neering disciplines used to function, with disastrous results. Thil.J. Jeffrey of Bell Labs contended that if one examined what peo-
Tacoma Narrows Bridge collapsed because people were designipte actually did, “what emerges is that formal correctness is really a
bridges, in those days, with no thought whatever to proving thgberipheral issue in software reliability, which is primarily concerned
they would not collapsel.oo'p'628 DeMillo, Lipton, and Perlis with how to do a good software job without formal correctness
found this claim “a complete distortion of fact, and to suggest tha‘l)roofs."L07 Here again was a view concerned with practical accom-
engineers [engage in formal proofs of correctness] . . . now iplishment rather than the enshrinement of absolutes.

simply false.***

Maurer’s view was indeed a distortion and a revealing o
The Tacoma Narrows Bridge was the first suspension bridge
connect the mainland of Washington State with the Olympi
Peninsula. The bridge demonstrated a pronounced tendency §

fashion similar to an airplane wing in uncontrolled turbulence. Ag
Henry Petroski notes, the problem was not the result of a failur

coma Narrows Bridge in a crosswind of forty or so miles per hou§
was completely unforeseen by its designers, and therefore thi
situation was not analyzgdmphasis added]. On paper the bridge
behaved well under its own dead weight and the light traffic
was to carry.L02 The problem did not reside within the realm of
verification, but within that of design. Just as unforeseen cond
tions produce software errors, so, too, did they produce the T
coma Narrows Bridge failure. Formalism is of no help in suc
instances. That Maurer believed so illustrates how the debate o
such issues was often clouded by confusion over the nature
engineering (and science).
DeMillo, Lipton, and Perlis were hardly alone in their doubts
over the usefulness of formal verification. Richard Hill of A.C. §
Nielsen Management Services commented that he could not rec#
“a single instance in which a proof of a program’s correctness wou
have been useful®® H. Lienhard of Switzerland applauded even
louder: “It was time somebody said it—loud and clear—the forma
approach to software verification does not work now and probabl}
never will work in the real programming world. . . . There is on
dimension that is crucial in ‘real-life’ programs: complexity. The
problem of software engineering is usually not the finding of ‘deep™
theorems’ but rather the highly nontrivial task of mastering com- Even if it was not a chimera, program correctness still guaran-
plexity.”*** All this, however, was a replay of an earlier debate inteed only that the implementation matched the specifications. This
the pages ofSoftware Engineering Note#\n earlier version of was of dubious value, as the Tacoma Narrows Bridge so amply
“Social Processes and Proofs” had been presented at the 1977 AGMmonstrated, if the specifications themselves were flawed. A
Symposium on Principles of Programming Languages, and it haglg75 Transactionsarticle examined data from both real and ex-
prompted a strong response from Dijkstra. Terming it “a very uglyherimental software with the aim of better understanding software
paper” in “the style of a political pamphlet,” Dijkstra protested thaterrors. The authors concluded that “the ability to demonstrate a
the authors *just ignore that how to prove—not in the silly waysprogram’s correspondence to its specification does not justify
they depict, but more elegantly—the correct functioning of par-complete confidence in the program’s correctness since a signifi-
ticular pieces of software’ is the subject of a lively interchange otant number of errors are due to incomplete or erroneous specifi-
experiences between scientists active in the ficftfUnaware that  cation...*°® The difficulty of producing complete and correct
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specifications was at the heart of a 197f@nsactionsarticle by  article proposed a method—partition analysis—that attempted just
Douglas Ross and Kenneth Schoman, Jr., of SofTech. While cosuch an integratiohl.5
tending that the problem was not insurmountable, they neverthe- For almost a decade following DeMillo, Lipton, and Perlis’s
less observed that software designers “attempt to do the sara#ack, the formal verification issue remained relatively quiescent,
[requirements definition as manufacturers] of course, but beingvith each camp seemingly content to go its own way. The peace
faced with greater complexity and less exacting methods, theiwas shattered once again, though, in the page3oofmunica-
successes form the surprises, rather than their failures! Experientensin 1988. James Fetzer, a professor of philosophy at the Uni-
has taught us that system problems are complex and ill-definedersity of Minnesota, proceeded to drop another bombshell on the
The complexity of Iarge systems is an inherent fact of life withformal verificationists. In “Program Verification: The Very Idea,”
which one must copel. P Fetzer argued that DeMillo et al. had reached the right conclusion
Why, then, was formal verification so appealing? Gerhart proffor the wrong reason. While acknowledging their point about the
fered a telling observation at a 1978 Workshop on Software Testecessity of social processes in proof validation, Fetzer contended
ing and Test Documentation. Academic researchers, she suttat such processes could in principle be incorporated into formal
gested, “have found program proving far more attractive, with itserification and were therefore not an intractable obstacle to it.
logical mathematical origins and possible integration with theAccording to Fetzer, there was still an inescapable problem that
programming process, than testing with its statistical and experast doubt on the claims of the verificationists. Fetzer argued for
mental origins and a posteriori programming phé%%But even
Dijkstra had expressed some doubts about the hope held by aq4q of aigorithms from the logical structures that they rep-

number of academic researchers that the verifi.cation Process recent. . . . Algorithms, rather than programs, thus appear to
could somehow be made easy, that one could enjoy the fruits of be the appropriate candidates for analogies itite

formal mathematics without paying a price. In a 1975 essay in
SIGPLAN Noticeshe contemplated attempts to automate the
process:

the theoretical necessity to distinguish programs as encod-

mathematicswhile programs bear comparison witpplied
mathematics Propositions in applied mathematics, unlike
those in pure mathematics, run the risk of observational and

We see automatic theorem provers proving toy theorems,  €xperimental disconfirmation.

we see automatic program verifiers Verifying toy pro- _______________________________________________________________________|
grams and one observes the honest expectation that with

faster machines with lots of concurrent processing, the Cle'arly, thoth’ the_Stance peOple took
life-size problems come within reach as well. But, honest with regard to testing versus formal

1 i ifi ? - . . .
as these expectations may be, are they justified? | some verification was at least partlally

times wonder..'™ )
a function of how they

Clearly, though, the stance people took with regard to testing ver- .
Y 9 peop g 9 perceived themselves.

sus formal verification was at least partially a function of how
they perceived themselves. Self-perceived scientists might de-

velop a very different view than self-perceived engineers. Wher-el-O simplify a fairly complex argument, Fetzer's case centered on

you sit sometimes determines where you stand distinctions between absolute and relative verification and be-

Somewhere between the true believers and the heretics resid(fen abstract and physical machines. Absolute verification con-
what a number of practitioners regarded as the pragmatic middf€™MS cqnclu;ions derived only frorr_1 primitivg axioms while r(_ela-
ground. Andrew Tanenbaum suggested that correctness prootfie verification concerns conclu5|0_r_ls derived from premises
“have their place, but they can easily lull one into a false sense gghose truth cannot be absolutely verified. Thus,
security, and therein lies the potential danger.” He viewed testing the properties of abstract machines that have no physical
and formal verification as complementary rather than competing Machine counterparts can be established by definition, i.e.,
approache$™ Likewise, Gerhart and Lawrence Yelowitz con-  through stipulations or conventions, which might be for-
cluded after examining a variety of supposedly correct programs Malized either by means of program rules of inference or by
that “experience with both testing and mathematical reasoning Means of primitive program axioms. . . . By comparison,
should convince us that neither type of evidence is sufficient and Programs [meant to be compiled and run on real machines]
that both types are necessaly’In a similar vein, Parnas opined, - - - are merely subject to relative verification, at best, by
“both sides hold to such extreme positions that convergence on Mmeans of deductive procedures. Their differences from al-
the truth, which both are seeking, is not possible.” He attributed 9orithms arise precisely because, in these cases, the proper-
this divergence to a misguided analogy between programming and ties of the abstract machine they represent, in turn, stand for
mathematics; the proper analogy compared programming with Physical machines whose properties can only be established
engineering™ Yet, either analogy was bound to discomfit those ~inductively. >
left out. Moreover, as has been noted, not everyone subscribed lto other words, programs intended for execution on computers
the distinction. Acknowledging the somewhat “dirty” nature of “cannot be subject to absolute verification, precisely because the
engineering, Parnas maintained that engineering mathematitsith of these axioms depends upon the causal properties of physi-
“need not meet the standards set by mathematicians because ic@ systems, whose presence or absence is only ascertainable by
not the only way to test an engineering design.” He, too, advomeans of inductive procedures. . . . This conclusion strongly sug-
cated a combination of testing and formal verification as a meangests the conception of programming as a mathematical activity
of increasing confidence in softwaré. A 1985 Transactions requires qualification in order to bejustifieH.G*p‘l’OSQ'l'he gist of
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Fetzer's argument, then, was that because programs run on acttla view that program verification purports to provide absolute
computers in an empirical reality subject to all kinds of complexcertainty, but rather attacking the belief that this might be possi-
and often unexpected interactions, rather than on abstract compme.“123 A couple of readers, though, apparently felt the problem
ers in a closed, mathematical system, programming had to be seeas more than one of miscommunication, with one commending
as applied (and thus less than certain) mathematics rather thanFatzer on exposing “the naivete of computing researchers in gen-
pure mathematics (amenable to absolute verification) as mangral and their illusions concerning the relevance of mathematical
formal verificationists seemed to view it. formalisms in particular.]‘24 In this, though, he seemed to go far
Whether the resulting furor exceeded that prompted by théeyond Fetzer’s own views, for Fetzer repeatedly emphasized that
“Social Processes” paper is arguable, but it was certainly the equiaé was not arguing that formal verification was, by definition,
of it. One of the strongest salvos was a joint attack launched by Jllegitimate, but rather that its use had to be accompanied by an
distinguished computer scientists. The “Gang of Ten,” as Fetzamnderstanding of its limitations, limitations that suggested that
dubbed them, included Basili, Gerhart, David Gries, Nancy‘the techniques of program verification have to play a much more
Leveson, and Peter Neumann. According to this outraged groupmited role in assuring the production of high quality software
Fetzer’s article “is not a serious scientific analysis of the nature ahan its advocates sugge&r”Such an attitude seems to place
verification. The article distorts the practice and goals of progranfretzer, despite the view of the formal verification community,
verification and reflects a gross misunderstanding on the part afoser to the pragmatic middle ground than to the antiverification
the author about the nature of program verification. This articlextreme.
does not meet minimal levels of serious scholarship.” They went Pragmatism also manifested itself in the explicit observation
on to damn the editors as well, contending that “by publishing théhat dogmatic insistence querfectprograms was likely to pro-
il-informed, irresponsible, and dangerous article by Fetzer, theluce more frustration than achievement. In a 1B&hsactions
editors ofCommunicationdiave abrogated their responsibility, to editorial, Leon Stucki of McDonnell Douglas advocated a design
both the ACM membership and to the public at Iargél]..'l'he philosophy aimed not at producing error-free programs but at
editors stood by their decision, while Fetzer, displaying no seconproducing easily testable software. Later that year, C.V.
thoughts either, proceeded to return fire. After inviting the GandRamamoorthy and colleagues suggested what they termed “partial
of Ten to accompany cruise missiles on future flights in order twalidation.” “Partial validation is a practical approach which can
demonstrate the feasibility of constructing verifications of dy-be used to establishsafficient degre¢emphasis added] of confi-
namic (self-modifying) programs, Fetzer declared that “in its in-dence in the reliability of a program. This approach partitions
excusable intolerance and insufferable self-righteousness, thggogram characteristics into a number of classes and then vali-
letter exemplifies the attitudes and behavior ordinarily expectedates each class to a specified extéttA similar point of view
from religious zealots and ideological fanatics, whose degrees afas articulated two years later inTeansactionsarticle on soft-
conviction invariably exceed the strength of the evidence.” Fetzeware reliability models. The authors stated flatly, “It is neither
was supported in this view by one reader who “having read theecessary nor economically feasible to get 100 percent reliable
vitriolic, unjustified, unreasoned attacks on Fetzer,” suspected thétotally error-free) software in large, complex systerfr%
“at least some defenders of program verification can find no real Accepting this, however, raised the question of what could be
arguments to rebut Fetzer's contentions and resort to meaningledsne to ensure that residual errors would be merely inconvenient
insults in a desperate attempt to defend a position that cannot bether than disastrous. The answer was to make software “fault-
logically defended® tolerant.” As Leveson of the University of California at Irvine
Beneath all the verbal barbs, however, lay a legitimate point cdsserted in a 1982 pieceSoftware Engineering Notes
contention. One of the principal criticisms leveled at the Fetzer
article, by the Gang of Ten and by others in somewhat more ,ons cannot at this point in time, and perhaps never will,

measured terms, was that it attacked a straw man, a “parody” of o o aranteed . . . there is incentive to make software fault-
formal verification. For example, one reader commented that the tolerant. In this approach, it is assumed that run-time errors

art_icle “does a disser_vice to the cause of the advanc_:ement of the iy occur, and techniques are used to attempt to ensure that
science of programming by belaboring t_he rather obvious fact that the software will continue to function correctly in spite of
programs which are run on real machln'e.s cgnnot be completely . presence of errot&’

reliable, as though advocates of verification thought other-

wise.”™® Another contended that it “makes one important butSoftware fault tolerance differed from traditional engineering
elementary observation and takes it to an absurd concluébn.” safety factors, however, in that the latter is a matter of physical
Fetzer responded that such complaints were without merit inagolerances while the former involves detection of and recovery
much as “the principal position under consideration with respedrom unforeseen errors. One approach Algirdas Avizienis and
to program verification, no doubt, is that of C.A.R. Hoare andJohn Kelly of UCLA championed was to develop multiple inde-
those [such as Dijkstra] who share a similar point of view, a matpendent versions of a program—N-version programming. Inde-
ter about which my article is quite explici?* John Dobson and pendent development efforts would supposedly produce programs
Brian Randell at the University of Newcastle Upon Tyne sug-unlikely to contain the same errors. “The obvious advantage of
gested that the problem was essentially one of misleading rhetdesign diversity is that reliable computing does not require the
ric, that although formal verificationists did not truly believe in complete absence of design faults, but only that those faults not
the possibility of absolute verification, they neverthekmsnded  produce similar errors in a majority of the desigh8.The space

as if they did, hence the confusitfi.This, however, seemed to shuttle program employed a similar scheme in the development of
ignore a distinction Fetzer had made earlier. “| am not promotings basic flight software to guard against “generic” software errors.

since removal of all faults and perfect execution environ-
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One can only imagine the reaction of those involved when, in the do not appear to exist. The faults that induced coincident
second half of the 1980s, doubts were raised as to the validity of failures were not caused by the use of a specific program-
the assumption underlying multiversion programming. Writing in  ming language or any other specific tool or method, and
IEEE Transactions on Software Engineeribgo National Aero- even the use of diverse algorithms did not eliminate input-
nautics and Space Administration researchers observed that recentdomain related faults. In most cases, the failures resulted
research had “demonstrated that programmers given the same taskfrom fundamental flaws in the algorithms that the pro-
are prone to make mistakes that potentially reduce the effective- grammers designed. Thus we do not expect that changing
ness of a fault-tolerant approac]ﬁ.]“Such mistakes could poten- development tools or methods, or any other simple tech-
tially produce “coincident failures” in which two or more program  nique, would reduce significantly the incidence of corre-
versions would fail (albeit not necessarily in precisely the same lated failures in N-version softwaéff

way) given identical input. This raised the possibility, in a major-pyee again was evidence that fundamental problem-solving proc-
ity voting scheme, of correct versions of the program being Outasses |ay at the heart of software development. It also amounted to
voted by the incorrect versions.

rediscovery of a fact that had been intimated years before: Statis-

While probably no one expected that an assumption of statistijo rejiapility techniques developed for hardware would not
cally independent failures could ever fully hold, it was neverthe-WOrk for software.

less the theoretical heart of the argument. If failures were not at
least highly independent, the utility of N-version programming

was seriously undermined. Leveson and John Knight of the Uni- Pragmatism thus moved the question

versity of Virginia raised more doubts the following month when from one of correcthess to
they described an experiment that seemed to confirm this. They .
; one of confidence.

