Modelling Dynamics (1):
UML Statecharts

CS3 / SEOC1

Note 10

Sequence and Collaboration diagrams
show how objects interact to meet some
system requirement. But they don’t show
how the system decides what is the right
thing to do. State Diagrams give us the

means to control these decisions.

State Diagrams

Based on the statechart notation introduced
by Harel (also called HiGraph).

These are finite state machines (recall CS2)
with some extra mechanism to capture the

meaning of transitions.

Sequence and Collaboration diagrams
correspond to scenarios and are decision free.
There may be many Sequence or
Collaboration diagrams for one Use Case.
The choice of how to react (i.e. which

scenario is appropriate) is based on the state.

Each state is like a “mode of operation” for

the object we are considering.

A Bed Class

public class Bed{
public Ward thisWard;
Bed (Ward w){
thisWard = w;
+
protected boolean isOccupied = false;
public boolean allocate() {
if isOccupied {
return(false);
} else
isOccupied = true;
return(thisWard.allocated(self));
+

public boolean discharge_patient() {

if isOccupied {
isOccupied = false;
return(thisWard.freed(self));
} else

return(false);

Simple State Diagrams

We construct a state diagram for each class

They illustrate how the state of the class

changes on receiving a message.

States correspond to some property of the
attributes of objects of the class. There are

usually a finite number of states.

In the class Bed the state diagram has two
states and transitions when messages of the

class are received.
We name the states and document them.

We label the transitions with events that
cause changes in state. The events we
consider here are receiving a message but

there are others.

We designate an initial state in the stateset

with a start marker.

{) discharge_patient()
occupied
alocate_patient()

Figure 1: State diagram for Bed class.

state names are chosen so as to be

informative

the state of class Bed is determined by the

value of the attribute isOccupied

only the expected state changes are shown

— Why? Is this wise?

Extending State Diagrams

Transitions are now labelled with
event /action pairs that indicate the response

corresponding to a particular event.

We can also augment states with actions that
show how an object of a class reacts to

receiving a message (entry actions)

...and how an object of a class reacts on

sending a message (ezit actions).

Transitions can be guarded. This ensures that
some condition must hold in order for the

transitions to take place.

{ , discharge patient()/"ward.freed(self) |
occupied
alocate()/"ward.allocated(self)

Figure 2: State diagram of class Bed, with actions.

(occupied) discharge patient() free

entry/ward.freed(self) .
J

entry/ward.allocated(self)) allocate()

&

Figure 3: State diagram of class Bed, with entry

actions.

occupied) discharge patient() free

exit/ward.freed(self . = .
h it/w (self)) allocate) . exit/ward.allocated(self))

Figure 4: State diagram of class Bed, with exit

actions.

A Ward Class

import java.util.x*;
public class Ward{
private String name;
private Nurse seniorSister;
Ward(String n, Nurse s){
name = n;

seniorSister = s;

protected HashSet allBeds =
new HashSet();
public boolean allocated(Bed b) {

return(allBeds.remove(b));

+

public boolean freed(Copy b) {
return(allBeds.add(b));

freed()

Nno vacancies

allocated()[last bed]

allocated()[not last bed)]

Figure 4: State diagram of class Ward.

e the correspondence between attributes and

states is indirect

e such subtleties are one reason why state
diagrams should be documented

e as before, only expected state changes are

shown

=N

-

N

alocated()

Figure 5: Alternative state diagram of class Ward.

allocated()
one bed free no beds free

freed()

freed()
two beds free al beds free
allocated()

Figure 6: and another state diagram of class Ward.

10

Nested States

the line include/<<nested diagram name>>

indicates a compound state

start and end markers are compulsory for

compound states
compound states enter at their start marker

after the end marker there is an implicit

“completion” event

(thus: transitions out of a compound state

may be unlabelled)

Decision diamonds: mutually exclusive

guards

11

inQueue(patient)

active

waiting for W
next patient include/activeDetai IJ

(S

Figure 7: State diagram for class Nurse.

/ “ g, .
[admitting] admitting patient
include/admitPatientDetalil

A

(updating record
include/updateRecordDetail .

A

[discharging] (discharging patient

include/dischargePatientDetail
o J

Figure 8: Nested state diagram activeDetail for

class Nurse’s active state.

12

Concurrency Within States

a nested state may containing independently

executing regions
regions marked by a horizontal dashed line

Activity diagrams using synchronization bars
to express joining and forking of subtasks

(loose sense of concurrency)
State diagrams may also use these

Question: what if we had transitions from one

concurrent region to another?

13

(a) State with internal concurrency

(b) Equivalent state with external synchronisation

Figure 9: State diagrams with concurrency.

14

Advice on Designing Classes with

State Diagrams
Keep the state diagram simple.

State diagrams, with all of this extra
notation, can very quickly become extremely
complex and confusing. At all times, you
should follow the aesthetic rule:

Less 1s More

If the state diagram gets too complex

consider splitting it into smaller classes.
Document states thoroughly

Check consistency with the other views of the

dynamics.

Think about compound state changes in a

collaboration or sequence.

15

Some (open) questions

What are the benefits of having state in a
system?

What are the costs of having state in a

system?

Every state should have an edge for every

message in the class — is this the right view?

How does this description of state relate to

design by contract?

How would you check that a Java
implementation was consistent with a state

diagram?

How does this differ with the treatment of
state in programming languages? What does
this say about the difference between

modelling and programming?

16

