Reuse and Components (2)

CS3 / SEOC1
Note 13

0-0



Reuse: The Success Stories (1):
EDS (Electronic Data Systems) early
1990’s

e Smalltalk programmers given same
specifications and test suites as earlier team

who produced PL/1 system
o PL/1:

— 265,000 SLOC (Source lines of code)
— 152 staff months

— 19 months to develop

e Smalltalk:
— 22 SLOC
— 10 staff months
— 3.5 months to develop




Reuse: The Success Stories (2):

NASA SEL (Software Engineering
Laboratory)

e routinely 75% or higher reuse

e development time reduced by 90%
— 58,000 hours for application development,

— recently, with reuse, reduced to approx.
6,000




Whatever Happened to Reuse?

EDS experience not repeated

— common arguments: wrong language, “not
invented here” syndrome, lack of

management support
— numbers inflated?

NASA success hard to transfer: domain and

economaics

specialised problem domain (spacecraft flight
dynamics)
very high initial investment:
36,000 hours for domain analysis
40,000 hours to develop components
design of reusable asset library starts 1992
first application using library in 1995

— SEL estimates library development costs
recouped by 4th mission




Reuse Pitfalls (1)

e Underestimating the difficulty of reuse
— software must be more general
— similarities among projects often small

much of what is reused is already provided

by OS
universe in constant flux (hardware,
software, environment, requirements,
expectations, ... )
e Having or setting unrealistic expectations
— OO reuse overly “hyped”

— “Software is not built from Legor,
blocks” — Alexander Ran

— reuse domain may be unrealistic

— expectations for reuse outstrip skills of

developers




Reuse Pitfalls (2)

e Being too focused on code reuse
— focus on code reuse as end, not means
— “‘lines of code reused” metric meaningless

— design reuse often neglected in favour of

code reuse

— too little abstraction at framework level

e Not investing in reuse

— reuse costs: time and money in
development, analysis, design,

implementation, testing, .




Reuse Pitfalls (3)

e Generalising after the fact

— designs often migrate from general to

specific during development
— system not designed with reuse in mind
(cf. code reuse versus code salvage)
e Allowing too many connections

— coupling unaviodable, but must be very

low to permit reuse

— Circular dependencies also problemmatic —

where to break the chain?




Difficulties with Component

Development

e Liconomic: small business do not have long
term stability and freedom required

When you’re up to your ass in alligators. . .
e Where is the 3rd party component market?

— effort in (re)using components

cross-platform and cross-vendor
compatibility
many common concepts, few common

components

some successes: user interfaces, data
management, thread management, data

sharing between applications

most successful: GUI’s and data handling
(e.g. Abstract Data Types)




Components in Java

e JavaBeans
— visual composition of components

— builder introspection of Bean features

(properties, methods, events)

— composition of Beans into applets,

applications or other Beans
e ADT’s: java.util.x* library

e GUI’s: The Java Foundation Classes (JFC)




The Java “BeanBox” component
builder

feiToolBox M= T [EiBeanBox f=3 Properties - Juggler O] ]
OrangeButton File Edit “iew Help
OurButton faregraund _
BlueButton

@ ExplicitButton

Eventhonitaor

@'Jellyﬂean
‘ﬁ(.’..luggler

ChangeReparter

9

font Abede.

animationRate 125

namea | PANeIET

L,«:.\J

FF

TickTack

\\\\\\\\\\\\\\\\\
Arrrriinasaiunaas

“Woter
holecule
Quotehdonitor
JDBC SELECT
SaorterBean

M Bridge Tester

TransitionalBean




Java Foundation Classes

History: AWT (“Abstract Window Toolkit” —
1995), JEC (1997 — Swing)

all components are JavaBeans

lightweight Ul framework

— peerless emulation versus layered (“peer”)
toolkit model

— cross platform (no native code)
pluggable look and feel

no framework lock-in (“easily” compatible

with 3rd party components)

subclasses are fully customisable and
extendible (according to Sun)

10



A JFC Example (taken from Sun’s
on-line Swing Tutorial)

import java.swing.*;
public class SwingApplication {
public static void main(String[] args) {
JFrame frame =
new JFrame("SwingApplication");
frame.getContentPane() .add(contents,
BorderLayout .CENTER) ;

.addWindowListener(...);

.pack();
.setVisible (true);

+
JButton button =

new JButton("A button!");
button.setMnemonic(KeyEvent.VK_I) ;
button.addActionListener(...);

+

11



JFC Example (2)

final JLabel label =

new JLabel(labelPrefix + "O ");
label.setLabelFor (button) ;
label.setText(labelPrefix + numClicks);

JPanel pane = new JPanel();

pane.setBorder (BorderFactory.
createEmptyBorder(...));

pane.setlLayout (new GridLayout(O, 1));

pane.add (button) ;

pane.add(label) ;

button.addActionListener(

new ActionListener(){

public void actionPerformed(
ActionEvent e){
numClicks++;

label.setText (labelPrefix + numClicks);
B

12



Summary

e many reuse kinds — software and knowledge

e component reuse is a form of software reuse

— encapsulation, high cohesion, specified

interfaces, explicit context dependencies

— component development requires

significant time and effort

— as does component use
employing reuse requires management

Java (potentially) supports cross-platform

component reuse

component reuse has been successful for

interfaces and data handling

JFC and java.util.x* classes exemplify this

13