noted:
itis assumed in some analyses of the technique that the N dif-  This did not mean, though, that statistically based approaches
ferent versions [of a partlc_ular prograr_n] will faildepend- to reliability had no applicability to software. But they had to
ently; that is faults in the different versions oceur at random approach things from a different perspective, one that incorpo-
and are unrelated. . . . We are concerned that this assumption rateqd the local knowledge and attributes of particular programs

might befalse.Our intuition indicates that when solving a dif- operating in particular environments. While a variety of software
ficult intellectual problem (such as writing a computer pro-  rgjiapility models existed by the mid-1980s, hopes for a single
gram) people tend to make the same mistakes . . . even when gefinitive universal model had not been fulfilled. No single model
they are working independently. Some parts of a problem may seemed to perform well in all situations. “More importantly,” a
be inherently more difficult than other¥. 1986 article contended, “it does not seem possible to analyze the
Their experiment confirmed their fears, revealing a surprisinglyparticular context in which reliability measurement is to take
high number of coincident failures in a set of independently deplace so as to decice priori which model is likely to be trust-
veloped programs. They cautioned, however, against overgenatorthy. . . . [However] if a user knows that past predictions ema-
alization, emphasizing that the independence-of-errors assumptidvating from a model have been in close accord with actual be-
had only been shown invalid for the particular problem that wadaviorfor a particular data sethen he/she might have confidence
programmed. Their caveats, however, did not deter Avizienis antih future predictions for the same datd>The authors proceeded
his colleagues from repeatedly charging that their findings weréo describe some tools to assist in the selection of an appropriate
flawed as a result of key experimental differences and inadequafeodel. Indeed, in his introduction to a special section on software
development methods. Knight and Leveson finally felt compelledesting in the June 1988 issueGdmmunicationsthe guest editor
to answer this constellation of criticisms with an in-depth re-argued that while particular types of statistical approaches might
sponse inSoftware Engineering Notés 1990. They contended be problematic, nevertheless “probabilistic analysis seems appro-
not only that the criticism was unfounded but also that in manyriate for testing theory because it is capable of comparing meth-
respects their experiment more accurately reflected the ideas Awds and assessing confidence in successful &t this con-
zienis et al. espoused than the latter's own wothn any event, text, as in so many others related to software, the dictum
other researchers suggested it might be more effective to pursigifferent horses for different courses” found increasing favor.
directly a quality other than statistical independence. In 1989, Belzven so, speaking at the 1989 World Computer Congress, Parnas
Littlewood of City University London and Douglas Miller of still felt compelled to decry narrow focuses and false dichotomies
George Washington University argued, “the achieved level [ofvhen dealing with issues of software reliabilit{.
diversity of program versions] will depend on the diversity of the Complexity proved inhospitable to dogmatism regarding both
processes(software development methodologies) used in theithe means and goal of verification. Neither testing nor proofs
creation.*** They contended that statistical independence of procould guarantee a “correct” program at reasonable cost, if at all,
gram versions was a misleading goal; the real goal had ¢ be and some practitioners questioned the necessity of error-free
versity,including diversity of development method. The following software. Inhabitants of the middle ground advocated strategies
year, however, Knight, Leveson, and another colleague suggesté@mbining both testing and formal proofs, while admitting the
diversity of process was not necessarily of much help. In a followtnlikelihood of total confidence. Pragmatism thus moved the
up to the 1986 article, they maintained: question from one oforrectnesgo one ofconfidence For those
who viewed their work ultimately in terms of science and mathe-
simple methods to reduce correlated failures arising from matics, though, the operative notions were those of truth and fal-
logically-unrelated faults (i.e., input-domain related faults) sity. MacKenzie illustrates just how problematic this dichotomy is
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for both hardware and softwal&. Those more conscious of the prone craft of computer programming to meet the highest
nature of engineering accommodated themselves to the notion of standards of a modern engineering profes%‘}f)n.

confidence. As the 1983 National Bureau of Standards gtjidelir_\qqs nothing else, Hoare’s remarks suggest a limited appreciation of
for federal |nfo.rma.t|on processing systems elldmonlshe.d, No sirg,e history of bridge building, which, like virtually every other

gle VV&T [validation, verification, and testing] technique can oo of engineering practice, has never enjoyed the sort of cer-
guarantee correct, error-free software. However, a carefully chQz;n that Hoare seems to attribute to it. The assumption of im-
sen set of technlques_for a specific prol_ect can help to ensure t_B%rfect knowledge and the use of approximations are part and
development and maintenance of quality software for that prOJbarcel of civil engineering. Indeed, that is one of the main ration-

,140 i , o : - .
ect.”™ Similarly, in their introduction to a special 1989 issue of 5 tor incorporating safety factors into design calculations. The
IEEE Softwarefocusing on verification and validation, the guest soiments Hoare expressed illustrate the misconceptions that

editors observed tr_lat “a V&V effor_t selects t_asks from a broa ontinued to plague software engineering regarding science, engi-
spectrum of analysis and test techniques to tailor each V&V Efforﬁeering and the relationship between tH&hn

to the project’s needs® A complex reality did not easily ac-
commodate desires for absolutes; instead, practitioners wejs
forced to accommodate the limitations that complexity of bot
program and process imposed.

In Search of Rigor:

The Formal Methods Movement
While in one sense the issue of formal verification was one facqi
of the reliability question, in another sense it was the most prom
nently divisive aspect of a larger debate over formal method
more generally. Such methods eventually covered the full spegasE
trum of software development and maintenance activities. Wh4
linked them was their emphasis on mathematically based not
tions and methods of reasoning. This addressed what many
their advocates viewed as the principal deficiency of softwarg
practice: sloppy, fuzzy, and ad hoc thinking. Formal methods, thef
believed, would counteract such tendencies. They would enfordgss
disciplined approaches to problem solving by requiring precis g
logical reasoning. Their use would by definition make would-be
software engineers more scientific and thus more professiong
The result would be better software and a better public image fq
those producing the software.
Not surprisingly, Hoare was one of the most prominent stan|
dard-bearers for formal methods (along with Mills and Dijkstra).
(Recently, Hoare has softened his view considerably, admittin
that less formal methods, including engineering intuition, havd
proven surprisingly effective in producing relatively reliable sys-
tems. He still feels, however, that formal methods have a role t
play in the development of safety-critical and security-critical
systems.) One of his first major declarations in this regard came
his famous 196Communicationgrticle, “An Axiomatic Basis
for Computer Programming.” It was here, in the wake of the 1968
NATO conference on software engineering, that Hoare argued that Formal methods advocates such as Hoare left little doubt that
programming was “an exact science in that all the properties of taey equated “informal” methods with “arcane and error-prone”
program and all the consequences of executing it in any giveprogramming. Others, however, saw a role for both perspectives.
environment can, in principle, be found out from the text of théFor instance, among the benefits Leveson ascribed to formal
program itself by means of purely deductive reasontiig e methods in her introduction to a special issueT@nsactions
went further in 1981, claiming: were “rigor and precision including unambiguous communication,
prediction, evaluation, and better understanding and control over
software products and the software development process.” Note-
worthy, however, was her attendant observation:

we have only recently come to the realisation of the mathe-
matical and logical basis of computer programming; we can
now begin to construct program specifications with the
same accuracy as an engineer will survey a site for a bridge ~ We need not only better formal methods but also ways of
or road, and we can now construct programs proved to meet  interfacing them to human abilities and less formal meth-
their specification with as much certainty as the engineer ods. There is much to be gained from investigating the
assures us his bridge will not fall down. Introduction of process of integrating formal methods with informal soft-

these techniques promises to transform the arcane and error- Wware engineering procedures, e.g., determining how they
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can be used together in a complementary fashion to take ad- embodied several concessions to practicality. Foremost among
vantage of the strengths of eddh. these was the verification process used:

Gerhart echoed this point in her introduction to a companion spe- The method of human mathematical verification used in
cial issue ofEEE Software“[T]he next challenge is to integrate Cleanroom development, called functional verification, is
these formal methods with the variety of informal techniques (like quite different from the method of axiomatic verification
design records, conceptual modeling, and graphical representa- usually taught in universities. It is based . . . on the reduc-
tions) required to achieve the goal of a formally based engineering tion of software verification to ordinary mathematical rea-
discipline."L46 Here, it seems, was an attempt to reconcile a plu- soning about sets and functions as directly as possible. . . .
ralistic reality with the singularity exhibited by the formalists’ By introducing verification in terms of sets and functions,
professional rhetoric. you establish a basis for reasoning that scalelgltﬂfz

) Increasingly, formal mgthods advocates were not of one ming o |51eq key feature of the Cleanroom was that development and
W'th_ respect t(_) the sufficiency of formal _meth_ods alone. INtrOerification were both iterative and cumulative. Incremental de-
ducing a special issue of t&oftware Engineering Journale- o qhment meant in theory that only relatively small pieces of
voted to theorem proving and software engineering, C.B. Jones t'ogramming would ever have to be verified. A further aid to
the University of Man_chester was careful to note that mathemat, .41 verification was the use of a limited set of design primi-
cal methods were neither "panacea” nor "quack remedy.” Rathef o5 yithin the software. Another sign of pragmatism in the
there are, in fact, many useful approaches which will make congjeanroom scheme was that “structural testing that requires
tributions to various application and/or development env'ronknowledge of the design is replaced by formal verification, but
ments. Specialist (‘fourth-generation’) languages, Prolog, funcy,.tional testing is retained®™ P22 A statistical usage profile
tional languages, prototyping and others all have a contribution 19, iqeq the basis for this testing. An experiment reported in
make.”™"" At a 1989 formal methods workshop, participants re-1ansactionsseemed to provide support for the efficacy claims
portedly leavened their insistence on the necessity of form%ade by advocates of the Cleanro r’nHowever, it should be
methods with the caution that formal methods alone were insuffi; jioq that the size of the programs used as examples of the suc-
cient for development of trustworthy systet¥That year's In-  cocoof the Cleanroom approach represented both how far the
ternational Conference on Software Engineering presented tr@chnique had come and how far it still had to go. Most of these
formal methods debate in microcosm, with believers emphasizin rograms involved fewer than 50,000 lines of instructions, which
the need for greater attention to formal methods, skeptics arguings s il an impressive amount of formally verified code. Never-
the superiority of “intuition and guessing,” and others calling fory,oja55 with major systems requiring hundreds of thousands and
“considered appllcatlopnl"ogof formal methods depending on indi-g\ey millions of lines of code, the practicality of using the Clean-
V|dual_ cwcumstanc_e%s.’_' room approach for such systems was still an open question. More

Articles appearing in the late 1980s and early 1990s lent sulg, o antly, one aspect of the Cleanroom process that was dis-
stance to this sort of pragmatism. Writing IEEE Softwaréin v ynpragmatic was its insistence on stable specificatfdns.

1990_’ Anthqn_y Hall related ex_perie_nce with formal methods at:learly, while this demand may be relatively easy to meet in some
Praxis, a British software engineering company. He noted tha&ontexts, it may be virtually impossible in others.

“even though we have undertaken very few proofs or completel
formal development stepae have found that inspections of for- . .
mal specifications reveal more errors than those of informal speci- Mathematical methods were neither

fications, and it is more effective to inspect designs or programs “panacea” nor “quack remedy.”
against formal specifications than against other kinds of design
documentation [emphasis added].” He made it clear that “program Thus the issue of applicability raised its head once again. Some
verification is only one aspect of formal methods. In many waysformal methods advocates, though, were beginning to display a
it is the most difficult. For non-safety-critical projects, programheightened awareness of its importance. Wing, for instance, ex-
verification is far from the most important aspect of a formal deqplicitly acknowledged the issue of applicability as pertaining to
velopment.**® Moreover, he argued that it was unrealistic to ex-hoth specification languages specifically and formal methods
pect most software engineers to easily and routinely carry oyenerally, emphasizing that “an advocate of a particular formal
formal proofs and that proof tools were primitive and possiblymethod should tell potential users the method’s domain of appli-
condemned to remain that w&y"*’ An article in that month's cability. . . . Without knowing the proper domain of application, a
Computersuggested that such pragmatism could be found in acaser may inappropriately apply a formal method to an inapplica-
demia as well. In a broad introduction to formal specification,ple domain.***P**?**|ndeed, a 198Tomputer Journalpiece
Jeannette Wing of Carnegie Mellon University noted, “Althoughcompared two different approaches to formal specification: the
you may never completely verify an entire system, you can celyienna Development Method and OBJ. The authors concluded,
tainly verify smaller, critical partsi®® Another way around the “The two approaches each lend their own insights to a problem.
difficulties of formal verification, though, was to change the na-yDM [Vienna Development Method] encourages a more ‘top-
ture of formal verification. This was a key part of an integratecdown’ approach to viewing a problem, while OBJ may be used in
process dubbed Cleanroom software engineering. a more ‘bottom-up’ style which gives fresh ideas on how to parti-
An approach Mills and others developed at IBM, Cleanroomjon the problem and how to structure the specification. The over-
software engineering, was presented as “a practical process 44 experience was that the two methods complemented each
place software development under statistical quality comttdl.” other.*>® Even Hoare seemed to be mellowing somewhat, admit-
While highly formalized, the Cleanroom process neverthelessing in Computerin 1987 that the small and familiar example that
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had been used to illustrate some formal methods for programelopment. Formal methods advocates viewed their critics as
design stubborn and archaic craftsmen, either unwilling or unable to

adopt self-evidently superior techniques built on science and
mathematics. Nevertheless, there did exist a middle ground that
sought a balanced, integrated approach combining formal meth-
ods with other techniques so as to most effectively deal with the
particular problem at hand. By the 1990s, the population of this
middle ground was slowly growing, but the underlying tensions

still remained.

revealed (all too clearly) the full weight of the notations and
complexity of the mathematical proofs involved in formali-
zation of the process of program design. The reader may
well be discouraged from applying these methods to prob-
lems of a scale more typical of software engineering. And
there are many other serious concerns which are not ad-
dressed directly by formalization, for example, cost estima-
tion, project management, quality control, testing, mainte-
nance, and enhancement of the program after de?%ry. The Sound and the Fury:

Nevertheless, in 1990 the associate editor-in-chidEBE Soft- Language Disputes

ware deplored what he saw as the ever-widening divide betweedust as verification proved unamenable to any one approach, so,
software engineering purists and real-world practitioners, “Thdoo, did programming (and, more importantly, programmers) ap-
consequence is that practitioners are drifting toward the north polgear resistant to any single language. The area of programming
and purists toward the south pole (or vice versa—either side i@nguages has always provided rich grounds for controversy, per-
very cold). Those researchers who do take a more pragmatic apaps because the issue of programming language is so basic and
proach and those practitioners who see the value of formal metinescapable for practitioners that it inevitably generates strong
ods are trying to decide if they should move north or solth.” emotions. The enduring tension between language generality and
While there was clearly some movement toward the equator, Bpecificity played itself out in several arenas. The concept of a
seemed there was still a great deal of drift toward the poles. universal language effective in virtually all circumstances
(ALGOL, PL/I) continued to attract hearts and minds as it had in
the 1960s, while others touted powerful application-oriented lan-
guages usable by nonprogrammers (so-called fourth-generation
languages) as well as special-purpose languages aimed at par-
ticular domains (such as NewSpeak, intended for safety-critical
programé‘r’e‘). At the same time, the old-guard languages—
principally Fortran and COBOL—continued to thrive and, to the
distress of many, evolvg’

Those who enjoyed a good language controversy soon enough
had one to rival the disputes over ALGOL and PL/I. In January
1975, the U.S. Department of Defense (DoD) Director of Defense
Research and Engineering set up a department-wide program to
develop a single common high-level military programming lan-
guage for embedded systems. (An embedded computer system is
one that is an integral part of some larger system, e.g., the com-
puters used to control a modern jet fighter.) A High Order Lan-
guage Working Group was established to carry out this program.
David Fisher of the Institute for Defense Analyses described the
effort as “based on the idea that many of the support costs for
software increase with the number of languages, and that lan-
guages must be suited to their applications. Furthermore, with a
common programming language, a software development and
maintenance environment could be built, providing centralized
support and common libraries that could be sharéd®.DoD
difficulties with software mirrored those in the larger world. A
study earlier in the decade by the Air Force Systems Command—
“Information Processing/Data Automation Implications of Air
Force Command and Control Requirements in the 1980s"—had
confirmed, as Barry Boehm conveyedQiatamationreaders, that
“for almost all applications, software . . . was ‘the tall pole in the
tent'—the major source of difficult future problems and opera-
tional performance penaltieé‘:.’g Fisher, however, revealed un-

The formal methods debate embodied virtually every type olisually modest expectations, “The present diversity of program-
tension extant in the software engineering and computer scieneeing languages used in embedded computer systems did not
communities: academia versus industry, research versus practi@ause most of the problems—nor would a common programming
science versus engineering. From the other side of the road, fdenguage cause them to disappear. Nevertheless, the existing lan-
mal methods often appeared as the esoteric playthings of an elgj@age situation un%ueszgonably aggravates them and inhibits some

unconcerned with the circumstances of real-world software depotential solutions 8 Recalling some of the expectations that
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accompanied ALGOL and PL/I, such a view seems atypical in itSyndrome.” He accused Ada of being to Pascal what PL/I was to

pragmatism. The extent to which others shared this view of thBortran—an unwieldy conglomeration of featutdsin a similar

DoD effort was another matter. vein, anotherSIGPLAN Noticeseader contended that the com-
Since no existing language satisfied all the requirements witplexity of the language would encourage the use of language sub-

respect to embedded applications, reliability, maintainability, andets leading to incompatible implementations and styles and per-

machine independence, the High Order Language Working Groupaps even dialect€” In fact, one of the most hotly debated issues

decided to develop a new language. From 1975 to 1977, the grogpncerned the question of language subsets as a means of reduc-

concentrated on iteratively developing a set of language requiréng the effective complexity of the language.

ments in consultation with all interested communities. 1N e mmmmmm—"—"—— ey

summer of 1977, the working group selected four contractors to In his 1980 Turing Award Lecture
propose initial language designs. These prototype designs were ’

evaluated by numerous review teams from academia, government, Hoare despaired that with Ada, the

and industry. In the spring of 1978, the working group narrowed “mistakes which have been made in the
the competition to two proposals, which were then further devel-

oped and refined along with prototype processors. After another last twenty years are being repeated

round of evaluation, the working group selected Cii-Honeywell today on an even grander scale.”
Bull's language in the spring of 1979 and christened it Ada, after
Lady Ada Lovelace, the world’s “first” programmer. For the re-  The ACM voted against approval of Ada as an American Na-
mainder of 1979, Ada was subjected to additional testing an€lonal Standards Institute (ANSI) standard, partly in reaction to
refinement. the absence of subsets that were reliable (i.e., produced identical
results across compilers) and efficient (in terms of compilation).

