
Software Engineering with

Objects and Components 1

Overview

Stuart Anderson
Room 1610

Tel: 0131 650 5191
Email: soa@inf.ed.ac.uk

Note 1

0-0

Administration

Course Web Page please read it it is the main
way of making information on the course
available:
http://www.informatics.ed.ac.uk/

teaching/modules/seoc1/

Assessment: Coursework counts 25% towards
the overall assessment. Remaining 75% is
derived from the degree examination.

Coursework: Tutorial groups collaborate on a
single project throughout the term. Assessed
work consists of two deliverables for this
project, each worth 50% of the coursework
mark.

Software: We use Java and Argo/UML on the
course. Details of how to use these will be
posted on the web page.

1

Main Themes

Software Engineering is concerned with processes,

techniques and tools which enable us to build

“good” systems

Object-Orientation is a (paradigm, methodology,

technique, process, suite of design and

programming languages and tools) with which we

may build good systems

Components are “units of reuse and replacement”

1. Software Dependability

2. Software Engineering Process

3. OO and Component Based Development

4. Unified Modelling Language (UML)

5. Group Development Project

2

London Ambulance Service:

computerised despatch system

What happened?

• 7am, Monday 26 Oct. 1992, system goes live

• system quickly overloaded, logged calls
appear to get “lost”

• callers held in call-queueing for up to 30
minutes

• ambulance allocation system fails to recognise
certain roads (despatch staff revert to maps)

• by Monday night: system swamped, new calls
overwrite existing calls

• system generates exception messages; these
subsequently also swamp staff and system

• exception messages now clog up system, at
one point all manually deleted

• claims made later of up to 20–30 deaths

3

LAS: world’s largest ambulance

service

• 600 square miles, 7 million residents (far
more during working hours)

• typical day: 5000 patients, 2-2,500 calls
(1,600 A & E)

• over 300 A & E ambulances, 500,000 patient
journeys per year

• over 400 Patient Transport ambulances, 1.3
million patient journeys per year

• from receiving call to despatching ambulance
– less than 3 minutes

4

LASCAD: Development history

1987 First computerisation project commences,
£3 million budget

1990 Project abandoned, cost estimated at £7.5
million

1990-1991 New senior management team
appointed: requirements completed Feb.
1991; specification July 1991; partial system
goes live Jan. 1992; piecemeal implementation
across LAS divisions Jan–Sept 1992

Oct. 1992 System changeover

26 Oct. system goes live

27 Oct. system closed down

28 Oct reverts to semi-manual operation

Nov. 1993 system crashes, fallback routines fail
to operate; system closed down; reverts to
entirely manual operation.

5

LAS despatch system: causes of

failure

• Every mistake in the book.

• Primary causes:

– system design: idealised world view

– management ethos

– procurement process

– development timetable

• Secondary causes

– inexperience of suppliers

– inadequate testing

– poor quality assurance

– poor training

– inadequate project management

6

What about coding?

• R. Lutz, 1994: cause and effect analysis of
Voyager and Galileo mission software

– over 40,000 SLOC

– 387 software faults

– roughly half safety related

• interface faults (roughly 25%)

– safety-related – primarily intra-team
communication errors

– non-safety related – even distribution of
causes

• functional faults (roughly 75%)

– safety-related – primarily problems in
requirements recognition (understanding)

– non-safety related – requirements
implementation errors

• Moral: we can get the coding right when
we’re careful, the greatest problems lie
elsewhere

7

The need for software engineering

• Write code
√

– Right code?

• Greatest problems lie elsewhere in
development & maintenance process

– intangible, hard to determine what’s
“good”

– process requires “good” management

– communication amongst large, diverse
teams is problematic

• software engineering, OO (including UML),
and components attempt to address this

• Do they succeed? If so, how well?

• Recommended Reading: Flowers, Stephen.
”Software failure: management failure”. John
Wiley and Sons, 1996.

8

What is an Object?

A Thing: objects represent physical and
conceptual things that appear in the system
being modelled. To implement all of the
kinds of systems we want to we need
conceptual things.

Has State: Usually objects have attributes that
can change throughout the lifetime of an
object. E.g. the attribute weight of a patient
object in a medical information system.

Has Behaviour: Understands some set of
messages that can be sent to it and
collaborates with other objects by sending
them messages.

Has Identity: Is more than just the collection of
attributes. You can have two non-equal
objects with identical attribute values.
Objects can often self refer (e.g. by sending
themselves messages).

9

Classes

• a Class defines a family of objects that all
take similar roles in a system.

• In Java every object is a member of a class

• Corresponding to every kind of message
understood by all objects of the class the
class defines a method of responding to the
message on the basis of the selector and list of
arguments.

• The class determines the attributes of the
system.

10

Components and Reuse

• Modularisation required to manage large
bodies of code

– OO invented to support this

– . . . but was not quite the right level

– Components are “higher-level” modules

• Reuse most clearly illustrates need for, and
success of, modularisation

• (e.g.) NASA SEL (Software Engineering
Laboratory)

– 1992–1995, developed library of reusable
components, leading to:

– routinely 75% or higher reuse

– development time reduced by 90%
∗ 58,000 hours for application

development,
∗ recently, with reuse, reduced to approx.

6,000

11

Fundamental Issues/Assumptions

• Why object oriented software engineering?

For natural, intuitive, paradigm leads to
good design, widely used

Against not proven! (not provable?)

• Why any development methodology?

Pros dependable, assessment,
standardisation

Cons stifles innovation & creativity,
overheads, too general

12

Group Development Project

• Tutorial/Practical work

• Collaborative specification and design

• (Human) communication in design process

• Illustrates commercial software engineering
projects

• Permits (subjective) assessment of:
Is software engineering with objects and
components a good way of building good
systems?

13

General software engineering books

Reference Software Engineering - A practitioner’s
approach by Roger S. Pressman, European
edition adapted by Darrel Ince, McGraw-Hill,
ISBN 0-07-707936-1

Reference Software Engineering, 6th Edition by
Ian Sommerville, Addison-Wesley, ISBN
0-201-39815-X

Object oriented methods

Purchase UML, Schaum’s Outline Series, by
Simon Bennett, John Skelton and Ken Lunn,
McGraw-Hill, London, ISBN 0-07-709673-8

Reference Using UML, by Perdita Stevens and
Rob Pooley, Addison-Wesley, ISBN
0-201-36067-5

Reference Object Oriented Systems Analysis and
Design using UML, second Edition by Simon
Bennett, Steve McRobb and Ray Farmer,
McGraw-Hill, London, ISBN 0-07-709864-1

14

Object oriented methods (cont.)

Reference Object Oriented Modelling and Design
by Rumbaugh, Blaha, Premerlani, Eddy and
Lorenson, Prentice-Hall, 0-13-630054-5

Reference Object Oriented Software Engineering:
A use case approach by Ivar Jacobsen,
Addison-Wesley 1994

Reference UML Distilled by Martin Fowler,
Addison-Wesley, 1997

Background Object-Oriented Software
Construction by Bertrand Meyer,
Prentice-Hall, ISBN 0-13-629049-3

Background Object Oriented Programming by
Coad and Nicola, Yourdon Press

Background Principles of Object oriented
Software Development by Anton Eliëns,
Addison-Wesley, ISBN 0-201-62444-3

15

