Software Engineering and OO
Issues

CS3/MSc: SEOC1
Note 2

0-0



Software Engineering:

How to build good systems

Define and control the process of development
Have well defined requirements

Incorporate V and V into the development

process

Use/Reuse relevant knowledge, architectures

and components

Make sensible use of tools




What is a “Good” System?
Useful and usable
Reliable
Flexible
Affordable
Available

Objects and Components:

Good Systems Have. ..
Encapsulation
Abstraction
Architecture

Components




Encapsulation: Low Coupling

The process of hiding all the details of an object
that do not contribute to its essential
characteristics; typically the structure of an object
18 hidden, as well as the implementation of its

methods.
e Coupling should be low in the system

e Based on dependencies — ensures

manageability

e Interfaces, what a module provides, what
context it needs, control use of modules




Abstraction: High Cohesion

The essential characteristics of an object that
distinguish it from all other kinds of objects and
thus provide crisply-defined conceptual boundaries
relative to the perspective of the viewer; the
process of focusing upon the essential

characteristics of an object.

e Module should have high cohesion

e High cohesion indicates good abstraction

e Encapsulation of internal details hides

structure

Abstraction: You don’t need to know
Encapsulation: and I'm not going to tell you.




Architecture and components

Object-based approach not, usually, leading

to desired levels of reuse.

Component is the unit of reuse and

replacement
Architecture controls interaction

Architecture encourages reuse, may be reused
itself




Does this help make better Systems?

e (Classes — high cohesion, low coupling

e “natural” modelling:
— ease requirements capture
— track changes more easily

— natural interactions

e Reuse

— high cohesion and low coupling supports

reuse
— but. .. classes are often too small

— components (can be) cohesive collections

of classes

e OOPLs support these things




(Some) Software Development
Phases

Requirements

Design

— specification

— formal specification

Validation

— ...and verification

— testing

— prototyping

Implementation and integration

Maintenance and evolution




(Some) Software Development

Lifecycles

Waterfall model
Pros: highly visible, easy tracking

Cons: linear, hence vulnerable to change

Evolutionary model

Pros: very robust

Cons: tracking difficult, visibility
compromised

Spiral model

Pros: very robust, highly visible

Cons: dependent on high quality

management

Others

— SSADM, DSDM, Rational Unified process,
Extreme Programming (XP), ...




Development Process Methodologies

e [ault avoidance
o Metrics and measurement

e Software management
— project planning
— process management

— risk management

OO design

— advantages: easy to understand,

maintenance, reuse
— disadvantages: OO difficult, not always
applicable

COTS (Commercial, Off The Shelf software)

and trusted components




Static system structure: OO flavour
Using UML: Figure 15.2

Lecturer

Module

DirectorOf Studies directs .
Student

0.* HonoursCourse

4 1

0.*

NonGraduatingStudent GraduatingStudent

In a traditional (non-OO) programming
paradigm, the module structure would be a tree;
how could you make the above conceptual model
fit that structure?

10



Unified Modelling Language

The industry standard modelling language UML
provides a language in which to talk about
designs. It doesn’t say anything about how to get
the designs.

e Genesis of OO SIMULA (196271967);
Smalltalk (197271980); C++ (198371985);
Java (199171995); ...

1989-1994 OO “method wars”
1994-1995 three Amigos (Booch, Jacobson,
Rumbaugh) and birth of UML
e The UML language(s):
Requirements: Use Cases
Statics: Class Diagrams

Dynamics: Collaboration, Sequence, State,

Activity Diagrams

Implementation ...

11



Object Oriented Analysis with UML

e Requirements

— use Cases

Static Model

— class diagrams

Dynamic Model

— interactions diagrams
— statecharts

— activity diagrams
Validation

— CRC cards

— interaction diagrams

Attributes and operations

— class diagrams

12



(In)-Applicability of OO Model

e Metaphor of real world being “objects which

pass messages’ may be:

inappropriate: basing system structure on
real world objects may not lead to best, or

even good, design

inaccurate: eg, two people colliding are not

sending “bump” message

OO (arguably) best understood as “particular
approach for relating data and processing in

software systems”

— traditional procedural systems separate
data and processing functions (data stored

in one place)

— OO systems decompose data and

localise/integrate with relevant operations

13



Conceptual Pitfalls

e Believing the hype:
— Going OO for the wrong reasons
— Thinking objects come for free

— Thinking objects will solve all problems

e Mistaking style for substance:
confusing buzzwords with concepts
confusing tools with principles
confusing presentation with methodology
confusing training with skill

confusing prototypes with finished

products

14