If anyone believed the product of this effort would be uncon-The organization argued that if there were, in fact, “numerous
troversial, they soon learned otherwise. No less a personage thgstential commercial applications—not limited to ‘embedded
Dijkstra took a dim view of the proceedings: systems'—and . . . these applications cover a broad range of com-
plexity, then there is a strong and—we believe—valid argument
for the definition of one or more ‘authorized’ subséfs.in 1982,
Ledgard and Andrew Singer advocatedCiommunicationgither
scaling down or subsetting Ada, “As strong supporters of the Ada
effort, we are concerned that in the long run the language will fail
with users for the same reason that other large languages have
failed—not enough was left out® Robert Glass agreed that
“simplicity is to be sought. Practitioners, however, have ever more
complex problems to solve. The goal of simplicity must never
take precedence over the goal of problem-solv’rﬁé.Randall
Leavitt did not care for the idea of Ada subsets, but acknowledged
that Ada might be a little too substantial, “My experiences with

A 1979 report inDatamation noted that while the Ada re- Fortran transportability and maintenance indicate that a subset is
quirements study suggested that one language could in theosyly another problem to overcome, not a solution. However, Ada
support most application areas, that “does not, of course, implyould benefit from some prunin(j.68 DoD, not surprisingly, also
that it is desirable’*® “The Ada language control people will took issue with the notion of Ada subsets, arguing that subsetting
have a very difficult task. They must attract the reluctant serviceswould potentially defeat the portability of applications software,
hold the language stable but correct . . . and not let multiple imiibraries, reusable components, and programmérsAs for
plementations create language anomalies by different interpret@runing the language, Brian Wichmann, a member of the Ada
tions of the language. Historically, this latter problem has seldonmgesign team, asserted that while Ada could be simplified by re-
if ever, been solved-""***°Writing in SIGPLAN NoticesRob ducing its facilities, “it is far from clear . . . that the resulting lan-
Kling and Walt Scacchi expressed skepticism on sociologicagjuage will be as useful to the user community especially in the
grounds. Noting the attractiveness of technical fixes that allowetbng run.*®° The question, though, was useful in what sense?
one to “focus on designing technologies which can be high spir- Clearly, Ada, with its smorgasbord of features, was potentially
ited fun rather than upon the human dilemmas which can be woef great utility. But potential utility does not automatically trans-
fully depressing,” they saw “little reason to believe that projectdate into practical utility. The potential utility of Ada could well be
which use DoD-1 [which would become Ada] are guaranteediitiated by its bulk and complexity. In other words, Ada, like
lower life-cycle costs than similar projects which do not, when theother attempts at a universal language, might be too far beyond
projects are executed in routine production environments undehe pivot between generality and specificity—the point at which
routine contractual and market arrangements (and not as showade-offs seem to balance—to appeal to as wide an audience as
cases for DoD-1 use)l.62 its proponents hoped.

Given that Ada was intended to be almost all things to all peo- Ada certainly did have its proponents. William MacGregor of
ple, language complexity was a bone of contention, just as it hatie University of Texas, responding to Dijkstra’s complaints about
been in the cases of ALGOL and PL/I. Paul Eggert of UCLAthe four candidate designs, opined, “Alternatives to the common
suggested that Ada was yet another example of the “Wish Lisanguage being what they are, there is room for a great deal of

It is so illuminating because it shows in a nutshell what
havoc is created by not stating your goals but only pre-
scribing partial means intended to solve your problems. . . .
It makes also quite clear why the new programming lan-
guage cannot be expected to be an improvement over PAS-
CAL, on which the new language should be “based.” . . .
You cannot improve a design like PASCAL significantly by
only shifting the “centre of gravity” of the compromises
embodied in it; such shifts never result in a significant im-
provement. . . . Why does the world seem to persist so stub-
bornly in being such a backward plajceé)?
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imperfection in the new language while still achieving a substanlanguage policy that reiterated the department’s commitment to
tial economic advantagé?’D Peter Wegner, while admitting Ada Ada: “The Ada programming language shall become the single,
was comparable in complexity to PL/I and thus vulnerable to theommon, computer Erogramming language for Defense mission-
same kind of criticisms, contended that Ada was “better engieritical applications.l’ % The directive specified 1984 milestones
neered than Pascal or PL/I. . . . The resulting language has ma®vard adoption.

expressive power and greater security and reliability than either Unhappiness over Ada was matched by irritation over the con-
Pascal or PL/I** Hoare, however, believed that reliability and tinued popularity of Fortran (and to a lesser extent COBOL). In a
the kind of complexity Ada exhibited were mutually exclusive. In1972 retrospective, Saul Rosen suggested, “The most striking fact
his 1980 Turing Award Lecture, Hoare despaired that with Adaabout programming languages . . . has been the continued over-
the “mistakes which have been made in the last twenty years avehelming acceptance of Fortran and coBd(*’Indeed, both
being repeated today on an even grander stdiahe depth of languages were expanding to provide increased functionality, thus
Hoare’s concern was evident in his appeal to tightening their hold on users. A 19Tbmmunicationsarticle
offered techniques addressing the absence of facilities in Fortran
for handling character strindé. The previous year, programming
guru Dan McCracken had admitted that althougbbbdywould

claim that Fortran isdeal for anything,from teachability, to un-
derstandability of finished programs,” nevertheless “Fortran is

tutes a far greater risk to our environment and to our society very thoroughly entrenched, and . . . not likely to be displaced in a

. . 176
than unsafe cars, toxic pesticides, or accidents at nuclear big Way.any time soom. l\./lore‘ than a decade later, McCracken.
power stationd’?P83 could still assert, “Fortran is still the language of choice for engi-

neering and scientific calculations. (Those who deplore this fact
should at least admit that it is a fad.7)7” Perhaps the most elo-
quent expression of resignation was heard at a 1975 National
Computer Conference session at which Ben Wegbreit of Xerox
observed with a distinct lack of enthusiasm, “Ah, . . . Fortran will
be around until the end of time.>’®

The infatuation with structured programming heightened the
discontent, as proposals aimed at permitting Fortran devotees to
enjoy the fruits of SP began to circulate midway through the
1970s. Calls for “structured Fortran” were not greeted with waves
of enthusiasm. Much of the debate was played out, appropriately
enough, in the pages &iGPLAN NoticesOne reader harkened
back to the old days, declaring that Fortran “should have died in
the early sixties with the appearance of Algol 60. | am thus ap-
palled by the time and effort invested by so many people in
keeping it alive.*”® Another reader suggested that attempts to use
Fortran for structured programming were “like trying to make a
tack hammer suitable for driving railroad spiké§9’5tuart Row-
land of the State University of New York contended, “there is
really only one problem with structured Fortran—it is still For-
tran.”®* Fortran was not without defenders, though. One asserted,
“Fortran hamot outlived itself. Fortran is still quite tolerable for a
broad spectrum of problems and the transferability makes its use
of continued economic importance in our indusW”While
constituting a less than ringing endorsement, such comments il-
lustrate well the nature of the attachment to Fortran. Fortran re-
mained entrenched less because it was powerful and elegant than
because it remained a practical means of accomplishing a wide
variety of work and represented a substantial investment in soft-
ware and training. In much the same way, the QWERTY keyboard
continues to resist replacement by the ergonomically superior
Dvorak keyboard. Anthony Ralston and Jerrold Wagner recog-

None of this, of course, was likely to derail a language DoDnized this in their 1978ransactionsarticle, calling for the exten-
was pushing. Just as DoD backing had compelled commitment &on of Fortran IV into Structured Fortran (SF). They argued,
COBOL on the part of manufacturers courting the Pentagon, séattempts to ‘kill' Fortran, however well intentioned and, even
too, did firm DoD commitment to Ada serve to propel the lan-however desirable such a result might be, are doomed to failure.
guage forward. The ANSI Ada standard was issued in early 198&evolution in higher level languages is no I%%%]er possible; evolu-
That same year, the Under Secretary of Defense for Research dih is the only—and necessary—alternative.”Similar argu-
Engineering issued a DoD directive concerning programmingnents were taking place over COBOL. Once again, McCracken

not allow this language in its present state to be used in ap-
plications where reliability is critical, i.e., nuclear power

stations, cruise missiles, early warning systems, anti-
ballistic missile defense systems. . . . An unreliable pro-
gramming language generating unreliable programs consti-

461

H-GENERATION LANGUAGES FIT IN
HEW @ VISUAL UNIX ® BRIOGING LOOPS AND PROLOG
\TORS @ ICON-BASED PROLOG & HASHING SCHEME
EXERCISE ¢ MILLS ON KEEPING IT SIMPLE
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attempted to put things in perspective. He made his plea for Ask and thou shalt receive. As computing entered the 1980s, ap-
pragmatism with respect to COBOL in a 197&amationessay: plications development remained a major headache. A Da&i-
mationreport observed that applications development “remains one
of the dp industry’s thorniest problems. Since the '50s, when higher
level languages emerged, there’s been only slow, piecemeal prog-
ress.** The following year, though, the magazine heralded a new
approach that was easing applications backlogs, “The key to this
new trend is the appearance of simpler step-by-step program devel-
opment languages that are making it possible for users without de-
tailed programming expertise to develop their own applicatibgr]ls.”
What should not be overlooked in the recognition of languag&nown as nonprocedural or fourth-generation languages (4GLs),
inertia, however, is how Fortran and COBOL attained such inertizhese systems, which were sophisticated and powerful descendants
in the first place—by occupying the pivot between generality an@f packages such as IBM's Report Program Generator, supposedly
specificity. permitted a user to specifiyhat he or she wanted done without
The tension between generality and specificity surfaced repeattetailinghowto go about doing it. Often used in conjunction with a
edly over the years. The arguments over a universal languagritabase, systems such as RAMIS and Nomad made it easier to
were simply cases of the larger issue. In an unusually philosophitevelop custom applications that manipulated and distilled the in-
cal 1975 paper, Naur compared and contrasted programming laformation in the database (e.g., sales figures). One could, for exam-
guages with mathematics and natural languages. He argued thaé, order the system to produce a chart or table without specifying
the lack of precision in natural languages, far from being a defecéxactly what a chart or table looked like or how to go about assem-
in fact made it possible for natural language to continually debling one. Moreover, one could do this in a language whose syntax
velop and to express an endless succession of new ideas. Tihgre at least a passing resemblance to normal English. Fourth-
development of natural language, he felt, could be used as a guigeneration languages had the potential to remove the programming
for the design of programming languages. Programming lanmiddleman.
guages “should preferably be built from a few, very general, very
abstract concepts, that can be applied in many combinations, « ; ;
thereby yielding the desired flexibility of expressigﬁ?”A 1977 4GLs are as major a teChnOI()glcal

Communicationsarticle seemed to express the opposite point of advance to computer programming
VIew: as integrated circuits were to

Members of this new generation of languages still strive to computer hardware and orbiting
be general purpose, trying to be applicable to a wide variety

of problem domains; and it is here that they may encounter satellites to data communications.”

some inherent limitation. For in attempting to span a wide . . . . .
range of potential users with the facilities of a single lan- Predictably, some practitioners gushed with enthusiasm while
guage, a language designer will either end up with an enor- others were less enraptured. Perhaps the ultimate kudos were
mously complex language or one which is only moderately Pestowed by Nigel Read and Douglas Harmon in a T#8ama-

well adapted to any one of the application aféls. tion essay in which they proclaimed, “4GLs are as major a tech-
nological advance to computer programming as integrated circuits

Mark Crispin of MIT had made more or less the same point invere to computer hardware and orbiting satellites to data commu-
Datamationthe previous year. “APL [a highly mathematical lan- nications.*® James Martin, czar of the consultants, was also a
guage developed around 1960] is a nice language when used age¥out proponent of 4GLs. Others, however, were more reserved
programmable calculator. Similarly, COBOL is best for largejn their attitudes. John Cardullo and Herb Jacobsohn, for example,
business data base crunching. Neither is very good for the othefglt that Read and Harmon had overstated their case, “We resist
type of usage. Let us recognize this rather than try to have th@ie implication that the use of 4GLs will solve all the problems
seminationalistic banner of absolute superiority of one over théhat are raised by Read and Harmon. They are merely one more
other!™®” Writing in a similar vein with respect to ALGOL and very valuable means to help address, define, and solve the myriad
Fortran, A.C. Larman had struck the same chord in a more coloproblems that face manage}g?’Simnany, Bill Inmon of Coo-
ful way in theComputer Bulletir(published by the BCS) in 1971, pers & Lybrand contended that while 4GLs were “certainly ap-
“One cannot state, unequivocally, that . . . a racehorse is ‘superigfopriate for decision support, prototyping, and environments
to’ a dray-horse or a show-jumPesr; it depends entirely on the puiyhere there is a limited amount of data and/or processing,” there

COBOL is the most widely used language in the world by a
very wide margin, and it will stay that way for at least a

decade. So let’s work to make the best of it, and to improve
it gradually but steadily. . . . | say, let's get on with it and not

sit around moaning about the horrible state of programming
languages while waiting for some utopian solution that

never seems to get any clo&¥F.

