Software |

ngineering with

Objects and Components 1

Overview

Stuart Anderson
Room 1610

Tel:
Email:

0131 650 5191
soa@inf.ed.ac.uk

Note 1

0-0

Administration

Course Web Page please read it it is the main
way of making information on the course
available:
http://www.informatics.ed.ac.uk/

teaching/modules/seocl/

Assessment: Coursework counts 25% towards
the overall assessment. Remaining 75% is

derived from the degree examination.

Coursework: Tutorial groups collaborate on a
single project throughout the term. Assessed
work consists of two deliverables for this
project, each worth 50% of the coursework

mark.

Software: We use Java and Argo/UML on the
course. Details of how to use these will be

posted on the web page.

Main Themes

Software Engineering s concerned with processes,
techniques and tools which enable us to build

“good” systems

Object-Orientation is a (paradigm, methodology,
technique, process, suite of design and
programming languages and tools) with which we

may build good systems

Components are “units of reuse and replacement”

. Software Dependability
. Software Engineering Process

. OO and Component Based Development

. Unified Modelling Language (UML)

. Group Development Project

London Ambulance Service:

computerised despatch system
What happened?

7am, Monday 26 Oct. 1992, system goes live

system quickly overloaded, logged calls
appear to get “lost”

callers held in call-queueing for up to 30

minutes

ambulance allocation system fails to recognise

certain roads (despatch staff revert to maps)

by Monday night: system swamped, new calls

overwrite existing calls

system generates exception messages; these

subsequently also swamp stafl and system

exception messages now clog up system, at

one point all manually deleted

claims made later of up to 20-30 deaths

LAS: world’s largest ambulance

service

600 square miles, 7 million residents (far

more during working hours)

typical day: 5000 patients, 2-2,500 calls
(1,600 A & E)

over 300 A & E ambulances, 500,000 patient

journeys per year

over 400 Patient Transport ambulances, 1.3

million patient journeys per year

from receiving call to despatching ambulance

— less than 3 minutes

LASCAD: Development history

1987 First computerisation project commences,
£3 million budget

1990 Project abandoned, cost estimated at £7.5
million

1990-1991 New senior management team
appointed: requirements completed Feb.
1991; specification July 1991; partial system
goes live Jan. 1992; piecemeal implementation
across LAS divisions Jan—Sept 1992

Oct. 1992 System changeover

26 Oct. system goes live

27 Oct. system closed down

28 Oct reverts to semi-manual operation
Nov. 1993 system crashes, fallback routines fail

to operate; system closed down; reverts to

entirely manual operation.

LAS despatch system: causes of

failure
e Fvery mastake in the book.

e Primary causes:
system design: idealised world view
management ethos
procurement process

development timetable

e Secondary causes
inexperience of suppliers
inadequate testing
poor quality assurance
poor training

inadequate project management

What about coding?

R. Lutz, 1994: cause and effect analysis of
Voyager and Galileo mission software

— over 40,000 SLOC
— 387 software faults
— roughly half safety related

interface faults (roughly 25%)

— safety-related — primarily intra-team

communication errors

— non-safety related — even distribution of
causes

functional faults (roughly 75%)

— safety-related — primarily problems in
requirements recognition (understanding)

— non-safety related — requirements

implementation errors

Moral: we can get the coding right when
we’re careful, the greatest problems lie
elsewhere

The need for software engineering

e Write code V.~ Right code?
e Greatest problems lie elsewhere in
development & maintenance process

— intangible, hard to determine what’s

CCgOOd”
— process requires “good” management
— communication amongst large, diverse

teams is problematic

software engineering, OO (including UML),
and components attempt to address this

Do they succeed? If so, how well?

Recommended Reading: Flowers, Stephen.

”Software failure: management failure”. John
Wiley and Sons, 1996.

What is an Object?

A Thing: objects represent physical and
conceptual things that appear in the system
being modelled. To implement all of the
kinds of systems we want to we need
conceptual things.

Has State: Usually objects have attributes that
can change throughout the lifetime of an
object. E.g. the attribute weight of a patient

object in a medical information system.

Has Behaviour: Understands some set of
messages that can be sent to it and
collaborates with other objects by sending

them messages.

Has Identity: Is more than just the collection of
attributes. You can have two non-equal
objects with identical attribute values.
Objects can often self refer (e.g. by sending
themselves messages).

Classes

a Class defines a family of objects that all

take similar roles in a system.
In Java every object is a member of a class

Corresponding to every kind of message

understood by all objects of the class the

class defines a method of responding to the
message on the basis of the selector and list of

arguments.

The class determines the attributes of the

system.

10

Components and Reuse

e Modularisation required to manage large

bodies of code
— OO invented to support this
— ... but was not quite the right level

— Components are “higher-level” modules

e Reuse most clearly illustrates need for, and

success of, modularisation

e (e.g.) NASA SEL (Software Engineering
Laboratory)

— 1992-1995, developed library of reusable

components, leading to:
— routinely 75% or higher reuse

— development time reduced by 90%
x 58,000 hours for application

development,

x recently, with reuse, reduced to approx.
6,000

11

Fundamental Issues/Assumptions

e Why object oriented software engineering?

For natural, intuitive, paradigm leads to
good design, widely used

Against not proven! (not provable?)

e Why any development methodology?

Pros dependable, assessment,
standardisation

Cons stifles innovation & creativity,

overheads, too general

12

Group Development Project

Tutorial /Practical work
Collaborative specification and design
(Human) communication in design process

Illustrates commercial software engineering

projects

Permits (subjective) assessment of:
Is software engineering with objects and
components a good way of building good

systems?

13

General software engineering books

Reference Software Engineering - A practitioner’s
approach by Roger S. Pressman, European
edition adapted by Darrel Ince, McGraw-Hill,
ISBN 0-07-707936-1

Reference Software Engineering, 6th Edition by
Ian Sommerville, Addison-Wesley, ISBN
0-201-39815-X

Object oriented methods

Purchase UML, Schaum’s Outline Series, by
Simon Bennett, John Skelton and Ken Lunn,
McGraw-Hill, London, ISBN 0-07-709673-8

Reference Using UML, by Perdita Stevens and
Rob Pooley, Addison-Wesley, ISBN
0-201-36067-5

Reference Object Oriented Systems Analysis and
Design using UML, second Edition by Simon
Bennett, Steve McRobb and Ray Farmer,
McGraw-Hill, London, ISBN 0-07-709864-1

14

Object oriented methods (cont.)

Reference Object Oriented Modelling and Design
by Rumbaugh, Blaha, Premerlani, