Testing

CS3 / SEOC1
Note 9

0-0

The Testing Process

[Run Program]\4,—|—
\ Correct the Software

[Modify Inputs]

AN

[Observe Outputs]

N

[Identify Errors

Run Program: how, if implementation is

incomplete?

Modify Inputs: what range of inputs
sufficient?

Observe Outputs: of function, component,

interface, system...?
Identify Errors: what is an error?

Correct S/W: non-trivial. ..
When to stop?

Testing Principles

The goal of testing is not to prove that software
18 error-free, but rather just to find what errors

we can

All tests should be traceable to customer

requirements

Tests should be planned long before testing
begins

Testing should begin “in the small” and

progress towards testing “in the large”
Exhaustive testing is not possible
Testing should be conducted by a third party

The Pareto Principle applies to software
testing

The Pareto Principle:
20% of causes responsible for 80% of effect

e proposed by Dr. Joseph Juran (of Total
Quality Management fame), after Wilfredo

Pareto — C19*" economist and sociologist.

e Some examples:

— Addressing the most troublesome 20% of
the problem will solve 80% of it.

— 20% of individuals will cause 80% of your
headaches.

— In public involvement, 20% of the people
will command 80% of your time.

— Of proposed solutions, about 20% likely to
remain viable after adequate screening.
e in testing:
— 20% of bugs cause 80% of visible errors
— 20% of errors require 80% of time to fix

Testing Strategies

e Behavioural Testing:

— Test that expected system behaviour is

observed
— Top-down versus bottom-up

— Black-box versus white/glass-box testing

e Stress Testing:
— Place an unnatural load on the system
— Test performance, system limits

— Stress until program breaks down

Behavioural Testing Strategies

e Top-down Testing (prototyping):

— Start at subsystem level - replace modules
with stubs

Modules can be tested as soon as they are
coded

Top-down detects design errors early
A working system exists at all times

Issue: Test output is artificial

e Bottom-up Testing:

— Modules at the lowest level of the
hierarchy are tested first

Parent modules are replaced by drivers
Easier to create test cases, real input
Can determine performance

Issue: No demonstrable program exists

until all modules have been developed

Functional versus Structural

e Functional, or “black-box”, testing:

— Tester does not have code for routine, only
a functional description of it

— Test inputs determined by requirements

— Fquivalence Partitioning:
x Determine which classes of input data
have common properties
x Test a sample from each class
e Structural, or “glass-box”, testing:
— Tester sees source code of routine

— Does not need to understand the program
as a whole, only the module being tested

— Hard to get clues about which test inputs
best exercise the program

— Techniques: Control Structure Testing
x Basic Path Testing
x Condition Testing

x Data Flow Testing
*x Loop Testing

Categories of Testing

Unit: discovers defects in individual procedures

and functions.

Integration: tests at module, sub-system and

system level.

Acceptance: validates design; at early stages

can include prototyping or simulation.
Which is most important?
Verifiers argue that unit testing is “first and
most erhaustive test”
e Nothing else will work right unless this is

done well

Validators argue acceptance testing only real
test of design, thus should not be deferred

until delivery.

Test Categories (1)

e Unit Test:

— Individual components tested in isolation

x Procedure,
x function,

x object
— Stand-alone entities

— Check that component meets spec

e (Integration Test 1) Subsystem Test:

— Combine related modules

x Modules identified during system design

x Combine interdependent components

(initially, tested units)

x Test interaction of related components

x Modules are stand-alone, entities
— Rigorously exercise interfaces

— Detect interface mismatches

Test Categories (2)

o (Integration Test 2) System Test:
— Combine (potentially unrelated)

subsystems

— Find unanticipated interactions between

components of subsystems
— Validate the overall functionality of the
system
e Acceptance Test:

— Test the program with real data
* (but not in the field)

Handles both verification and validation
Can detect errors in the requirements
Tests performance and functionality

Stages:

x Alpha Testing
x Beta Testing

Acceptance Testing

e Alpha Testing
— First stage of Acceptance testing

System developer tests in the presence of

the customer
Real data

Developer and customer reach an
agreement about adequacy of the system

Delivered product deemed acceptable in
quality and functionality

e Beta Testing
System is distributed to real customer site
Testing under actual working conditions
Subset of the real users
Training program also tested
Somewhat controlled environment

Customer agrees to report problems to

developers

10

Regression Testing

Corrections to errors found may introduce

Nnew errors

Can’t assume that unrelated features will not

be affected after changes

Can’t just re-test modules that have been
modified

Could Test entire system after changes
— maintain full test suite

— costly, impractical

Need to partition system design to limit

propagation of error effects

Develop test subsets which stand alone

11

Test Plans

e Testing can consume half of the overall

development costs
e Test plans describe the testing process

e Components of a test plan:

— Major phases of testing

— Traceability to requirements
— Schedule and resource allocation

— Relationship between test plan and other

documents

— Test auditing

12

Test Cases

e Not the same thing as test data

e Test Cases:
— input and output specifications
— statement of the function under test

— mapping to requirements

e Example: Program to determine whether a

triangle 1s isosceles

function Is_Isosceles
(Sidel, Side2, Side3 : Integer)

return boolean

13

How many test cases are there?

e A triangle that is isosceles (2,2,3)
Reorder the equivalent sides (2,3,2) (3,2,2)
Triangle that is equilateral (2,2,2)
Triangle that is not isosceles (1,2,3)
Reorder numbers (2,3,1)

Boundary conditions (1,2,0)

Reorder boundaries (1,0,2) (0,1,2)
Multiple boundaries (0,0,1)

All boundaries (0,0,0)

Large numbers (6500001, 4, 35467843)
Floating point (1.3454, 42, 7654.245)
Scientific notation (42e-5, 36e79, 46.3€9)
Less than three sides (1,2) (1)

Non-numeric characters (A, B, 42)

14

Testing: OO and Component Issues

e Use-cases help:
— structure and plan testing
— link testing to user requirements

— plan acceptance testing

e Objects and Components:

— Have: abstraction, encapsulation,

interfaces, context (for components)

naturally supports top-down or bottom-up

approach
black-box natural; glass-box supported

subsystem and integration testing (should

be) easier

low-coupling makes dealing with regression

1ssues easier

15

