Static specifications in UML:
Class Models

CS3: SEOCI1
Note 4

0-0

Class Models

Class diagrams are used to document

the static structure of OO systems. They

indicate what classes there are, how they

interrelate, and how they interact.

Annotated Example Class Diagram

Order Association Customer

Date received Name
isPrepaid Address

Number . Credit Ratin
Price Constraint g

I"
"‘

* Generalization
Dispatch
Close . ﬂ A
{Orders for a customer with
1 poor credit rating must be
prepaid}

Corporate Personal
Customer Customer

Contact Name Credit card #
Aftribuife == | credit Ratin o

Credit Limit
Remind

I“
v

Order Line

product
quantity

price e Class

Operafions

Quality of Class Models

e identify the classes and their relationships

e desirable to build the system quickly and

cheaply (and to meet requirements):

— all required behaviour can be realised
simply from objects in the classes of the

system

— the system is some collection of objects in
the classes we have (there may be a GUI
that coordinates human interaction with
the objects)

e desirable to make the system easy to

maintain and modify

— the classes should be derived from the
domain — avoid abstract objects

introduced to “simplify” implementation

— don’t incorporate short lived features of

the system as classes

How to Build Class Models

What drives design: Driven by criterion of

completeness either of data or responsibility

Data Driven Design: identify all the data
and see it is covered by some collection of

objects of the classes of the system.

Responsibility Driven Design: identify

all the responsibilities of the system and
see they are covered by a collection of

objects of the classes of the system

How to Build Class Models (cont)

Noun identification: As described in note 3:

Identify noun phrases: look at the use
cases and other requirements documents
and identify noun phrases. Do this
systematically and do not eliminate
possibilities at this stage.

Eliminate inappropriate candidates:
those which are redundant, vague, an
event or operation, in the meta-language,
outside system scope, an attribute of the
system.

Validate the model: using CRC cards —
see later.

What are Classes?

e A description of a group of objects all with

similar roles in the system.

e Objects derive from:
Things: tangible, real-world objects, e.g.
wards, beds, patients,

Roles: classes of actors in systems, e.g.

nurses, malnagers, ...

Events: admission, discharge, updates,
... (likely if there is an audit trail where

these are treated as objects).

Interactions: meeting, handover, ... (again,

likely if there is some degree of reflection
on the action of the system within the

system)

Associations between Classes

e (Class A and B are associated if:

— an object of class A sends a message to an

object of class B.

an object of class A creates an object of

class B

an object of class A has attributes that are

objects of class B (or collections of such

objects).

an object of class A accepts messages

having objects of class B as an argument

e design associations early — keep them
conceptual initially — think about methods

later

e but don’t forget about implementations.

Initial Class Diagram for HIS

Manager

checks

Hospital

contains

contains alocated to
\
Ward]

works on

Nurse

Multiplicities

e These label association links between classes
and indicate then number of objects of a
particular class that are related to objects of
an associated class.

e A multiplicity can be:

a number
a range m..n (typically 0..n or 1..n)

the unspecified multiplicity: *

a list of multiplicities

Attributes and Operations

e after considering classes we need to think
about attributes (these determine the state of
an object), and the methods in a class (these

define how it interacts)

Attributes occupy the second compartment of
a class icon. These represent the state of an
object of the class (omit any that are used

purely to implement the class).

Methods are listed in the final compartment
of the class icon, here we just specify their

arguments and return values.

10

Revised Class Diagram for HIS

M anager

1.*

checks

Hospital

contains

contains 1 *
St

works on
1.*

Nurse

alocates

Patient_Record

Reference no.
Ailment
Admission date

11

Bed

AddNote
Discharge

Generalisation
e Important relationship between classes.

e If we had a system with classes Nurse and

Sister we might consider a generalisation

NursingStaff that include the functions

common to the two original classes.

e We expect:

— An object of the more specialised class to
be good for use as a member of the

generalised class.

— The behaviour of the two specific classes
on receiving the same message should be

similar.

12

Checking for GGeneralisations

Suppose we claim class A is a generalisation of
class B. Then we can check by seeing if the

sentence: “Every B is an A.”
FEvery engineer is a worker.

Engineer is a profession. Every engineer is a

profession.

