Validation (2):
Collaboration Diagrams

CS3: SEOCI1
Note 7

0-0

Interaction Diagrams

UML interaction diagrams refine the
kind of activity undertaken in checking
with CRC cards. They document in detail
how the classes realize the use cases.
There are two different kinds of
interaction diagrams: collaboration
diagrams and sequence diagrams. They
document the same information in

different ways.

Collaboration Diagrams

We consider the instance forms of the

diagrams

There are generic forms of diagram and

extensions to deal with concurrency

There is redundancy between collaboration

and sequence diagrams

A collaboration is a collection of named
objects and actors with links connecting

them. They collaborate in performing some
task.

Collaborations

recordl :
// -
i Patient_Record

f_nightingale : NurseUser

Actors: Each is named and has a role. One
actor will be the initiator of the use case.

Objects: Each is named and has its class

specified. Not all classes need appear. There

may be more than one object of a class.

Links: Links connect objects and actors and are
instances of associations. We cannot insert a
link if there is no association in the class

diagram.

Interactions

Here we add the message sent along the link.

This is driven from the use case and some

record of the class diagram.

The message is directed from sender to

receiver.
The receiver must understand the message.

The association must be navigable in that

direction

Flow of Control

Procedural interactions: At most one object

1s computing at any time.

Activation: An object has a live activation from
when it receives a message until it responds

to the message.

Waiting for response: Synchronous messages:

on sending a message to another object, an

object will wait until it receives a response.

Activation stack: Activations are stacked and
the top activation has control. When the top
action responds the next to top regains

control and soon

Collaboration Diagram for HIS

—_—l
@ 1.1.1: free

j_smith : ManagerUser 1.1.2: free

ro — o

1.1: check _ward

aManager :
Manager —

1.2.1: free
‘ 1: Ch%k_beds W_B : Ward

st Bueno's: 1.2: check_ward

1.2.2: free
Hospital - —

—
1.3: check ward

1.3.2; free

—_—

Law of Demeter:

Where should O be able send
messages in dealing with message m?

1. to itself.
. objects sent as argument in message m
. objects O creates in responding to m

. objects that are directly accessible from O,

using attribute values.

