Engineering High-Dependability Systems (1)

CS3 / SEOC1

Note 16

Dependability of Computer-Based Systems

- **Dependability** high integrity, reliable, safe, secure, available, fault tolerant, . . .
- of Computer-Based software is (significant) part of "whole machine"
- **Systems** involving "machine", humans, organisations, environment, ...

What is dependability?

Dependable: justified trust in a service

(Some) Flavours of Dependable Systems

- Safety-Critical: failure leads to serious injury, loss of life, or significant environmental damage
- Security-Critical: access control, permissions and monitoring (potentially in the face of malicious attack) a key issue
- Fault-Tolerant: system is *robust*. Can withstand errors in, or failures of, parts of the system (e.g. auto-pilots)
- High-Reliability: likelihood of failure-on--demand exceptionally low (e.g. fire-safety shutdown systems)

What is undependability?

"Classic" high profile failures:

- Mars Climate Orbiter
- Ariane 5
- Therac 25 ...

What else?

- pervasiveness of computers (eg, Y2K)
- multiple low-criticality failures
- dependence of society
- service loss: "the system's down"

Impact on organisations

• NATS, healthcare, finance, ...

NASA's Mars Climate Orbiter

- part of Mars Surveyor programme (1993)
- developed at cost of \$ 327.6 million (orbiter and lander)
- launched December 1998
- intended to enter Mars orbit September 1999, at 210km altitude
- September 23rd 1999, attempted orbit at 57km, burned up in Martian atmosphere

Mars Climate Orbiter: Investigation

- Phase 1 Mishap Investigation report, November 1999
 - root cause: failure to use metric units in ground software file "Small Forces"
 - team developing SM_FORCES used English units of pounds-seconds
 - team developing navigation software algorithm assumed metric units of Newton-seconds
 - Project SIS (Software Interface Specification) not followed
- contributing causes
 - process did not adequately address
 transition from development to operations
 - inadequate communication between teams
 - V & V process did not adequately address ground software

Therac 25 Radiotherapy Machine

- Therac-25 had two operating modes:
 - low intensity (electron radiation), wide spread
 - high intensity (X-ray radiation), tight focus
- software error in data entry permitted high intensity, wide spread
 - X-rays generated by placing tungsten shield as "filter" for high-intensity electron beam
 - set-up process takes considerable time
 - changes during set-up not validated
- 6 known accidents between June 1985 and January 1987, leading to 2 confirmed deaths
- hardware interlock in Therac-20 removed (software error present, but caused blown fuse)

(Some) Other Major S/W Failures

- London Ambulance Service
- Taurus Financial System
- CUFS (Cambridge University Financial System)
- Swanwick ATC? Proposed 1988 (for 1996), building commenced 1991, completed 1994, software working "by winter 2002"?

Safety Critical Systems

- 1. Variety of industrial sectors; both regulated and (relatively) unregulated
- 2. safety cases: "arguments" of acceptable safety of proposed system
- 3. focus on design for assessment
- 4. motivation/drivers for "safety culture"
- 5. "whole system" issues
- 6. software not necessarily susceptible to "traditional" engineering approaches

Domains of safety Critical Systems Regulated:

- hazardous manufacturing (chemical, explosives)
- travel and transport (air, rail, sea)
- energy (nuclear, petrochemical)

(less) regulated:

- automotive (eg, engine controllers, ABS)
- medical informatics (eg, radiotherapy, anaesthetics, medical expert systems)

Automotive Applications

Powertrain

- Integrated Fuel Injection,
- · Ignition, Transmission Control
- Gearbox Control
- Intelligent Cruise Control
- · On Board Diagnostics
 - · Alternate Propulsion

Volvo C70

· Growth in Diesel

Safety and Chassis

- Side, Back Seat, Smart Airbags
- · Crash Avoidance
- Anti-theff, Emergency Systems
 Anti-theff, Emergency Systems
 - Traction, Steering, Active Suspension Control
- Anti-Lock Brakes

E

- Navigation Systems
- Voice Recognition
- Active Cruise Control
- Vehicle Location

Body Electronics

- Body, Climate Control
 Dash Displays
- · Immobilizers
- · Keyless Entry
- · Convenience Electronics

Entertainment

- Integrated AV, Communication, Navigation
- Intelligent Yehicle Highway Systems
- Noise Cancellation, Mini Disc

Regulation and Assessment

- Regulatory standards:
 - national and international
 - generic and domain-specific
 - independent assessment and regulatory authorities
- The safety case:

pre-1990's: largely prescriptive

1988: Piper-alpha; Cullen inquiry highly critical of "box ticking"

post-Cullen: move to *goal-setting* standards

Motivation and drivers for safety (1)

- Economic cost benefit analysis (one life $\approx £1-2$ million)
- Responsibility
 - developer versus assessor versus regulator
 - in-house versus 3rd party (eg, COTS/SOUP)
- Liability; eg British Rail:
 - **pre-privatisation:** HSE, rail regulatory authority
 - post-privatisation: HSE, rail regulatory authority, TOC's, Railtrack, SPAD working party, 3rd party maintenance, strategic rail regulators, rail safety assessors, ...

Motivation and drivers for safety (2)

- History:
 - design for last 3 significant accidents
 - * e.g. Clapham, Ladbrooke Grove, Selby?
 - safety culture "disaster-driven"
 - * Cullen report on Piper Alpha
 - * Titanic
 - no significant automotive/medical disasters
 - ... yet...

Software Engineering for Safety Critical Systems

- No "new" software engineering techniques
- adoption of traditional, physical engineering techniques:
 - for design (eg, triple modular redundancy, fault tolerance, failsafes, error recovery)
 - for analysis (hazard analysis, fault tree analysis, failure modes and effects analysis)
- ... but software unlike physical systems
 - not "convex"
 - high functional complexity
 - common mode failures
 - complex dependencies
 - software errors are all latent