Design by Contract

The contract is described by:
— Pre- and post-conditions on the operations

— (Class invariants

A specialisation of a class must keep to the
contract of the superclass by: ensuring
operations observe the pre and post
conditions on the methods and that the class

invariant is maintained.

13

Implementing Generalisations

In Java this is done by creating the subclass
by extending the super class.

Inheritance increases the coupling of a system.

Modifying the superclass methods may
require changes in many subclasses of that

class.

Restrict inheritance to conceptual

relationships.

Avoid using inheritance when some other
assoclation 1s more appropriate e.g. Engineer
might inherit from Person but not from
Qualification that might be a part of an

Engineer.

14

Class Diagrams and Class Models

e Class model develops by iteration

e A class model represents the a view of the

system at some level of abstraction

e A class diagram is a way of representing the

model

e One model may need several diagrams to
describe it, and a particular class may make

several appearances in the diagrams.

15

Common Domain Modelling

mistakes
Overly specific noun-phrase analysis

Counter-intuitive or incomprehensible class

and association names

Assigning multiplicities to associations too
soon
Addressing implementation issues too early:

— presuming a specific implementation

strategy
— committing to implementation constructs
— tackling implementation issues (eg,

integrating legacy systems)

e Optimising for reuse before checking use cases

achieved

e “Premature pattern-isation”

16

Class and Object Pitfalls

e Confusing basic class relationships
— 1s-a
— has-a
— is-implemented-using

e Poor use of inheritance:

violating encapsulation and/or increasing
coupling

base classes do too much or too little
Not preserving base class invariants

confusing interface inheritance with

implementation inheritance

using multiple inheritance to invert is-a

e “Object ooze”:
— Poor encapsulation
— Bloated objects

— Swiss army knife classes

e Object spaghetti; object hyperspaghetti

17

Summary

A class model describes the static structure of

an OO system

The class models consists of class icons and

associations between the icons.

Associations may have multiplicities

associated with them.

Class icons give the name, attributes and

method names and types of a class.

Class diagrams get developed iteratively as
the project progresses. It may be useful to
delay decisions on attributes and methods

until the main associations are sorted out.

18

Further Example Class Diagrams (1)

CLASS DIAGRAM : ELECTRONIC SHOPPING CART

Customer

Shopping Cart
Tarae

subTotal:oney adrress ToB il
sales Tax:Woney addressToShip
total: I ones eroaild ddress
placeCider () creditRating
cancelOrder ()

1

1

Credit Card
i Preferred Customer

Issuer
Nurnber discountBate Percentage
ExpirationDate

AuthorizeChargel)

{creditRating is good}

& shopping cart object has only
" |one credit card associated with it,
[t credit card is a separate class
s that preferred custorasrs can
choose to let the raerchant store
the card mforraation along with
persistent custoraer inforrmation.

iterms | %

[tem to Purchase

quantity:Integer
pricePerlUnit Tvlonesy
addTtem ()
reracveltern ()

19

Further Example Class Diagrams (2)

E Clasz diagram: Ballgame. August 18, 1998, 18:53
Graph Edit Yiew Twpez Help

@lm fart ||"_—| AgglAsleepl Gel[jlmnt|<>|

GameObject
Tabstract}
container
bounding Boo
undemeath

= C4structure >
BasicGameObject detaultielocity CompositeGameObj
fab=stract]} randomUp {abstract}

picture parts

addTo withAIFart=
dizplay On hierarchially Wiith Al Part=

hide n initialize

Complete

Brick part

0.* ’

initialize welacity initialize renitialize A
Mmioe initialize reinitialize
reinitialize mowe recoil0n

H

Active: Maone' Grid: S0& 10 Zoom: 100%

20

Further Example Class Diagrams (3)

— 4 Company aggregation

1 e — multiplicity

Department Locationy Office -

name : Name address : String
voice : Number

constraint
- - _'_'_'_‘_H_,..-'

'—I— » .
o ,:E generalization
{subset} | .ssociation -

i—-""ﬁf

member | 1.. 1| manager ‘ Headquarters |

name : Name | — attributes
employeelD : Integer ¢
title : String _— operations

ggggﬂ:ﬁg:ﬂ:{;ﬂm} 4 Contactinformation

getﬁunlaﬂtlnfnrmaliun[} - address : String
getPersonalRecords() - |

interface
PersonnelRecord

taxiD
employmentHistory
salary

dependency

ISecurelnformation

21

