
Validation (1):

CRC Cards

CS3: SEOC1

Note 5

0-0



CRC Cards

CRC cards provide the means to
validate the class model with the use case
model. It is a useful early check that the
anticipated uses of the system can be
supported by the proposed classes.

Introduced in:
“A Laboratory For Teaching
Object-Oriented Thinking”, K. Beck &
W. Cunningham – OOPSLA’89

1



CRC Cards Document

The name of the class it refers to.

The responsibilities of the class. These should
be high level, not at the level of individual
methods.

The collaborators that help discharge a
responsibility.

2



CRC Cards and Quality

Too many responsibilities: This indicates low
cohesion in the system. Each class should
have at most three or four responsibilities.
Classes with more responsibilities should be
split if possible.

Too many collaborators: this indicates high
coupling. Maybe the division of
responsibilities amongst the classes is wrong.

CRC cards: provide a good, early, measure of
the quality of the system. Solving problems
now is better than later.

Cards are flexible: use them to record changes
during validation

3



CRC Cards in Design Development

1. Work using role play. Different individuals
are different objects

2. Pick a use case to build a scenario to hand
simulate.

3. Start with the person who has the card with
the responsibility to initiate the use case.

4. In discharging a responsibility a card owner
may only talk to collaborators for that
responsibility.

5. Gaps must be repaired and re-tested against
the use case

4



Using CRC Cards

Skeleton Card:
Class Name

Responsibilities Collaborators

Responsibility 1 Collaborators 1

Responsibility 2 Collaborators 2

. . .

Example:

Manager

Responsibilities Collaborators

Initialise system

Check free beds Hospital

. . .

5



A Larger Example

Nurse

Responsibilities Collaborators

Admit patients Bed, Record

Update patient records Record

Reserve beds Bed

Discharge patients Bed, Record

. . .

Record

Responsibilities Collaborators

Is Updated Nurse

. . .

Bed

Responsibilities Collaborators

Is Allocated Nurse Record

Is Reserved Nurse

. . .

6



Specimen Use Cases

Patient admitted to ward: When a patient
arrives on a ward, a duty nurse must create a
new record for this patient and allocate them
to a bed.

Nurse handover: The senior duty nurse at the
end of their shift must inform the new staff of
any changes during the previous shift (i.e.
new patients, patients discharged, changes in
patient health, changes to bed status or
allocations).

7



What CRC Cards help with

• Check use cases can be achieved.

• Check associations are correct

• Check generalisations are correct

• Detect omitted classes

• Detect opportunities to refactor the class
model. That is: to move responsibilities
about (and operations in the class model)
without altering the overall responsibility of
the system.

8



Principles for Refactoring

• Do not do both refactoring and adding
functionality at the same time. Put a clear
separation between the two when you are
working. You might swap between them in
short steps: half an hour refactoring, an hour
adding new function, half an hour refactoring
the code you just added.

• Make sure you have good tests before you
begin refactoring. Run the tests as often as
possible. That way you will know quickly if
your changes have broken anything.

• Take short deliberate steps: moving a field
from one class to another, fusing two similar
methods into a superclass. Refactoring often
involves making many localized changes that
result in a larger scale change. If you keep
your steps small, and test after each step, you
will avoid prolonged debugging.

9



When to Refactor?

• When you are adding function to your
program and you find the old code getting in
the way. When that starts becoming a
problem, stop adding the new function and
instead refactor the old code

• When you are looking at code and having
difficulty understanding it. Refactoring is a
good way of helping you understand the code
and preserving that understanding for the
future.

10



OO Analysis using CRC Cards

Use a team of (ideally) 5-6 people, including:
developers, 2 or 3 domain experts, and an
“object-oriented technology facilitator”

1. session focuses on a part of requirements

2. identify classes (e.g. noun-phrase analysis)

3. construct CRC cards for these and assign to
members

4. add responsibilities to classes

5. role-play scenarios to identify collaborators

11



OO Design using CRC Cards

Similar team, but replace some domain experts
with developers. However, always include at least
one domain expert

1. review quality of class model

2. identify opportunities for refactoring

3. identify (new) classes that support system
implementation

4. more detail: sub-responsibilities of class
responsibilities; attributes; object creation,
destruction and lifetimes; data passed

12



Common Domain Modelling

mistakes (from Note 4)

• Overly specific noun-phrase analysis

• Counter-intuitive or incomprehensible class
and association names

• Assigning multiplicities to associations too
soon

• Addressing implementation issues too early:

– presuming a specific implementation
strategy

– committing to implementation constructs

– tackling implementation issues (eg,
integrating legacy systems)

• Optimising for reuse before checking use cases
achieved

• “Premature pattern-isation”

13



Summary

• We should try to check the completeness of
the class model (early assurance the model is
correct).

• CRC Cards are a simple way of doing this.

• CRC cards identify errors and omissions.

• They also give an early indication of quality.

• Use the experience of simulating the system
to refactor if this is necessary.

14