pose for which one requires it...." All these statements seem t0 was evidence that “for operational systems, fourth generation

recognize implicitly the existence of a pivot along the generality4anguages and application development without programmers
specificity axis. A 1976 overview of computer technology sug-don't deliver the productivity gains their advocates clalfi.”
gested, however, that the pivot had shifted in theory if not in factvichael Brown of Hewlett-Packard disputed Inmon’s contention,
Ware Myers argued “for people whose primary emphasis is ofhough in fairly moderate terms, “The use of fourth generation
their own work, the so-called higher-level languages are still ortanguages does allow an increase in the number of individuals
ders of magnitude too primitive. The gap between this kind ofyith an applications hias to successfully develop programs. While
user and the present languages is staggering. Languages neeght® organization still needs a balance of computer science types,
become more application-oriented.” some production gains are accomplished by getting people with
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real application experience and competence closer to the devélhe real question, then, was just how many different paradigms
opment processl.95 Consultant F.J. Grant came at it from the one could lump together within one language before the complex-
opposite direction, but seemed to end up in more or less the sarite of the language vitiated the gains derived from the availability
place. Grant declared that 4GLs were not “a solution to the intelbf more than one paradigm. While there has been some success in
lectual and infrastructural problems of traditional MIS augmenting existing languages with a new type of language con-
[management information systems] implementations,” but acstruct representing a different paradigm, such as the addition of
knowledged that they “must be taken seriou%?f}.” object-oriented constructs to C (C++), it is unclear just how many
Most people agreed that 4GLs were, in fact, effective in certaisuch balls a programmer can successfully juggle. If complexity
situations. The key question had to do with which situationshas been an issue for the large “universal” languages, it cannot
Fourth-generation languages derived their power from incorpohelp but be an issue for truly multiparadigm languages. Moreover,
rated knowledge of the application domain. As Wegner noted in auch paradigms differentiate languages in a manner not necessar-
1984 article inlEEE Software the “choice of a domain of dis- ily congruent with differences in application domain. Fortran and
course for an application generator and the design of a genef@OBOL, for example, are aimed at different application domains
program generator and parameter interface require a deep undgeience and engineering in the case of the former, commercial
standing of the problem domaih’* The previous year iData- data processing in the case of the latter) but both are imperative
mation Alex and Dan Pines had observed that the “problem witHanguages. Therefore, language paradigms, which represent styles
the programmerless approach [embodied by application generaf thought, are not necessarily the same as orientation toward a
tors] is that it institutes a simple software solution that attempts tparticular application domain. Thus, multiparadigm languages
achieve two conflicting goals: universal flexibility and extreme may represent synthesis on one level but not another.
ease of use™® This point was echoed in a 1988 articldBEE Others took a dim view of the language skirmishes altogether.
Software, which concluded that “a user can save applicationdn his 1977 Turing Award Lecture, John Backus, the originator of
development time if the problem matches the assumptions in theortran, complained, “discussions about programming languages
tool's predefined nonprocedural facilities. If the problem is not theoften resemble medieval debates about the number of angels that
kind the tool was designed for, the user may pay development am@n dance on the head of a pin instead of exciting contests be-
performance penalties. In these cases, conventional programmitgeen fundamentally differing concepl@.z’ Backus considered
is a better alternative'® Nonprocedural languages could greatly von Neumann architecture (sequential computing) an “intellectual
facilitate the development of certain applications in well-definedbottleneck” restricting thinking about programming languages. In
problem domains by “nonprogrammers,” but they were not a unia 1979 Computeressay, R.N. Caffin suggested an even higher
versal answer to the problem of software productivity; they were &vel of irrelevance for language debates, “The solution for more
palliative rather than a cure. general work does not lie in fool-proof, very high level, pseudo-
The fact that 4GLs were nonprocedural did not exempt thenkEnglish languages. We must accept, for the present at least, that
from the tension between generality and specificity. Instead, thegrogramming requires thougrﬁ‘?3 Commenting on Caffin’s es-
were an excellent example of the trade-off between breadth arghy, Jim Haynes of the University of California at Santa Cruz
depth. Fourth-generation languages provided relatively highsuggested the problem lay in the fact that “inventing new lan-
powered (in terms of productivity) development capability, i.e.,guages and arguing their relative merits is easier and more fun
leverage in depth, within a limited range of applications. In conthan solving real problemgf)4 Similarly, David Feign asserted
trast, languages such as Fortran and COBOL provided less cotirat the “much harder problem of understanding how people
ceptual power within a much broader range, while languages sucehkally think and express themselves, and translating this into a
as PL/I provided little application-specific capability but virtually machine language, has been dropped by computer scientists.
“universal” range, i.e., leverage in breadth. Solving the harder problem would mean more work® . Wil-
Attempts at programming language synthesis were highlightelam Wulf of Carnegie Mellon University summarized the situa-
in a 1986 issue ofEEE Software Noting the difficulties engen- tion in a 1980 article on programming language trends, “Choosing
dered by trying to use the wrong tool for a particular purpose, ththe proper balance between the generality of individual features
guest editor described a new class of programming languagesd the cost of their interaction is what has often turned out to be
aimed at solving the problem. These languages “do not restrict theore difficult than expected, and what has often been done
programmer to only onparadigm. . . rather they ammultipara-  badly.”?*® But Wulf also recognized that programming languages
digm systems incorporating two or more of the conventional procould not cure the basic problem, “The fundamental problem of
gram paradigms?”)O As Pamela Zave of Bell Laboratories ob- constructing reliable, maintainable software is that of reducing its
served in a 1989 article describing one approach to multiparadigeomplexity to a level with which humans can cope. . . . Program-
programming, “By definition, a paradigm offers a single-minded,ming is intellectuallytough. A programmin% language can, at
cohesive view—this is, in fact, how the popular paradigms help usost, alleviate the difficulty of the taskPPP-21-22
think clearly, offer substantial analytic capabilities, and achieve Nevertheless, programming languages continued to be a prime
their reputations for elegance. The corresponding disadvantage ssurce of contention. While disputes such as that concerning testing
that each paradigm is too narrowly focused to describe all aspeatsrsus formal verification were at least theoretically amenable to
of a large, complex systerﬁ(.)’1 Such “paradigms” included data resolution via pragmatic synthesis, language scraps tended to be
flow, functional, imperative (embodied in popular proceduralmore a matter of trade-offs. The tension between generality and
languages such as Fortran and Pascal), and object-oriented pspecificity could often not be resolved, but merely accommodated
gramming. Multiple paradigms, though, were not cost-free. As théy the development and use of languages residing near the pivot
paradigms multiplied, so, too, did the complexity of the languagepoint. While some practitioners used the behemoth universal lan-
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guages and others employed application-specific 4GLs or nonpr@Patrick Hall et al. have written on the difficulty of making the
cedural languages such as LISP, vast numbers found practical aeaterfall model work and on the social functions it performs that
complishment (if not spiritual fulfillment) in the class of languageshelp keep it in placé(?%
that included Fortran, COBOL, and Pascal. For the most part, the This helped explain why so many highly planned projects
trade-off between breadth and depth in high-level languages hasemed to fall on their faces. Indeed, Fletcher Buckley of RCA
been inescapable. Pragmatism for many practitioners has beersaggested in 1982 that software plans were often ineffective be-
matter of splitting the difference with languages at the pivot. To theause the idealized software life cycle was just that—an unattain-
extent that language paradigms are distinct from application orierable ideaf*® McCracken and Jackson went even further, asserting
tation, multiparadigm programming, were it to prove viable, wouldthat the “life cycle concept is simply unsuited to the needs of the
not necessarily alleviate this tension. The same holds true for soft980s in developing system%l.]’ Honeywell's G.R. Gladden was
ware development methodologies. also of the opinion that “the concept of a ‘software life-cycle’ is
no longer helpful, indeed may be harmful to our software devel-

Mixing and Matching: ohpmclalfwt pro;‘essionz.‘12 On Ithe other har:jd,hPatrick Ir—:all argued

. . . that life cycles, in general, were a good thing. Rather, “it is pe-
Redeflnlng the Life CyC|e dantic defenders of particular life-cycles that are bad. Just as pe-

Pragmatism concerning the limitations of human intellectual capagy,ntic defenders of particular development methods, or anything
ity and the utility of any particular approach had also infiltra’[edelse of that matter. are bad>® Bruce Blum of Johns Hopkins

thinking about the traditional software life cycle. Not only was jpic jated a similar vied! Either way, some serious questions

software itself growing increasingly complex, so, 100, was the efforf, oo heing raised concerning the applicability of a predominantly
required to produce it. Attempts to rationalize the process had @equential development cycle

recognize that software development was a complex and multifac-

eted activity intimately related to human social and cognitive proc-—
esses. The traditional, essentially sequential (allowance was gener- Such sentiments S'Qnaled growing

ally made for some degree of feedback between stages) model of recognition that the basica"y

the development process, while mitigating problems of complexity, . .
embodied little appreciation of the intellectual difficulties inherent sequentlal nature of the classic
in system specification and design. The obvious alternative, an it- “waterfall” life cycle imperfectly
erative or cyclical process, addressed the cognitive problems but T .

was less effective in lending order and coherence to development modeled a reality in which
activity. Once again, combination and accommodation appeared foreknowledge in system specification
more profitable than any singular approach. : ;

By the mid-1970s, doubts began to surface in some quarters as and deSIQn was usually Incomplete at
to the realism of a principally sequential model of the develop-  best and sheer guesswork at worst.
ment cycle. Researchers at the University of Maryland suggested
that this ideal was often difficult to achieve. Tnansactionsin The obvious alternative to a sequential process was a cyclical
1975, Basili and Albert Turner observed, “building a system usin@ne. In a 1983 letter tGommunicationsJoseph Chambers ech-

a well-modularized, top-down approach requires that the problerded Basili and Turner from nearly a decade before, “Development
and its solution be well understood. . . . Furthermore, design flawef any software system is essentially an iterative proéésghat

often do not show up until the implementation is well under waythe waterfall model was unrealistic was explicitly acknowledged
so that correcting the problems can require major eff8ftin- in sessions at the 1984 International Conference on Software En-
stead, Basili and Turner suggested implementing a simplifiegineering, while a report on the 1985 International Workshop on
version of the system and iteratively enhancing it until the fullthe Software Process and Software Environments observed signs
system was implemented, “Iterative enhancement’ represents & “some emerging consensus that process models have some
practical means of applying stepwise refinem@ftP3**what inherently cyclic nature*® As IBM's Stefano Nocentini argued,

this amounted to was a kind of prototyping, a development stratin complex environments, problems are solved through succes-
egy that would attract great attention down the road. A more e>§ive aglp;roximatio_ns rather than through pr_ecise, invarignt defini-
plicit call for prototyping appeared in a 1980 essagfamputer  tions.””" Prototyping, clearly accommodating such a view, had
by W.P. Dodd. The notion of prototype programs had been digeen steadily picking up interest; a 1982 Software Engineering
cussed at the previous year’s International Conference on Sofdymposium sponsored by ACM SIGSOFT, the IEEE Computer
ware Engineering but had been more or less dismissed on ticiety’s Technical Committees on Software Engineering and
basis of cost. Dodd, however, suggested that the vast resourcésSI (Very Large Scale Integration), and the National Bureau of
expended on program maintenance reflected the fact that softwaféandards had focused on rapid prototyping. Accompanying much
developers were producing prototypes but refusing to admit it, “Ifliscussion of the technique, though, were words of caution. In a
any case, why should we complacently assume we don't ned@®83 Communicationsarticle, R.E.A. Mason and T.T. Carey
prototypes when more established branches of engineering . noted that there were also “disadvantages to the use of prototypes,
wouldn’t dream of not producing a prototyp&?” Such senti- such as higher initial cost for the requirements phase of the devel-
ments signaled growing recognition that the basically sequentigipment cycle and the possible loss of distinction between this
nature of the classic “waterfall” life cycle imperfectly modeled aphase and the design phase. But for certain types of applications,
reality in which foreknowledge in system specification and desigrihere is a growing consensus that prototypes form an effective
was usually incomplete at best and sheer guesswork at woréemponent of an application development methodol8tyJerry
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Schulz of Northwestern National Insurance also warned that pro- A few years later, David Wile of the University of Southern
totyping was not a magical elixir, “Although prototypes will be a California proposed a somewhat more modest approach in which
great help in developing decision support systems, much of datae implementer would manually choose the transformations to be
processing work consists of systems whose primary purpose is napplied, leaving the computer to carry out the transformations. He
decision support but rather the everyday operations of the buskdmitted, however, that producing a large and useful catalog of
ness. While prototyping may also be of value here, the pressuteansformations was a mountain yet to be climBBédd more

will still remain to develop precise project specifications, spellingpivotal problem, though, was one that also vitiated the usefulness
out such things as each needed calculafibhAs was so often  of formal verification—achieving a correct program specification
the case in software, it was just a matter of time before someone the first place. The transformations would presumably preserve
seized the pragmatic middle ground with an argument for synthgrogram correctness, but that assumed that the initial program
sis. In 1984, Boehm, Terence Gray, and Thomas Seewaldt depecification had been correct at the start.

scribed inTransactionsan experiment comparing the prototyping
approach to software development with the specification-drive
approach. While, by their own admission, the experiment coul¢
hardly be considered definitive, they nevertheless found the re
sults to suggest that “both prototyping and specifying have valu
able advantages that complement each other. For most large pr}
ects, and many small ones, a mix of prototyping and specifyin¢
will be preferable to the exclusive use of either by it<Bft Pro-
totyping seemed to result in smaller programs, reduced effort, ar}
ease of use, while the traditional approach lent more coherenc
functionality, and robustne&d Therefore, a synthetic approach

could use prototyping to compensate for intellectual limitations PROCESS
with respect to problem definition and system specification and t-4 1\

employ the traditional specification approach to ameliorate com
plexity by increasing coherence and fault tolerance. SSESSMENT
In a more radical departure from the conventional developmer

process, prototyping combined with program transformations ir jew e imerove your score
what was dubbed the operational approach. The operational a

proach represented yet another attempt to apply computation
leverage to the problem of software development. The concept «
program transformations had been batted around for a number
years in various forms. One of the most ambitious was that env’
sioned by Zohar Manna and Richard Waldinger in a T93a8s-
actionsarticle in which they considered the principles to be incor-
porated into an automatic program synthesis system:

Our basic approach is to transform the specifications repeat-
edly according to certaitmansformation rulesGuided by a
number of strategic controls, these rules attempt to produce
an equivalent [program] description composed entirely of
constructs from the target language. Many of the transfor-
mation rules represent knowledge about the program’s sub-  This was where rapid prototyping came in. According to Zave
ject domain; some explicate the constructs of the specifica- in a 1984Communicationsarticle, in the operational approach,
tion and target Iangua%es; and a few rules represent basic “the specification itself can be used as a prototype, since it is ex-
programming principle%.2 ecutable. This type of prototype can be produced rapidly and will
be produced as an integral part of the ordinary development cycle.
In other words, once the program specification had been devel- |y the conventional approach a Erototype is produced by iter-
oped at some highly conceptual or abstract level, the computefing the entire development cycf&” The approach Zave de-
would then be used in a multistage process to transform the spegkriped was “operational” presumably because the problem-
fication into the programming language. The transformation procpriented specification was executable (albeit inefficiently) and
essor would automatically bridge the gap between specificatiofhys operational. One could therefore experiment with the specifi-
and code. This got around one of the key trade-offs in softwargation, which in effect was a prototype of the program, until the
generally and for formal methods in particular: understandabiIit)bro»[otype and thus the specification appeared satisfactory. The
versus efficiency. The argument, as articulated at a 1979 Britisjinplementer would then guide the application of transformations
conference on the topic, was that “transforming specifications ofg produce an efficient implementation of the system. All of
programs into efficient algorithms . . . [was preferable] rather thagynich was fineif you could develop a system that could do it. A
having to prove correctness of clever and probably ‘unnaturaligg] Transactionsarticle had noted that “the construction of
programs. software by applying only formally verified rules is a time-
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consuming and highly sophisticated activity even for an experutions. The advent of an articulated framework for achieving
programmer.226 As Zave admitted, one of the major weaknessesuch accommodation was an even more sophisticated manifesta-
of the operational approach was that “transformational impletion of technical pluralism.

mentation is a relatively untried approach, and the necessary theo-

retical supports are only beginning to be developed. The idea @stablishing the Milieu:

program transformations has been with us for a long time . “Toward a Development Environment

without noticeable impacf?>*’ . | -
Ideally, practitioners required not just an appreciation for thé'-\ssummg the absence of a magic wand in the form of a truly

limitations of particular models but a framework for choosing the2Ufomatic programming system such as the synthesis system
most appropriate model at the most appropriate time. The spirgflanna and Waldinger proposed, th_e various activities comprising
model of software development purported to furnish just such fhe development process could SF'" benefit from less ambitious
framework. As Boehm described it @omputerin 1988, the spi- tools. Compilers applied computational leverage to one as_pect of
ral model was oriented around the notion of risk assessmeritoftware development; computer-based tools could benefit other
Rather than revolving around a particular element such as tr%SpeCt? E(_:iitors, debgggerg and other equally modgst yet useful
executable code or the documentation, a quality that characteriz&9P!S significantly assisted in the performance of various devel-
other life cycle models, the spiral model focused on making wellOPMeNt and maintenance activities. Grouping the necessary tools
considered choices to employ approaches embodied in particul{9ether into a developmeenvironmentwould clearly facilitate
models at different times in the development process. A(:cordinﬁ]e development process.

to Boehm:

this risk-driven subsetting of the spiral model steps allows
the model to accommodate any appropriate mixture of a
specification-oriented, prototype-oriented, simulation-
oriented, automatic transformation-oriented, or other ap-
proach to software development. In such cases, the appro-
priate mixed strategy is chosen by considering the relative
magnitude of the program risks and the relative effective-
ness of the various techniques in resolving the figks.

