Open Issues & Course Summary

CS3 / SEOC1

Note 18

Is software engineering with objects
and components a good way of

building good systems?




Software engineering, UML

modelling, Components and Quality

e Software development process:
lifecycle models and main stages
process management
testing

maintenance and evolution

e Introduction to UML Diagrams:
use cases
class models
CRC cards
interaction diagrams
activity diagrams
state diagrams

implementation diagrams
e Reuse and components

e Dependable computer-based systems




Software Engineering with Objects
and Components (Notes 1 € 2)

e Why are we doing this?
— to build “good systems”

x what are good systems?

x why do we need them?
e Why a unified language?
e A unified language should be (and UML is?):

— expressive,
easy to use,
unambiguous,
tool support,
widely used




SEOC cont. (Note 6 and Using
UML: chap.4)

Development process:
— risk management is central
— iteration to control risk

— architecture-centric and component-based

(Unified?) design methodology

— Pros: dependable, assessment, standards
— (Cons: constraints, overheads, generality
— Unified modelling language combines pros

while avoiding cons

The unified process: inception, elaboration,

construction, transition

other processes: Catalysis, OPEN, Extreme
Programming, DSDM, SSADM, ...




UML: status and issues

e History: Quest for open specification
1989-1994 OO “method wars”
1994—-1995 three Amigos and birth of UML
Oct 1996 feedback invited on UML 0.9

Jan 1997 UML 1.0 submitted as RFP
(Request for Proposal) to OMG (Object
Management Group)

Jun 1999 UML 1.3 released

Sep 2000 (some) UML 2.0 RFP’s submitted

Feb 2001 UML 1.4 draft specification
released; further UML 2.0 RFP’s planned

e Open issues:

— UML semantics

— tool support

— OCL (Object Constraint Language)




Case Study: CS4 Administration
Using UML: chap.15

At the end of the academic year, the
HoD allocates teaching duties for CS4
modules. Every lecturer updates the
course handbook entry for their module
The CS4 coordinator updates other parts
of the handbook and checks lecturers
entries (all in B'TEX). The UTO produces
paper versions; the CS4 coordinator
produces HTML versions. The CS8
coordinator gives list of students to UTO
and CS4 coordinator. Students are
advised by DoS. Students provisionally
register for modules with UTQO. The UTO

produces lists of attendees for lecturers.




Requirements Capture (Note 3)

Users have different potentially conflicting
views of the system.

Users can’t express requirements clearly

— missing information,

— superfluous and redundant information,

— inaccurate information. ..

Users are poor at imagining what a system
will be like.

Identifying all the work needing support by
the system is difficult.




CS4: use case model
Using UML: Figure 15.1

Create CH4 list Q

CSACourseOrganiser

Produce

CHAL ecturer

X ¥

CHAStudent
CSADirectorOf Studies




Static Structure (Note 4)

desirable to build system quickly and cheaply

desirable to make system easy to maintain
and modify

Identifying classes:

— Data driven design

— Responsibility driven design

— Use case driven design

— Design by contract

class diagrams document: classes (attributes,

operations) and associations (multiplicities,

generalisations)

system ¢s some collection of objects in class

model




A class model
Using UML: Figure 15.2

Lecturer

1

DirectorOf Studies

directs

teaches

6

NonGraduatingStudent

0“*

GraduatingStudent

Module

1“*

HonoursCourse

1

Another class model
Using UML: Figure 15.3

1

Lecturer teaches
knows about 0.*

ul

6

DirectorOf Studies

knowslabout

takes

NonGraduatingStudent

0“*

GraduatingStudent

10

Module

1“*

HonoursCourse

1



Validating the Class Model (Note 5)

e CRC cards: class, responsibility, collaborators
e UML interaction diagrams

CRC cards and quality

— too many responsibilities implies low

cohesion
— too many collaborators implies high
coupling
CRC cards used to:
— validate class model, using role play
— record changes

— identify opportunities to refactor

11



CRC cards needed for Produce
course handbook

Using UML: Figure 15.

Class name: HonoursCourse Class name: DirectorOfStudies

Responsibilities Collaborators Responsibilities Collaborators

Keep collection of Module Provide human DoSs
modules interface to the system

Generate course
handbook text

Class name: Module

Responsibilities Collaborators

Keep description of
course

Keep Lecturer of course

12



Interactions (Notes 7 and 8)

collaboration and sequence diagrams
document how classes realise use cases
(thus) helps validate design

other uses: design patterns, component use,

packages

instance versus generic;

procedural versus concurrent
Law of Demeter
creation and deletion of objects

timing

13



Other UML Diagrams. ..

e Describing object behaviour
— State diagrams (Note 10)
— Activity diagrams (Note 11)

e Implementation diagrams (Note 14)
— Component diagrams

— Deployment diagrams

14



Other S/E Issues

e Testing (Note 9)

testing strategies:
*x top-down versus bottom-up
x black-box versus glass-box

* stress testing

categories (unit, integration, acceptance)

regression testing
test plans

OO and component issues

e Reuse and Components (Notes 12 and 13):

Types of reuse

* knowledge (artifact, patterns)
* software (code, inheritance, template,

component, framework)

success stories, pitfalls and difficulties with

(component) reuse

reuse not free and requires management

15



What else did we do?
e Maintenance and Evolution (Note 15):

— accounts for significant part of project
costs and developer effort
types: corrective, adaptive, perfective,
preventive
...1s hard, requires management, ...
dealing with legacy code:

x redevelop, transform (restructure,
re-engineer, recapture), encapsulate

e High Dependability Engineering (Notes 16
and 17)

— lots of scary stories. ..

— software engineering borrows heavily from

traditional engineering

although software is significantly different:
focus on process rather than product
more complex and less “visible”
fails in different ways
is far more subject to change. ..

16



