Engineering High-Dependability
Systems (2)

CS3 / SEOC1
Note 17

0-0



The Safety Case

A safety case is a document, or
collection of documents, that presents the
arqguments for believing that a proposed
potentially-dangerous system is acceptably
safe. It sets out the risks involved with
the operation of the process or equipment
and the possible consequences of failure,
and specifies what will be done (or has
been done) to minimise the probability

and the impact of these failures.




Design for assessment:

Arguments of software safety

process versus product:
design process used will lead to safe system
versus system produced is shown to be safe.

qualitative versus quantitative:
claims of good quality (e.g. unsafe states not
possible) versus numerical measures of, for
example, probability of error

formal verification:
use of formal methods. However, formal
models often constructed but not verified

adoption of traditional engineering analyses:
e.g. HAZOPS (HAZard and OPerability
Studies), FMEA (Failure Modes and Effects
Analysis), FTA (Fault Tree Analysis)

software specific standards:

e.g. MOD 00-55, IEC 61508
responsibility:

open issue — responsibility versus liability




Safety Standards for Software (1)
MOD Def.Stan 00-55 Procurement of Safety

Critical Software in Defense Equipment

e Requirements:

— safety management

— software engineering practice

Guidance:
lifecycles
hazard analysis
risk analysis

V&V

independent auditing




Safety Standards for Software (2)

TEC 61508 Functional Safety of electrical/
electronic/ programmable electronic safety

related systems

e Safety at the system level
— The overall safety lifecycle
— Management of functional safety
— Hazard analysis, risk reduction and

safety integrity levels

e Hardware and architectural safety
— Managing hardware
— Failure probabilities
— Integrating hardware into the safety
lifecycle

e Software safety
— Safety related software
— Selecting development methods and
tools
— Verification and validation




Computer-related accidental death:

An empirical exploration
D. MacKenzie, 199

Computer-related — as before

accidental death — non-deliberate (ie,
military); empirically “easy” to measure

Causes:

4% physical (chiefly electromagnetic

interference)

3% software error:
Therac-25 (2) + Patriot (28)

92% failure in human-computer interaction

Estimated number of deaths (until end 1992):
1,100 +/- 1,000




Fatalities due to software error

e 1986, Therac-25:
— radiotherapy machine

— two operating modes:

x low intensity, wide spread
« high intensity, tight focus

software error in data entry permitted
high intensity, wide spread

hardware interlock in Therac-20 removed

overdosing leads to 2 confirmed deaths

e 1991, Patriot anti-Scud missile system:

internal clock uses tenths of seconds
binary rounding error known
long run times not anticipated

25th February: Alpha Battery in
uninterrupted operation for over 100
hours; unable to track Scud missiles; 28

US servicemen killed

— 26th February: software fix arrives




Fatalities due to human-computer

interaction failures (1)

1992, A320 airbus crashes after over-rapid
descent, 87 die. “Glass cockpit” descent
display of 3.3 (thousands of feet per minute)
wrongly interpreted as angle — Airbus denies
responsibility (although interface changed
subsequently).

Similar incidents:

— Habsheim 1988, Bangalore 1990, Moscow
1991, Nagoya 1994, Toulouse 1994, Paris
1994, ...

1988, USS Vincennes shoots down Iran Air
airliner, all 290 on board die: weapon system

human interface deemed “not optimal”




Lufthansa Airbus A320 Crash,
Warsaw

14 Sept. 1993, flight DLH 2904 from
Frankfurt overruns runway on landing at
Warsaw Airport, Poland; co-pilot and 1
passenger die, 54 people hospitalised

autopilot found to have prevented reverse

thrust braking for 9 seconds

specification of checks too severe (height,

wheel-spin, weight on both wheels)

dangers of in-flight reverse thrust activation:
May 1991, Boeing 767 brought down over
Thailand, killing all on board

Pilot error/specification error? — Airbus
denies responsibility (although code
subsequently changed)




Fatalities due to human-computer

interaction failures (2)

1992, London Ambulance Service Computer
Aided Despatch System: primarily

management failure, claims of 20-30 deaths

1982-1991, North Staffs. Royal Infirmary
radiotherapy: double error-correction leads to
underdosing of around 1,000 patients, 401 die
— clinical verdict is “tens rather than

hundreds” due to double error-correction

1994, Toulouse: Airbus A330 stalls during
testing. Flight level set at 2,000t instead of
7,000ft. 7 dead including Airbus chief test
pilot

attitudes to “safety envelope” different from

Airbus and Boeing




Where is the danger?

software does not directly cause fatalities

interaction between software and physical

world
all software errors latent; present in
specification:

— requirements missed, incorrect or

misunderstood

— failure to correctly implement specification

rarer

— eg, NASA Galileo/Voyager mission critical

software

10



How dangerous is software?

Estimated number of deaths (until end 1992):
1,100 +/- 1,000

Compare with UK road deaths for 1992
alone: 4,27/

human perception of risk and danger
complicated:

— degree of personal control

— anticipated benefit

— availability of data

Hypothesis: software is safe, because we

believe it to be dangerous

11



Where does SEOC fit in?
Software engineering versus physical

engineering

art — craft — science 777

science: strong theoretical foundation,

knowledge-based teaching
craft: little theory, skills-based apprentices
art: highly subjective, innate ability crucial
errors are latent (often in requirements or
specification)
physical systems convez:

— e.g. beam is tested for 100kg load and
1000kg load, can assume will carry any
load between 100-1000kg

software not convex, but structured

— can partition system; e.g. independence of

failures in interface and operation (c.f.
Therac 25)

12



SEOC and Dependability: Process,
assessment and components

process oriented assessment:

e c.g. lifecycle models, project planning and

management, structured test plans, ...
e combining qualitative and quantitative
modelling and assessment
avoiding failures in communication:
e during design (c.f. Mars Climate Orbiter)

e during assessment (c.f. Voyager and
Galileo; Arianne 5)

e validation as well as verification (c.f.

LASCAD)

(reuse of) trusted/tested components:
e.g. 3rd party developers of
high-dependability components

principled composition of components:
theory of composition, e.g. independence of

failures in components

13