NOVEMBER 1987

The model is spiral in the sense that it is a cyclic process i
which each cycle expands in terms of cost and commitment, yg
involves the same sequence of identification of alternatives
assessment and choice, production, and evaluation. Each ite
tion brings one closer to the operational system through succe
sively greater elaboration. A particularly appealing aspect of th
spiral model was that, under certain circumstances, it coul
become equivalent to one of the other process models, th
rendering those other models effectively special cases of t
spiral modef?"P % Boehm admitted, however, that the spiral
model was not without problems, being difficult to reconcile
with typical software development contracts and relying on the
risk-assessment expertise of the people involved. Moreover, t
model required further elaboration before people without sub
stantial experience with it could use it effectiv&lyPP-"%"*
Still, the spiral model represented a milestone in that it formall
embraced the notion of technical pluralism with respect to lifg
cycle models. It viewed accommodation and synthesis as t _

normal state of affairs. S?!armaﬁiﬁ' Iﬁ}fﬁﬁ'eﬁqs

Thus, a key insight of this period in terms of software devel by i

opment models was of a kind with those in aforementioned are
Although the evolution of an alternative view of the developmen
process as cyclical as opposed to sequential was vital, its impor- Here too, one discovers the basic trade-off between breadth
tance would have been diminished if the community of practitionand depth. On the one hand, one could form a programming envi-
ers had either bifurcated with respect to the two approaches amgnhment that mainly resembled a development tool kit, involving
their variants or simply adopted the newer ones in wholesalg wide selection of tools minimally coordinated in terms of inter-
fashion. While some practitioners no doubt did definitively opt fortool communication. Such an environment would embody little
one approach over another, many displayed the same essentigkcific orientation in the way of language, methodology, or ap-
insight that was evident in other important disputes over softwarglication area and could be applied to a broad range of develop-
technology—that rewards often flowed from pragmatic accomment efforts. On the other hand, an environment could be inte-
modation based on appreciation of the limitations of singular sograted to the extent that it revolved around a particular language,

A
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methodology, and application type and thus provide high degre€khis kind of approach was not without its drawbacks. In a 1981
of functionality directly related to those particulars. When toolDatamationsidebar, Michael Lesk of Bell Labs noted:

sets were not so oriented, clearly some amount of their combined Unix has grown more than it has been built, with many people
effective leverage was vitiated; their leverage in depth suffered for from many places tossing software into the system. . . . Much
the sake of leverage in breadth. If, however, one combined tools of the attractiveness of Unix derives from its hospitality to
into a single environment integrated in terms of languages, meth- new commands and features. This has also meant a diversity
odology, and/or application area, one constrained the range of the of names and styles. To some of us, this diversity is attractive,

environment's utility; leverage in breadth was sacrificed for lever- while to others the diversity is frustrating, but to hope for the
age in depth. This inescapable trade-off produced programming hospitality without the diversity is unrealisf®

environments of all stripes. The popularity of the Unix system,
however, suggests that tool kit environments may reside at a pivg
similar to that of high-level languages. On one side of the pivg
lies broad, completely ad hoc collections of tools with virtually no
coordination among them. On the other side lies the realm d
relatively narrowly oriented, tightly integrated environments. As
in other areas of software technology, practitioners often opted fdg
the middle ground.

In a development on a par (at least in hindsight) with the intro
duction of Fortran, a 197@ommunicationsrticle introduced the
Unix time-sharing system. What Bell Labs colleagues Dennig
Ritchie and Ken Thompson had wrought was much more than g
operating system. Unix constituted a programméngironment. .
Programs available under Unix included an assembler, editoji
symbolic debugger, text formatter, macro processor, C (a ne
language that would quickly become identified with Unix), and
Fortran compilers, as well as a collection of maintenance and
utility programs?® The system also facilitated the funneling of
one tool’s output directly into another tool. In a 1977 article, Bell
Labs’ Evan lvie took things even further. He suggested that th
programming community “develop a program development
‘facility’ (or facilities) much like those that have been developed
for other professions (e.g., carpenter’s workbench, dentist’s office
engineer’s laboratory). Such an approach would help focus attegy
tion on the need for adequate tools and procedures; it would ser’s
as a mechanism for integrating tools into a coordinated gt R
Furthermore, the workbench concept encompassed the entig
software life cycle. Part of lvie’s motivation stemmed from his
perception (widely shared) that the programming community ha®
yet to produce “a software development methodology that is su \0 ;
ficiently general so that it can be transferred from one project t
another and from one machine to anotf&+™ "> Colleagues ) ] ) )
Kernighan and Plauger had made a similar argument the previous A Datamationarticle three years later emphasized the negative

year, suggesting, “few programmers think to use or bpitzt aspects, complaining, “all the improvements to _Uni>$ simply seem
gramsas tools. If they maintain a set of utilities at all, such pro-l© @dd to the confusion—there are now a bewildering number of

grams tend to be high personalized and must be modified for ealfflix versions from AT&T and other vendors, each with its own

; 33 ] .
new application®*® The authors urged the development and ussShecial features”® Dennis Barlow and Norman Zimbel of Arthur

of general-purpose tools. D. Little concurred, “It is clear that Unix is not a single operating

Unix represented only one of a number of approaches fallingyStem. but rather a generic identiiier for a clan of operating sys-
under the rubric of programming environments. Unix was (and ijems sprung from a common rodt* A sidebar indicated, how-
the quintessential toolkit type of environment. Unix supportectVe’, that AT&T viewed Unix as the solution rather than the
neither a particular development methodology nor a specific larRroPlem:

guage, although the C language is closely associated with it. A standard operating system that could be used on many
(Ritchie developed C at Bell Labs in 1972 as a tool for creating different vendors’ hardware would be an important boost to
Unix, evolving out of the B language Thompson developed.) interchangeability. AT&T believes the Unix operating sys-
Rather, as Anthony Wasserman put it in 1981 in his introduction tem to be a strong candidate for such a standard for several
to a set ofComputerarticles on development environments, “the  reasons, including portability, flexibility for diverse proj-
facilities of Unix may be thought of as a tool kit from which the ects, versatility from micros to mainframes, and the exis-
developer can select tools that are appropriate for a particular task tence of a large group of experienced users to feed the
and for which a toolsmith can easily build additional to8fs.” growing marketplacé®

RAPRIL 1981
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Indeed, in 1981 ACM President Denning had used Unix as an the “notes” they made (the assumptions, expectations, and
example of what was needed to promote software reuse, “In short, constraintsland recalling them at just the appropriate time.
to foster a new attitude—that programs are potentially public, Software that could perform this type of assistance would
sharable, and transportable—we need operating systems that arerequire considerable understanding of the design process it-
hospitable toward saving and reusing program parts. | will cite self, and information that is problem specfﬁé.

Bell Labs’ szsrgix operating system to illustrate that the technologyg, ., pookkeeping assistance seems to fall somewhere between
is at hand.™ A Datamationreader suggested in 1984 that the | its and automatic program synthesis in terms of ambition and
bottom line with regard tq Unix was the same as in the cases ?lfsefulness. MCC’s Software Technology Program seemed to be
COBOL and Fortran, “Unix users like Unix for the same reasoNSyiming for this type of environment in the mid-1980s, one that

that PC/DOS users like their operating system—it works. We dgq 4 “aid all aspects of complex software development, includ-

tnot claim any mystical properties over other operating SySpg requirements capture, exploration, and early de§inin-
ems....

-.”" (The author admitted, though, that as was the norm fofjae this sort of approach has come to be known as “exploratory”
any significant development in software, Unix had its share of,gare development. At its core, exploratory software develop-
self-righteous zealo.ts.) Unl_x might not hav_e been the end-all anﬁluent was a means atcommodatinglesign uncertainty whereas
be-all of programming environments, but it enabled users t0 g}, e traditional methods aimed to combafftwinston Royce of
useful work done. In other words, Unix may well represent therpyy recently asserted, “the exploratory approach is instinctively
pragmatic pivot region in terms of programming environments. . ect to programmers, who use the act of coding to examine a
Other environments consciously focused on a specific [an, ohiem and code execution to test a requirements hypotf&sis.”
guage. The Cornell Program Synthesizer was a modest step alon
these lines. As described in 1979 8IGPLAN Notices the

Cornell project was a self-contained programming environment At its core, exploratory software
tailored to the grammar of the host programming language, pro- development was a means of

viding, among other things, automatic language-specific syntactic dati desi .
checks”® One of the more popular language-oriented approaches accommoaating esign uncertainty

was the Interlisp environment, which provided to%:;:ﬁ specially whereas more traditional methods
designed to facilitate the development of LISP prograimsiore . .

ambitious, in keeping with its language, was the Ada Program aimed to combat it.
Support Environment. A 198Computerarticle noted, “potential . .
benefits of the language and environment can only be fully real However, embe(_jd!ng any form - of Iocallz_eq knowledge
ized if the two are properly integrate%a.g’ The emphasis, as one (including characteristics of the work culture) within a develop-

would expect given the hopes and rationale for Ada, was on porp)ent environment constituted a substantial problem in and of
e . . . - itself. Reconfiguring the environment for every project could
ability, “Tool portability, project portability, retargetability, re- : - - .
hostability, and programmer portability are all importa@ﬁ?"”'zs potgntlally involve a Iarge amoun_t of e_ffort. Thls was the rationale
Like Unix’though the Ada environment would be oper;-endedbeh'nd the Gandalf project describedlmansactionsn 1986. The

permitting modification and extension at any time. Just as Uni>‘<L’IUthorS noted, “hand-crafting a software development environ-

. . . .. ment for each project is economically infeasible. Gandalf solves
tools were written in C, Ada environment tools would be written,, . . - Y
. . - this problem by generating sets of related environments.” More
in Ada to ensure portability and coordination.

Yet another tack one could take in designing a developmenstpeuflca"y’ Gandalf promotes the preatlpn mbject-or]ented
. . g oftware development environments in which many traits, such as
environment was to focus on the domain of application. The LIS

Programmer’s Apprentice under development in the late 1970s g{oFeCtlon policies, are tuned_ to groups_of persons \_/vorklng on a
X - ; roject rather than to the entire computing community or to par-
MIT, although dedicated to LISP, focused on providing assistanc o 245 e
. . o : . icular individuals.”™ Two years later, also writing ifiransac-
in particular application domains. The apprentice would cooperat . .
. . . . . . jons, Jayashree Ramanathan and Soumitra Sarkar discussed a
with the user in the design, implementation, and maintenance o

roarams by performing various checks on the oroaram desi Similar idea featuring a project-specific assistant that was pro-
prog 4Oy performing . L brog 9%y ced through interpretation of a conceptual modeling language
and codé’ Reflecting pragmatic recognition of the facts of life

in software technology, the developers saw this as a “realistigSeOI to specify process, data, tool, and user models specific to a

. h 46 .. .
interim solution to the current software problems and as an evoILP-";lrtl(:u'aIr prolecﬁ Sophisticated development environments

tionary path towards the more ambitious goals of automatic prq?UCh as these were early examples of what has been labeled

gramming.*® As the potential of expert systems began to seiz metaCASE.” Whereas computer-aided software engineering

imaginations in the 1980s, the notion of knowledge-based prc?—CASE) involved the use of programming tools aimed at sup-

. . : . . gorting a particular method or approach, metaCASE aimed at
gramming assistants became increasingly attractive. In a paper . : ) . :
presented at a 1984 SIGSOFT/SIGPLAN Software EngineerinSljppomr.]g a variety of_ap_proaches n a var_lety of se_ttlngs. As the
Symposium on Practical Software Development Environment uest editors of a special issueGafmmunicationsioted in 1992:

Elliot Soloway of Yale University concluded that, based on pro- it is becoming apparent that a single design method will not

gramming experiments, adequately address all application domains. . . . Also, differ-
the software aids that we see relevant to enhancing the de-  ences in skill levels, styles, attitudes, cultures, goals, and
sign process are those that aigestthe information pro- constraints demand highly tailorable CASE tools. The goal
vided by the designer. In particular, one aspect in which de- i a technology that can accommodate many methods, nota-

signers seemed to need assistance was in keeping track of tions, styles, and levels of sophisticatiof....
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CASE tools that could be tailored to accommodate the specifichoosing an approach from the array of available options? This
circumstances of a given project effectively embodied and enguestion had three facets to it. First, how did one go about charac-
dorsed the notion of technical pluralism. terizing different approaches so as to facilitate reasoning about

Along with this came slow acceptance that salvation was not tthem? Second, and similarly, how did one go about characterizing
be found in analogies with other design processes, most obvioudliye attributes of the situation at hand in terms of problem or task,
those related to computer hardware. A 1%7dmputer article organization, culture, etc.? Finally, how did the qualities of the for-
pointed out that this insight had produced more frustration thamer relate to those of the latter? Any type of selection entailed de-
anything else, “Unfortunately, while the theory underlying thetermining in some fashion the most appropriate match between the
application of computers in the design of computing hardware hasharacteristics of various approaches and the characteristics of the
developed thoroughly, keeping pace (or nearly so) with the deveproblem and its associated circumstances.

oping technology, the implementation of this theory remains a p—— — — —

difficult, mostly manual exercise in the design of programs and Jones contended. “The complexities of
programming system§.4’8 On the other hand, Peter Freeman '

noted later that year that software give rise to a new situation
when talking about the automation of software design, we beyond the scope of the previous
are in fact talking about the automation of softwarea- engineering efforts, obliging students

tion—that is, the design, production, testing, and redesign of . )

software using the traditional meanings of those terms. Be-  Of the subject to ‘go outside the rules.”
cause of the totally symbolic nature of software, it may turn
out that techniques applicable to the design of other objects ~ This necessitated turning away from the search for a philoso-
will app|y to the entire creation process of Softv\%lPe. pher’s Stone, from the hOpe of universalism. As Brooks argued in

. . . 1987, “building software will always be hard. There is inherently
According to Freeman, the areas requiring work included problerﬂ0 silver bullet.?*® Paul Rook of GEC Software had observed in

representation, solution representation, and problem solving. Tr}ﬁe first issue of th&oftware Engineering Journahe previous
fundamental nature of these areas reflects the level of cognitiv ea

activities involved in software development. Their fuzziness sug-
gests the difficulty of reducing software problems to clearly de- differences in organization structures, applications and ex-
lineated critical technical problems subject to systematic attack. iSting approaches make it impractical to prescribe a single
Freeman himself cautioned, “unless software design problems can Scheme that can be universally followed. Methods, tools,
be formulated in detail exactly like some other class of design Management practices or any other element of the total de-
problems, the use of techniques from other areas may require aVelopment environment cannot be chosen without consid-
good deal of work?**° A decade later, at a 1985 MCC interdisci- ~ €ring each element in its relationship to the other parts of
plinary symposium on complex design, design expert J. Christo- the development system.
pher Jones suggested that software design was indeed uniqye.similar, albeit somewhat less nuanced conclusion had been
According to a report iINEEE Software Jones contended, “the reached earlier at a London Comparative Review of Information
complexities of software give rise to a new situation beyond th&ystems Design Methodologies conference, one of a series of
scope of the previous engineering efforts, obliging students of theuch conferences. In his summary of the conference i€ahe
subject to ‘go outside the ruled"° puter Bulletin Anthony Finkelstein reported that practitioners
Thus, while programming environments applied additionalwere shown that the search for a best methodology is futile and
computational leverage to the problem of software production anghat they should be able to draw from an armoury of approaches
supported the imposition of structure and coherence onto the dghich they can integratg_sz Left unanswered, though, as such
velopment process, they still suffered limitations arising fromeonclusions often did, was how to go about practically differenti-
software’s ephemeral nature. The fundamental, complex, angting and selecting approaches.
fuzzy processes involved in software development rendered com- A number of articles in the 1980s and 1990s attempted to pro-
parisons with other technologies of dubious value. No single apside frameworks and procedures for making such choices. In
proach would suffice, leading many practitioners to split the dif-1982, for example, A.T. Wood-Harper and G. Fitzgerald identified
ference at the pivot. Environments that could be relatively easilgix major approaches to systems analysis—general systems the-
customized to fit the problem at hand represented an even moggy, human activity systems, participative (sociotechnical), tradi-
pragmatic response to the diversity of project characteristics. Suglvnal, data analysis, and structured systems (functional)—and
pragmatism may not have been overly satisfying, but practitionergitempted to classify them according to paradigm, conceptual

could at least accomplish more than they could before. model, and objectiveS® A finer granularity characterized an
s . article appearing three years later that compared the features of

Picking and Choosing: seven specific techniques or methods on the basis of analysis and

The Essence of Engineering design features but also with respect to philosophy, assumptions,

The 1980s witnessed a growing realization that effective softwarand objectives. The seven examined techniques ranged over five
development is contingent on a whole range of factors and influcountries and 12 years and differed in significant viayEven
ences. Recognition of the necessity and reality of technical pluraseemingly unitary approaches such as prototyping could be and
ism, though, also led to an inescapable question. If there was seldaiere broken down into several subtyP&sin this reaim as well,
(if ever) a manifestly single best approach, how did one go abodiermalism raised its head in the form of a 198EE Software
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article in which two researchers at the University of California attonsider the myriad factors that characterize any particular
Irvine sought to scientifically compare software design methodsoftware solution. Athoughtful basis, though, should not be
ologies such as the Jackson method, structured design, and objdetken to mean an exclusive or overwhelming reliance on science
oriented design according to Grady Booch. Their approach wasnd mathematics. For while these will undoubtedly play impor-
first, to distill a set of key features (base framework) and, then, ttant roles in software engineering, as they have in other engi-
describe those features as manifested by the methodologies neering fields, they are no substitute for experience and aes-
terms of a meta-language or modeling formalism. They felt thighetics, intuition and heuristics. Accepting the necessity of
would provide a basis for “objective” comparis&ﬁ%. choice, developing a basis for choice, and carrying out that
All of these efforts, though, were static in the sense that theghoice in a nondogmatic manner demonstrate the height of
offered only a structured description of a number of particulapragmatism. As such, pragmatism is the essence of engineering.
approaches or techniques, giving little guidance as to how to go
about doing the selecting. It was in this spirit that D.M. EpiskopouConclusion
and Wood-Harper proposed a framework, that is, a process modglye cjosing panel at the 1978 International Conference on Soft-
for matching a particular method to a particular environmenty, .o Engineering had concluded rather dolefully, “the problems
“[NJo one approach can be classed as ‘superior’ to the others— 1,6 1805 |00k very much like the problems of the '70s and de-
rather the _art_ is in applying a suitable aPprO?‘Ch cor_ltingent 0Bressingly similar to the problems of the '66&”At the 1985
variables within and around the problem sﬂuaﬂ%_sﬂ.’fhelr SYS®  conference, Geoffrey Pattie, Britain’s minister of state for industry
tem involved identifying and describing roles in the problem-,ny information technology, seemed to confirm it, “To put it very
59""”9 process and their environments a““,' then .matchlng theﬁ‘ﬁmtly ... too much delivered software is still unsatisfactory. It is
with a particular methodology. A 1988ansactionsarticle placed i) 1o often delivered late, costs more than expected, sometimes
the idea of project-based selection in the context of life cyClgyjis 1 work in the way required, and quite often consumes exces-
models, arguing that project managers needed to choose an agje resources in what is euphemistically called maintenafite.”
propriate life cycle model for each project based on such faCmrﬁlmost a decade later, an article Scientific Americarsought to
as requirements volatility, the shape of that volatility, and theexplain ssoftware’s chronic crisi€® For all the achievements of

. . . 258 . . .
longevity of the appllca_tloﬁ. Pushing the selec_tlon ISSUE EVEN {he previous quarter century, the software problem, as Denning
further, some technologists argued that even this was too S'mp“ﬁéd labeled it, had not gone away. In 1992, one practitioner ob-

tic a view. For example, Bo Sanden of George Mason Universityo ey that more than half of the projects of which she was aware,
disputed that in diverse application areas, were late, over budget, unreliable,
design problems can be grouped according to method, and and difficult to maintain, “The persistency of the [software] crisis

N 263
that each method addresses a particular type of problem IS discouraging:
better than any other method. While this may be true for ———
some well-understood problem categories, generally, the It often seemed, in fact, that virtually
fact of the_matter is that one method will seldom cover f'all_ nothing in the realm of software
the essential aspects of any real-world problem. Rather, it is

important to have at one’s disposal a number of design prin- qualified as straightforward.
ciples (from different methods) and apply those which result
in important statements about the problem at f&hd. To some extent this can be attributed to the steadily increasing

ambitions of software developers and users. Clearly, significant

Sanden proceeded to show how the problem Booch used to illugrogress has been made; systems that would have defied the
trate object-oriented design in 1986 could be better handled usingagination not long ago can now be attempted with the expecta-
the Jackson approach in conjunction with Booch’s object-orienteflon of at least some modicum of success. Nevertheless, the basic
one. Apparently sympathetic to this sort of eclectism was Nichoproblems remain. Doing software was difficult in the 1960s, and it
las Zvegintzov, the editor dBoftware Maintenance Newaho s still difficult in the 1990s. Software has become more ordered
declared at the 1989 International Conference on Software Enghternally, as has the development process that produces it. But as
neering a few months later, “we may as well abandon the dreagteadily increasing ambitions have compensated for the mitigating
of getting the whole under control. Various methods will work for effects of structure on software’s complexity, software developers
localized problems. You will always be working on parts of thehave not found their work any easier.
system.*>P1® nterestingly, if one elevates this attitude to the  Consider all the critical areas in which software’s malleability,
level of the life cycle model, one ends up with something resemdiscreteness, and concomitant complexity served to frustrate at-
bling Boehm’s spiral approach. tempts to hurdle problems rather than wrestle with them. A uni-

If software engineering is to become an actuality rather thaersal language might have done wonders for communication,
a wish, it will require more than simple acknowledgment of thetransportability, and tool development, except that it was, by defi-
necessity of choice. It will also needbasis for choicelf, in nition, too complex and cumbersome for the tastes of many. On
fact, the dominant trend in software technology since 1970 hage other hand, highly application-specific languages were con-
been a slowly increasing willingness to embrace the notion ogeptually powerful, but enhanced productivity only in narrow
technical pluralism (perhaps owing to a combination of projectareas. Exhaustive testing would have greatly increased software
failures and competitive pressures), it is difficult to escape theeliability, but combinatorial explosion would not permit it. For-
implication that the key trend of the 1990s must be developmerthal verification would have done the same, but the complexity of
of a thoughtful basis for choice. That basis, moreover, musthe proofs vitiated its usefulness. Furthermore, a proof was only
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as good as the program specification, and developing specificé]
tions was a rather fuzzy process, human foresight being far fro
perfect. The problem of human cognitive limitations hindered th
development of complete and appropriate program specifications,
while iterative development tended to reduce overall design co-
herence. Simple, comprehensive measurements would have pt8}
vided an objective check on program complexity, but that very
complexity limited the validity of straightforward measurements.

It often seemed, in fact, that virtually nothing in the realm of

software qualified as straightforward.
Complexity may be a fundamental phenomenon and problem

[7]

solving a fundamental activity, but neither is simple. On the con-
trary, both are complicated and multifaceted, often defying
straightforward understanding or response. The salience of thefg
facts stems directly from both software’s ephemeral nature and
the potential derived therein for broad computational leverage.
Because software is abstract, it can be effectively applied to P]
wide range of problems. This entails, in turn, basic notions o
design and problem solving—hierarchical decomposition, ab-
straction, and so forth—that, while highly useful, defy translation
into exact technical doctrine equally effective under all circum- 10
stances. No single approach in any single aspect of software tech-
nology could fully satisfy the needs or desires of practitionersf11]
Precise dogma finding its expression in a single programmingl2]

language, design technique, metric type, or management meth
is no doubt more emotionally satisfying, but nevertheless imprac-

)

tical. Effective technological practice demands technical pluralisnji4)
operating in the context of local knowledge and within a frame-

work for choice.
The story of software engineering since the label came into use

[15]

is thus a story of compromise among generality and specificity g]
heuristics and formalism, procedures and data, sequence and cy-
cle. The practical response was combination and accommoda-
tion—covering all bases or splitting the difference, synthesizindﬂ]
complementary approaches or accommodating inescapable traqgg]
offs. Pragmatists argued for mixed strategies of testing and prov-
ing, the use of tailored reliability models and development envi{19]
ronments, the use of a full set of metrics, and the synthesis of life-
cycle models. But while seizing the middle ground appeared to b[‘EO]
a practical way to cope with difficulties, it seemed unlikely to
produce a revolution. If software technologists are nowadays

devoting more effort to engaging in a pragmatic faskigh the
complexity of their problems, it is to their credihatis sympto-
matic of maturity and of real engineering.

Acknowledgments

[21]
(22]

(23]

This research was supported in part by the Charles Babbage I
stitute for the History of Information Processing and by the
Leverhulme Trust.

[25]
References
[1] Andrew L. Friedman with Dominic S. Cornfel@omputer Systems (26]
Development: History, Organization and Implementatidtew
York: John Wiley & Sons, 1989. (27]
[2] David Lorge Parnas, “Software Aspects of Strategic Defense Sys-
tems,” Am. Scientistyol. 73, no. 5, pp. 432-440; reprinted @om- (28]
puterization and Controversy: Value Conflicts and Social Choices,
Charles Dunlop and Rob Kling, eds. New York: Academic Press,[
1991, pp. 593-611.
[3] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidentd30]

of Software EngineeringComputeryol. 20, p. 12, Apr. 1987.

50 ¢ IEEE Annals of the History of Computingpl. 19, No. 1, 1997

Eloina Pelaez, “A Gift from Pandora’s Box: The Software Crisis,”
PhD diss., Univ. of Edinburgh, 1988.

Peter Naur and Brian Randell, ed3oftware Engineering: Report on

a Conference Sponsored by the NATO Science ComniBtee,
misch, Germany, Oct. 7-11, 1968. Brussels: Scientific Affairs Divi-
sion, North Atlantic Treaty Organization (NATO), 1969, p. 13.

B. Randell, “Towards a Methodology of Computing System De-
sign,” Peter Naur and Brian Randell, edSqftware Engineering:
Report on a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, Oct. 7-11, 1968. Brussels: Scientific Affairs
Division, North Atlantic Treaty Organization (NATO), 1969, p. 205.
Stanley Gill, “Thoughts on the Sequence of Writing Software,” Peter
Naur and Brian Randell, edsSpftware Engineering: Report on a
Conference Sponsored by the NATO Science Comn@gmisch,
Germany, Oct. 7-11, 1968. Brussels: Scientific Affairs Division,
North Atlantic Treaty Organization (NATO), 1969, p. 186.

J. N. Buxton and B. Randell, edSoftware Engineering Techniques:

A Report on a Conference Sponsored by the NATO Science Com-
mittee Rome, Italy, Oct. 27-31, 1969. Brussels: Scientific Affairs
Division, NATO, 1970, p. 7.

R. M. Needham and J. D. Aron, “Software Engineering and Com-
puter Science,” J. N. Buxton and B. Randell, e8sftware Engi-
neering Techniques: A Report on a Conference Sponsored by the
NATO Science CommitteRome, Italy, Oct. 27-31, 1969. Brussels:
Scientific Affairs Division, NATO, 1970, p. 114.

Niklaus Wirth, “Program Development by Stepwise Refinement,”
Comm. ACMyol. 14, p. 221, Apr. 1971.

Alan Cohen, “Letter,Datamation,vol. 17, p. 15, Feb. 1, 1971.

D. L. Parnas, “A Technique for Software Module Specification with
Examples,"Comm. ACMyol. 15, p. 330, May 1972.

D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems
into Modules,"Comm. ACMyol. 15, p. 1,053, Dec. 1972.

Glenford J. Myers, “Characteristics of Composite Desiatama-

tion, vol. 19, p. 102, Sept. 1973.

Frank DeRemer and Hans Kron, “Programming-in-the-Large Versus
Programming-in-the-Small SIGPLAN Noticesyol. 10, p. 114, June
1975.

Barbara H. Liskov and Stephen N. Zilles, “Specification Techniques
for Data Abstractions,/EEE Transactions on Software Engineering,
vol. 1, p. 7, Mar. 1975.

John Guttag, “Abstract Data Types and the Development of Data
Structures,’'Comm. ACMyol. 20, p. 404, June 1977.

Grady Booch, “Object-Oriented DevelopmentEEE Transactions

on Software Engineeringpl. 12, p. 212, Feb. 1986.

Patrick H. Loy, “A Comparison of Object-Oriented and Structured
Development Methods,Software Eng. Notesjol. 15, p. 46, Jan.
1990.

Brad J. Cox, “Message/Object Programming: An Evolutionary
Change in Programming TechnologyEEE Softwareyol. 1, p. 51,
Jan. 1984.

Victor R. Basili et al., “Characterization of an Ada Software Devel-
opment,”"Computeryol. 18, p. 64, Sept. 1985.

Paul T. Ward, “How to Integrate Object Orientation with Structured
Analysis and Design [EEE Softwareyol. 6, pp. 74-82, Mar. 1989.
Russell J. Abbott, “Knowledge AbstractiorGomm. ACMyol. 30,

p. 666, Aug. 1987.

Bill Curtis, Herb Krasner, and Neil Iscoe, “A Field Study of the
Software Design Process for Large Syster@ainm. ACMyol. 31,

p. 1,271, Nov. 1988.

Galen Gruman, “ICSE Assesses the State of Software Engineering,”
|IEEE Softwareyol. 6, pp. 110-111, July 1989.

M.A. JacksonPrinciples of Program DesigriNew York: Academic
Press, 1975.

Jean WarnierlLogical Construction of Programstranslation by
B.M. Flanagan. New York: Van Nostrand Reinhold, 1976.

John Parker, “A Comparison of Design Methodologie3gftware
Eng. Notesyol. 3, p. 19, Oct. 1978.

] James R. Donaldson, “Structured Programmirfizgtamation,vol.

19, p. 53, Dec. 1973.
W. Stevens, G. Myers, and L. Constantine, “Structured Design,”
IBM Systems Jyol. 13, pp. 115-139, May 1974, reprinteddias-



[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
(39]

[40]
[41]
[42]

[43]

[44]
[45]

[46]

[47]
[48]
[49]
[50]
(51]
[52]
[53]
[54]
[55]

[56]

[57]

(58]

[59]
[60]
[61]
(62]

(63]

sics in Software Engineerin@gzdward N. Yourdon, ed. New York:
Yourdon Press, 1979, pp. 207-232.

Herbert A. SimonThe Sciences of the Artifici&2nd ed. Cambridge,
Mass.: MIT Press, 1981.

F. Terry Baker and Harlan D. Mills, “Chief Programmer Teams,” [66]

Datamation,ol. 19, p. 58, Dec. 1973.

Gerald M. WeinbergThe Psychology of Computer Programming. [67]

New York: Van Nostrand Reinhold, 1971.

Laton McCartney, “Data for RentDatamation,vol. 23, p. 167,

May 1977.

Fred Gruenberger, “Letter Datamation,vol. 20, pp. 27-28, Feb.
1974.

Dick Butterworth, “Letter,"Datamation,vol. 20, p. 158, Mar. 1974.

John G. Fletcher, “LetterDatamation,yol. 20, p. 29, Mar. 1974.

R. R. Brown, “1974 Lake Arrowhead Workshop on Structured Pro-
gramming,”Computeryol. 7, p. 62, Oct. 1974.

James L. Elshoff, “The Influence of Structured Programming on[71]

PL/I Program Profiles,IEEE Transactions on Software Engineer-
ing, vol. 3, p. 367, Sept. 1977.

Frank P. Mathur, “Review ofnfotech State of the Art Report:
Structured ProgrammingyComputeryol. 9, p. 116, Dec. 1976.

Paul Abrahams, “Structured Programming’ Considered Harmful,”
SIGPLAN Noticesyol. 10, p. 13, Apr. 1975.

Daniel M. Berry, “Structured DocumentationSIGPLAN Notices,
vol. 10, p. 9, Nov. 1975.

David L. Parnas and Paul C. Clements, “A Rational Design Proces$74]

How and Why to Fake ItJEEE Transactions on Software Engi-
neering,vol. 12, pp. 251-252, Feb. 1986.

“Address on Structured Programming Keynotes Compcon Softwaré75]

Sessions,Computeryol. 8, p. 7, Mar. 1975.
Peter J. Denning, “Comments on Mathematical Overl@IGPLAN
Notices,vol. 10, p. 11, Sept. 1975.

C. Wrandle Barth, “STRCMACS—an Extensive Set of Macros to[76]

Aid in Structured Programming in 360/370 Assembly Language,”
SIGPLAN Noticesyol. 11, p. 31, Aug. 1976.

David Frost, “Psychology and Program DesigbBdtamation,vol.

21, p. 138, May 1975.

Lawrence J. Peters and Leonard L. Tripp, “Is Software Design
Wicked?”Datamationvol. 22, p. 127, May 1976.
Lawrence J. Peters and Leonard L. Tripp, “Comparing Software
Design Methodologies Datamation,vol. 23, p. 94, Nov. 1977.

Dennis P. Geller, “Letter,Software Eng. Notesol. 4, p. 18, Jan.
1979.

Frederick P. Brooks, JiThe Mythical Man-Month: Essays on Soft-
ware EngineeringReading, Mass.: Addison-Wesley, 1982, p. 177.
Edsger W. DijkstraSelected Writings on Computing: A Personal
PerspectiveNew York: Springer Verlag, 1982, pp. 126-128.

Harlan D. Mills, “The New Math of Computer Programming,”
Comm. of the ACMyol. 18, p. 44, Jan. 1975.

Harlan Mills, “Software Development|EEE Transactions on Soft-
ware Engineeringyol. 2, pp. 268-269, Dec. 1976.

Edsger W. Dijkstra,A Discipline of ProgrammingEnglewood
Cliffs, N.J.: Prentice Hall, 1976.

M. E. Hopkins, “A Case for the GOTOProc. 25th Nat'l ACM
Conf, 1972, pp. 787-790, reprinted in Yourdd@assics in Soft-
ware Engineeringpp. 101-109; W. A. Wulf, “A Case Against the
GOTO,” Proc. 25th Nat'l ACM Conf.pp. 791-797, reprinted in
Yourdon,Classics in Software Engineeringp. 85-98.

Donald Knuth, “Structured Programming With Go To Statements,”
Computing Surveyspl. 6, pp. 261-301, Dec. 1974.

R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, “Can Structured
Programs Be Efficient?’SIGPLAN Noticesyol. 11, p. 16, Oct.
1976.

Ronald E. Jeffries, “Letter,SIGPLAN Noticesyol. 11, p. 1, Dec.
1976.

William Rosenfeld, “Letter,"SIGPLAN Noticesyol. 11, p. 3, Dec.
1976.

Henry F. Ledgard and Michael Marcotty, “A Genealogy of Control [92]

Structures,’'Comm. ACMyol. 18, p. 629, Nov. 1975.

Mario J. Gonzalez, Jr., “Workshop Report: The Science of Design,[93]

Computeryol. 12, p. 113, Dec. 1979.
Tom Gilb, “Letter,”Software Eng. Notespl. 3, p. 28, July 1978.

[65]

[68]

[69]

[70]

[72]

[73]

[77]
[78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
(86]

[87]

(89]

[90]

[91]

[64] Kenneth W. Kolence, “A Software View of Measurement Tools,”

Datamation,vol. 17, p. 32, Jan. 1, 1971.

Maurice H. HalsteadElements of Software Sciendgew York:
Elsevier, 1977.

Thomas J. McCabe, “A Complexity MeasuréZEE Transactions

on Software Engineeringpl. 2, p. 308, Dec. 1976.

Glenford J. Meyers, “An Extension to the Cyclomatic Measure of
Program Complexity, SIGPLAN Noticesyol. 12, p. 61, Oct. 1977.
James L. Elshoff and Michael Marcotty, “On the Use of the Cyclo-
matic Number to Measure Program Complexi§lGPLAN Notices,
vol. 13, p. 38, Dec. 1978.

Alonzo G. Grace, Jr., “The Dimensions of Complexitpatama-
tion, vol. 23, p. 317, Sept. 1977.

Edward T. Chen, “Program Complexity and Programmer Productiv-
ity,” IEEE Transactions on Software Engineeringl. 4, p. 188,
May 1978.

Bill Curtis et al., “Measuring the Psychological Complexity of Soft-
ware Maintenance Tasks with the Halstead and McCabe Metrics,”
IEEE Transactions on Software Engineeringl. 5, p. 103, Mar.
1979.

N. F. Schneidewind and Heinz-Michael Hoffmann, “An Experiment
in Software Error Data Collection and AnalysiEEEE Transactions

on Software Engineeringpl. 5, p. 283, May 1979.

Warren Harrison et al., “Applying Software Complexity Metrics to
Program MaintenanceComputeryol. 15, p. 78, Sept. 1982.

W. M. Evangelist, “Relationships Among Computational, Software,
and Intuitive Complexity,"SIGPLAN Noticesyol. 18, p. 58, Dec.
1983.

Victor R. Basili, Richard W. Selby, Jr., and Tsai-Yun Phillips,
“Metric Analysis and Data Validation Across Fortran Projects,”
IEEE Transactions on Software Engineerinmg). 9, p. 662, Nov.
1983.

Martin Shepperd, “A Critique of Cyclomatic Complexity as a Soft-
ware Metric,”Software Eng. Jvol. 3, p. 35, Mar. 1988.

J. Paul Myers, Jr., “The Complexity of Software Testirgpftware
Eng. J.vol. 7, p. 13, Jan. 1992.

John C. Munson and Taghi M. Khoshgoftaar, “Measuring Dynamic
Program Complexity,TEEE Softwareyol. 9, pp. 48-49, Nov. 1992.
Victor R. Basili, “Tailoring SQA to Fit Your Own Life Cycle|EEE
Softwareyol. 5, p. 87, Mar. 1988.

Shari L. Pfleeger, “Lessons Learned in Building a Corporate Metrics
Program,”|IEEE Softwareyol. 10, p. 74, May 1993.

Bernard Elspas, Milton W. Green, and Karl N. Levitt, “Software
Reliability,” Computeryol. 4, p. 22, Jan./Feb. 1971.

John L. Kirkley, “The Critical Issues: A 1974 Perspectiviedta-
mation,vol. 20, p. 65, Jan. 1974.

T. J. Vander Noot, “Systems Testing ... a Taboo Subjé&zttdma-
tion, vol. 17, p. 64, Nov. 15, 1971.

Dorothy A. Walsh, “Structured TestingDatamation,vol. 23, p.
111, July 1977.

Paul F. Barbuto, Jr., and Joe Geller, “Tools for Top-Down Testing,”
Datamationyvol. 24, p. 178, Oct. 1978.

Laura L. Scharer, “Improving System Testing TechniquEsta-
mation,vol. 23, p. 117, Sept. 1977.

John B. Goodenough and Susan L. Gerhart, “Toward a Theory of
Test Data Selection,|JEEE Transactions on Software Engineering,
vol. 1, p. 165, June 1975.

] B. Chandrasekaran, “Guest EditorialEEE Transactions on Soft-

ware Engineeringyol. 6, p. 235, May 1980.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward,
“Hints on Test Data Selection: Help for the Practicing Programmer,”
Computeryol. 11, p. 41, Apr. 1978.

Elaine J. Weyuker and Thomas J. Ostrand, “Theories of Program
Testing and the Application of Revealing Subdomain&EE
Transactions on Software Engineering). 6, p. 245, May 1980.
Nathan H. Petschenik, “Practical Priorities in System Testl&;E
Softwareyol. 2, p. 18, Sept. 1985.

Simeon C. Ntafos, “On Required Element TestingEE Transac-
tions on Software Engineeringol. 10, p. 795, Nov. 1984.

Samuel T. Redwine, Jr., “An Engineering Approach to Software Test
Data Design,"IEEE Transactions on Software Engineering). 9,

p. 192, Mar. 1983.

IEEE Annals of the History of Computingpl. 19, No. 1, 1997 51



Splitting the Difference

[94] Robert W. Floyd, “Assigning Meanings to Programddthematical [128]George J. Schick and Ray W. Wolverton, “An Analysis of Compet-

Aspects of Computer Scien¢&pceedings of Symposia in Applied ing Software Reliability Models,IEEE Transactions on Software
Mathematics. Providence, R.l.: American Mathematical Society, Engineeringyol. 4, p. 105, Mar. 1978.

1967, pp. 19-32. For a more in-depth discussion of the history of ref129]Nancy G. Leveson, “Software SafetBbftware Eng. Notewol. 7,
search on formal verification, see C. B. Jorids Search for Trac- p. 21, Apr. 1982.

table Ways of Reasoning About Prograrvanchester, England: [130]Algirdas Avizienis and John P. J. Kelly, “Fault Tolerance by Design
Dept. of Computer Science, Manchester Univ., 1992, UMCS-92-4-4. Diversity: Concepts and Experimentomputer,vol. 17, p. 67,

[95] C. A. R. Hoare, “Proof of a Program: FINDComm. ACMyol. 14, Aug. 1984.
p. 39, Jan. 1971. [131]Dave E. Eckhardt, Jr., and Larry D. Lee, “A Theoretical Basis for the
[96] M. Foley and C. A. R. Hoare, “Proof of a Recursive Program: Analysis of Multiversion Software Subject to Coincident Errors,”
Quicksort,”Computer J.vol. 14, p. 391, Nov. 1971. IEEE Transactions on Software Engineeringl. 11, p. 1,511, Dec.
[97] C. A. R. Hoare, “Proof of a Structured Program: ‘The Sieve of Era- 1985.
tosthenes,”Computer J.yol. 15, p. 321, Nov. 1972. [132]John C. Knight and Nancy G. Leveson, “An Experimental Evalua-
[98] Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Social tion of the Assumption of Independence in Multiversion Program-
Processes and Proofs of Theorems and Progr&osiim. ACMyol. ming,” IEEE Transactions on Software Engineering). 12, p. 96,
22, p. 271, May 1979. Jan. 1986.
[99] Leslie Lamport, “Letter,Comm. ACMyol. 22, p. 624, Nov. 1979. [133]John C. Knight and Nancy G. Leveson, “A Reply to the Criticisms of
[100]W. D. Maurer, “Letter,Comm. ACMyol. 22, p. 625, Nov. 1979. the Knight & Leveson Experiment3oftware Eng. Notegol. 15,
[101]Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,” pp. 24-35, Jan. 1990.
Comm. ACMyol. 22, p. 630, Nov. 1979. [134]Bev Littlewood and Douglas R. Miller, “Conceptual Modeling of
[102]Henry PetroskiTo Engineer Is Human: The Role of Failure in Suc- Coincident Failures in Multiversion SoftwardEEE Transactions
cessful DesigriNew York: St. Martin’s Press, 1985, p. 165. on Software Engineeringpl. 15, p. 1,596, Dec. 1989.
[103]Richard Hill, “Letter,"Comm. ACMyol. 22, p. 621, Nov. 1979. [135]Susan S. Brilliant, John C. Knight, and Nancy G. Leveson, “Analysis
[104]H. Lienhard, “Letter,Comm. ACMyol. 22, p. 622, Nov. 1979. of Faults in an N-Version Software ExperimenEEE Transactions
[105]Edsger W. Dijkstra, “On a Political Pamphlet from the Middle on Software Engineeringpl. 16, p. 245, Feb. 1990.
Ages,” Software Eng. Notespl. 3, p. 14, Apr. 1978. [136]Abdalla A. Abdel-Ghaly, P. Y. Chan, and Bev Littlewood,
[106]Richard A. DeMillo, Richard J. Lipton, and Alan J. Perlis, “Letter,” “Evaluation of Competing Software Reliability PredictionffEE
Software Eng. Notespl. 3, pp. 16-17, Apr. 1978. Transactions on Software Engineering). 12, p. 950, Sept. 1986.

[107]H. J. Jeffrey, “Letter,Software Eng. Notespl. 3, p. 18, Apr. 1978. [137]Richard Hamlet, “Special Section on Software Testifggmm.
[108]Raymond J. Rubey, Joseph A. Dana, and Peter W. Biche, @ ACM,vol. 31, pp. 665-666, June 1988.
“Quantitative Aspects of Software ValidatioEEE Transactions [138]Galen Gruman, “IFIP Participants Debate Programming Ap-

on Software Engineeringpl. 1, p. 152, June 1975. proaches,|EEE Softwareyol. 6, p. 76, Nov. 1989.

[109] Douglas T. Ross and Kenneth E. Schoman, Jr., “Structured Analys{439]Donald MacKenzie, “Negotiating Arithmetic, Constructing Proof:
for Requirements Definition,[EEE Transactions on Software Engi- The Sociology of Mathematics and Information Technolo®gtial
neering,vol. 3, p. 6, Jan. 1977. Studies of Scienceol. 23, pp. 37-65, Feb. 1993.

[110]Susan Gerhart, “Workshop Report: Software Testing and Tesfl40]National Bureau of StandardSuideline for Lifecycle Validation,
Documentation,'Computeryol. 12, p. 99, Mar. 1979. Verification, and Testing of Softwan/ashington, D.C., 1983, NBS

[111]Edsger W. Dijkstra, “Correctness Concerns and, Among Other FIPS 101; quoted in David Gelperin and Bill Hetzel, “The Growth of
Things, Why They Are Resented3IGPLAN Noticesyol. 10, p. Software Testing,Comm. ACMyol. 31, p. 690, June 1988.

547, June 1975. [141]Dolores R. Wallace and Roger U. Fujii, “Verification and Valida-

[112]Andrew S. Tanenbaum, “In Defense of Program Testing or Correct- tion: Techniques to Assure ReliabilityEEE Softwareyol. 6, p. 9,
ness Proofs Considered HarmfuBI{GPLAN Noticesyol. 11, p. 68, May 1989.

May 1976. [142]C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,”

[113]Susan L. Gerhart and Lawrence Yelowitz, “Observations of Fallibil- Comm. ACMvyol. 12, p. 576, Oct. 1969.
ity in Applications of Modern Programming Methodologiel5EE [143]C. A. R. Hoare, “ProfessionalismComputer Bull.2nd series, p. 3,
Transactions on Software Engineeringl. 2, p. 206, Sept. 1976. Sept. 1981.

[114]David L. Parnas, “Letter,Software Eng. Notesjol. 3, p. 20, Oct.  [144]Stuart Shapiro, “lts Own Worst Enemy: How Software Engineering
1978. Has Fallen Victim to Engineering Mythology,” CRICT Discussion

[115]Debra J. Richardson and Lori A. Clarke, “Partition Analysis: A Paper No. 25, Brunel Univ., 1992.
Method Combining Testing and VerificatiolPEE Transactions on  [145]Nancy G. Leveson, “Formal Methods in Software Engineering,”

Software Engineeringjol. 11, p. 1,488, Dec. 1985. IEEE Transactions on Software Engineeringl. 16, p. 929, Sept.
[116]James H. Fetzer, “Program Verification: The Very lde€agmm. 1990.

ACM,vol. 31, p. 1,057, Sept. 1988. [146]Susan L. Gerhart, “Applications of Formal Methods: Developing
[117]Mark Ardis et al., “Letter,,Comm. ACMyol. 32, p. 287, Mar. 1989. Virtuoso Software, IEEE Softwareyol. 10, p. 10, Sept. 1990.
[118]Richard Hill, “Letter,"Comm. ACMyol. 32, p. 790, July 1989. [147]C. B. Jones, “Theorem Proving and Software EngineerBaftivare
[119]James C. Pleasant, “LettecComm. ACM,vol. 32, p. 374, Mar. Eng. J.,vol. 3, p. 2, Jan. 1988.

1989. [148]Susan Gerhart, “Formal Methodists Warn of Software Disasters,”
[120]Lawrence Paulson, Avra Cohen, and Michael Gordon, “Letter,” IEEE Softwareyol. 6, p. 77, Nov. 1989.

Comm. ACMyol. 32, p. 375, Mar. 1989. [149]Anthony Hall, “Seven Myths of Formal Method$BEE Software,
[121]James H. Fetzer, “LettelComm. ACMyol. 32, p. 378, Mar. 1989. vol. 7, p. 13, Sept. 1990.

[122]John Dobson and Brian Randell, “Program Verification: Public[150]Jeannette M. Wing, “A Specifier’s Introduction to Formal Methods,”

Image and Private RealityComm. ACMyol. 32, pp. 420-422, Apr. Computeryol. 23, p. 13, Sept. 1990.

1989. [151]Harlan D. Mills, Michael Dyer, and Richard C. Linger, “Cleanroom
[123]James H. Fetzer, “LetteiComm. ACMyol. 32, p. 381, Mar. 1989. Software Engineering[EEE Softwareyol. 4, p. 20, Sept. 1987.
[124]David A. Nelson, “Letter,Comm. ACMyol. 32, p. 792, July 1989. [152]Richard W. Shelby, Victor R. Basili, and F. Terry Baker,
[125]James H. Fetzer, “LetteiComm. ACMyol. 32, p. 381, Mar. 1989. “Cleanroom Software Development: An Empirical Evaluation,”
[126]Leon Stucki, “Guest Editorial, IEEE Transactions on Software IEEE Transactions on Software Engineeringl. 13, pp. 1,027—

Engineeringyol. 2, p. 194, Sept. 1976. 1,037, Sept. 1987.

[127]C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen, “On the[153]D. A. Duce and E. V. C. Fielding, “Formal Specification—a Com-

Automated Generation of Program Test Dal&EE Transactions parison of Two TechniquesComputer J.,vol. 30, p. 327, Aug.

on Software Engineeringpl. 2, p. 293, Dec. 1976. 1987.

52 o |[EEE Annals of the History of Computjngpl. 19, No. 1, 1997



[154]C. A. R. Hoare, “An Overview of Some Formal Methods for Pro- [189]Ware Myers, “Key Developments in Computer Technology: A Sur-

gram Design,’'Computeryol. 20, pp. 90-91, Sept. 1987. vey,” Computeryol. 9, p. 59, Nov. 1976.

[155]Carl Chang, “Let’'s Stop the Bipolar DriftEEE Softwareyol. 7, [190]Linda Runyan, “Software Still a Sore Spdbatamation,vol. 27, p.
p. 4, May 1990. 165, Mar. 1981.

[156]1. F. Currie, “NewSpeak: An Unexceptional Languagedftware  [191]Ronald A. Frank, “Let the Users PrograrDatamation,vol. 28, p.
Eng. J.,vol. 1, pp. 170-176, July 1986. 88, Jan. 1982.

[157]Jean E. SammeRrogramming Languages: History and Funda- [192]Nigel S. Read and Douglas L. Harmon, “Language Barrier to Pro-
mentals.Englewood Cliffs, N.J.: Prentice Hall, 1969; and Richard L. ductivity,” Datamation,vol. 29, p. 209, Feb. 1983.

Wexelblat, ed.,History of Programming Language®lew York: [193]John Cardullo and Herb Jacobsohn, “LettBratamation,vol. 29, p.
Academic Press, 1981. These works contain in-depth histories of 24, May 1983.

these older languages. [194]Bill Inmon, “Rethinking Productivity, Datamation,vol. 30, p. 185,
[158] David A. Fisher, “DoD’s Common Programming Language Effort,” June 15, 1984.

Computeryol. 11, p. 25, Mar. 1978. [195]Michael H. Brown, “Letter,"Datamation,vol. 30, p. 23, Sept. 15,
[159]Barry W. Boehm, “Software and Its Impact: A Quantitative Assess- 1984.

ment,” Datamation,vol. 19, p. 48, May 1973. [196]F. J. Grant, “The Downside of 4GLdYatamation,vol. 31, p. 99,
[160] Edsger W. Dijkstra, “DoD-I: The Summing USIGPLAN Notices, July 15, 1985.

vol. 13, pp. 24-26, July 1978. [197]Peter Wegner, “Capital-Intensive Software Technology, Part 2:
[161]Robert L. Glass, “From Pascal to Pebbleman ... and BeybDiadi* Programming in the LargelEEE Softwareyol. 1, p. 31, July 1984.

mation,vol. 25, pp. 146-147, July 1979. [198]Alex Pines and Dan Pines, “Don’t Shoot the Programmeérata-

[162]Rob Kling and Walter Scacchi, “The DoD Common High Order mation,vol. 29, p. 114, Aug. 1983.
Programming Language Effort (DoD-1): What Will the Impacts [199]Santosh K. Misra and Paul J. Jalics, “Third-Generation Versus

Be?” SIGPLAN Noticesyol. 14, pp. 32-40, Feb. 1979. Fourth-Generation Software DevelopmenEEE Softwarevol. 6,

[163]Paul R. Eggert, “Letter BIGPLAN Noticesyol. 15, p. 9, Jan. 1980. p. 14, July 1989.

[164]J. T. Galkowski, “A Critique of the DOD Common Language Ef- [200]Bruce Hailpern, “Multiparadigm Languages and Environments,”
fort,” SIGPLAN Noticesyol. 15, p. 15, June 1980. IEEE Softwareyol. 3, p. 6, Jan. 1986.

[165]Patrick Skelly, “The ACM Position on Standardization of the Ada[201]Pamela Zave, “A Compositional Approach to Multiparadigm Pro-
Language,’Comm. ACMyol. 25, p. 119, Feb. 1982. gramming,”|IEEE Softwareyol. 6, p. 15, Sept. 1989.

[166]Henry F. Ledgard and Andrew Singer, “Scaling Down Ada (or To-[202]John Backus, “Can Programming Be Liberated From the von Neu-
wards a Standard Ada Subse,dmm. ACMyol. 25, p. 121, Feb. mann Style? A Functional Style and Its Algebra of Programs,”
1982. Comm. ACMyol. 21, p. 514, Aug. 1978.

[167]Robert L. Glass, “LetterComm. ACMyol. 25, p. 500, July 1982. [203]R. N. Caffin, “Heresy on High-Level Language§bdmputer,vol.

[168] Randall Leavitt, “Letter,Comm. ACMyol. 25, p. 500, July 1982. 12, pp. 108-109, Mar. 1979.

[169]Brian Wichmann, “Is Ada Too Big? A Designer Answers the Crit- [204]Jim Haynes, “Comment on High-Level Heresgdmputer,vol. 12,
ics,” Comm. ACMyol. 27, p. 103, Feb. 1984. p. 109, Mar. 1979.

[170]William I. MacGregor, “Letter,"SIGPLAN Noticesyol. 13, p. 18, [205]David Feign, “Letter,Computeryol. 12, p. 122, Sept. 1979.

Sept. 1978. [206]William A. Wulf, “Trends in the Design and Implementation of

[171]Peter Wegner, “The Ada Language and EnvironmeBtftware Programming LanguagesComputeryol. 13, p. 15, Jan. 1980.

Eng. Notesyol. 5, p. 9, Apr. 1980. [207]Victor R. Basili and Albert J. Turner, “lterative Enhancement: A

[172]Charles Antony Richard Hoare, “The Emperor's Old Clothes,” Practical Technique for Software DevelopmetEEE Transactions
Comm. ACMyol. 24, p. 82, Feb. 1981. on Software Engineeringpl. 1, p. 390, Dec. 1975.

[173]“DOD Interim Policy on Ada IssuedComm. ACMyol. 26, p. 706,  [208]W. P. Dodd, “Prototype Program<Zomputer,vol. 13, p. 81, Feb.
Sept. 1983. 1980.

[174]Saul Rosen, “Programming Systems and Languages 1965-1975209]Pat Hall, Janet Low, and Steve Woolgar, “Human Factors in Infor-
Comm. ACMyol. 15, p. 591, July 1972. mation Systems Development: A Project Report,” CRICT Discus-

[175]David R. Hanson, “A Simple Technique for Representing Strings in sion Paper No. 31, Brunel University, 1992.

Fortran IV,”Comm. ACMyol. 17, p. 646, Nov. 1974. [210]Fletcher J. Buckley, “A Modest ProposaComputer,vol. 15, p.

[176] Daniel D. McCracken, “Is There a Fortran in Your FuturBata- 103, Dec. 1982.
mation,vol. 19, p. 237, May 1973. [211]Daniel D. McCracken and Michael A. Jackson, “Life Cycle Concept

[177]Daniel D. McCracken, “Letter,Comm. ACMyol. 28, p. 568, June Considered Harmful,Software Eng. Notespl. 7, p. 32, Apr. 1982.
1985. [212]G. R. Gladden, “Stop the Life-Cycle, | Want to Get O8gftware

[178]“The NCC: Reminiscent of the Late SixtieBatamation,vol. 21, p. Eng. Notesyol. 7, p. 35, Apr. 1982.

104, June 1975. [213]Patrick A. V. Hall, “Letter,"Software Eng. Notespl. 7, p. 23, July

[179] Tomasz Kowaltowski, “Letter,'SIGPLAN Noticesyol. 10, p. 4, 1982.

Aug. 1975. [214]Bruce I. Blum, “The Life Cycle—a Debate Over Alternate Models,”

[180] Eric Campbell, “Letter,'SIGPLAN Noticesyol. 11, p. 2, May 1976. Software Eng. Notespl. 7, p. 18, Oct. 1982.

[181] Stuart W. Rowland, “Some Comments on Structured Fort&iG* [215]Joseph W. Chambers, “LetteComm. ACMyol. 26, p. 108, Feb.
PLAN Noticesyol. 11, p. 45, Oct. 1976. 1983.
[182]Michael J. Viehman, “Letter SIGPLAN Noticesyol. 10, p. 8, Oct.  [216]Ware Myers, “Can Software Development Processes Improve—

1975. Drastically?” IEEE Softwareyol. 1, p. 101, July 1984; Mark Dow-
[183]Anthony Ralston and Jerrold L. Wagener, “Structured Fortran—an son and Jack C. Wileden, “A Brief Report on the International
Evolution of Standard Fortran|EEE Transactions on Software En- Workshop on the Software Process and Software Environments,”
gineering,vol. 2, p. 154, Sept. 1976. Software Eng. Notespl. 10, p. 21, July 1985.
[184] Daniel D.McCracken, “Let's Hear It for COBOLDatamation,vol. [217] Stefano Nocentini, “The Planning RituaDatamation,vol. 31, p.
22, p. 242, May 1976. 128, Apr. 15, 1985.
[185]Peter Naur, “Programming Languages, Natural Languages, an@18]R. E. A. Mason and T. T. Carey, “Prototyping Interactive Informa-
Mathematics,'Comm. ACMyol. 18, pp. 678-680, Dec. 1975. tion Systems,Comm. ACMyol. 26, p. 348, May 1983.

[186]Michael Hammer et al., “A Very High Level Programming Lan- [219]Jerry Schulz, “Letter,Datamationvol. 29, p. 24, Sept. 1983.
guage for Data Processing Application€3mm. ACMyol. 20, pp. [220]Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt,

832-833, Nov. 1977. “Prototyping Versus Specifying: A Multiproject ExperimeniZEE
[187]Mark R. Crispin, “Letter,'Datamation,vol. 22, p. 7, Nov. 1976. Transactions on Software Engineerinvg]. 10, p. 300, May 1984.
[188]A. C. Larman, “Letter,’Computer Bull.,1st series, no. 16, p. 506, [221]Gruia-Catalin Roman, “A Taxonomy of Current Issues in Require-

Nov. 1972. ments Engineering,Computeryol. 18, p. 20, Apr. 1985.

IEEE Annals of the History of Computingpl. 19, No. 1, 1997 53



Splitting the Difference

[222] Zohar Manna and Richard Waldinger, “Synthesis: Dreams => Pro[254]G. Fitzgerald, N. Stokes, and J. R. G. Wood, “Feature Analysis of

grams,”|EEE Transactions on Software Engineeringl. 5, p. 295,
July 1979.

[223]D. J. Cooke, “Program Transformatio@bdmputer Bull.2nd series,
p. 20, Dec. 1979.

Contemporary Information Systems Methodologigsgmputer J.,
vol. 28, no. 3, pp. 223-230, 1985.

[255]J. Mayhew and P. A. Dearnley, “An Alternative Prototyping Classi-

fication,” Computer J.yol. 30, pp. 481-484, Dec. 1987.

[224]David W. Wile, “Program Developments: Formal Explanations of [256]Xiping Song and Leon J. Osterweil, “Toward Objective, Systematic

Implementations,Comm. ACMyol. 26, p. 903, Nov. 1983.

[225]Pamela Zave, “The Operational Versus the Conventional Approach

to Software DevelopmentComm. ACMyol. 27, p. 113, Feb. 1984.

Activity,” IEEE Transactions on Software Engineeriugl. 7, p. 22,
Jan. 1981.

[227]Barry W. Boehm, “A Spiral Model of Software Development and
Enhancement,Computeryol. 21, p. 65, May 1988.

[228] Dennis M. Ritchie and Ken Thompson, “The Unix Time-Sharing
System,"Comm. ACMyol. 17, p. 365, July 1974.

[229]Evan L. lvie, “The Programmer’s Workbench—a Machine for Soft-
ware Development,Comm. ACMyol. 20, p. 746, Oct. 1977.

[230]B. W. Kernighan and P. J. Plauger, “Software To@sftware Eng.
Notesyvol. 1, p. 15, May 1976.

Design-Method Comparisons|EEE Software,vol. 9, p. 44, May
1992.

[257]D. M. Episkopou and A. T. Wood-Harper, “Towards a Framework to
[226]Manfred Broy and Peter Pepper, “Program Development as a Formal

Choose Appropriate IS Approache§€dmputer J.vol. 29, p. 222,
June 1986.

[258]Alan M. Davis, Edward H. Bersoff, and Edward R. Comer, “A Strat-

egy for Comparing Alternative Software Development Life Cycle
Models,” IEEE Transactions on Software Engineeringl. 14, pp.
1,453-1,461, Oct. 1988.

[259]Bo Sanden, “The Case for Electric Design of Real-Time Software,”

IEEE Transactions on Software Engineering). 15, p. 360, Mar.
1989.

[260]“Panel on Problems of the 80s, ICSE Atlan@gftware Eng. Notes,

vol. 3, p. 29, July 1978.

[231] Anthony |. Wasserman, “Automated Development Environments,”[261]Ware Myers, “New British Tool Centre a Response to Software

Computeryol. 14, p. 9, Apr. 1981.

[232]Michael Lesk, “Another View, Datamation,vol. 27, p. 139, Nov.
1981.

[233]David Morris, “How Not to Worry About Unix,Datamation,vol.
30, p. 83, Aug. 1, 1984.

[234]Dennis F. Barlow and Norman S. Zimbel, “Unix—How Important Is
1t?” Datamation,vol. 30, p. 101, Aug. 1, 1984.

[235]T. H. Crowley, L. L. Crume, and C. B. Hergenhan, “AT&T Asks for
a Unix Standard,Datamation,vol. 30, p. 100, Aug. 1, 1984.

[236] Peter J. Denning, “Throwaway ProgramSgmm. ACMyol. 24, p.
58, Feb. 1981.

[237]Grover P. Righter, “Letter,Datamation,vol. 30, p. 16, Nov. 1,
1984.

[238] Tim Teitelbaum, “The Cornell Program Synthesizer: A Syntax-
Directed Programming EnvironmenSIGPLAN Noticesyol. 14, p.
75, Oct. 1979.

[239]Vic Stenning et al., “The Ada Environment: A Perspectiv@om-
puter,vol. 14, p. 27, June 1981.

[240]Charles Rich and Howard E. Shrobe, “Initial Report on a Lisp Pro-

Complexity,”IEEE Softwareyol. 2, p. 94, Nov. 1985.

[262]W. Wayt Gibbs, “Software’s Chronic CrisisStientific Am.pp. 72—

81, Sept. 1994.

[263]Annie Kuntzmann-Combelles, “Software Help Wanted: Revolution-

ary Thinkers,"|EEE Softwareyol. 9, p. 10, Sept. 1992.

Stuart Shapiro is a Visiting Research Fel-

low in the Centre for Research into Inno-
vation, Culture and Technology (CRICT) at
Brunel University in England. He has pre-
viously been a Research Fellow in the
Centre for Technology Strategy at the Open
University, also in England. He holds a BS
in computer science from Northwestern
University and a PhD in applied history and
social sciences from Carnegie Mellon Uni-

grammer's Apprentice,JEEE Transactions on Software Engineer- yersity. His research has focused on the history and sociology of

ing, vol. 4, p. 456, Nov. 1978.

[241] Elliot Soloway, “A Cognitively-Based Methodology for Designing
Languages/Environments/MethodologieSIGPLAN Notices,vol.
19, p. 195, May 1984.

[242]Ware Myers, “MCC: Planning the Revolution in SoftwarkEEE
Softwareyol. 2, p. 72, Nov. 1985.

[243]J. Trenouth, “A Survey of Exploratory Software Development,”
Computer J.yol. 34, p. 153, Apr. 1991.

[244]Winston Royce, “Has the Exploratory Approach Come of Age?”
IEEE Softwareyol. 10, p. 104, Jan. 1993.

[245]A. Nico Habermann and David Notkin, “Gandalf: Software Devel-
opment Environments,/EEE Transactions on Software Engineer-
ing, vol. 12, p. 1,118, Dec. 1986.

[246]Jayshree Ramanathan and Soumitra Sarkar, “Providing Customized

Assistance for Software Lifecycle Approachel§EE Transactions
on Software Engineeringpl. 14, p. 749, June 1988.

[247]Ronald J. Norman and Gene Forte, “CASE in the '9@Hmm.
ACM, vol. 35, p. 30, Apr. 1992.

[248] Arthur J. Collmeyer, “Developments in Design AutomatiocBgm-
puter,vol. 7, p. 11, Jan. 1974.

[249] Peter Freeman, “Automating Software Desigbgmputeryvol. 7, p.
34, Apr. 1974.

[250] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and Accidents
of Software EngineeringComputeryol. 20, p. 11, Apr. 1987.

[251]Paul Rook, “Controlling Software Project§dftware Eng. Jyol. 1,
p. 8, Jan. 1986.

[252] Anthony Finkelstein, “London Open CRIS Conferendggmputer
Bull., 2nd series, p. 5, Sept. 1984.

[253]A. T. Wood-Harper and G. Fitzgerald, “A Taxonomy of Current
Approaches to Systems Analysi§bmputer J.yol. 25, pp. 12-16,
Feb. 1982.

54 e |EEE Annals of the History of Computingpl. 19, No. 1, 1997

software engineering. He also has interests in engineering profes-
sional development and in information technology and privacy.

The author can be contacted at

Centre for Research into Innovation, Culture and Technology
Brunel University

Uxbridge, Middlesex UB8 3PH, United Kingdom

e-mail: s_shapiro@acm.org



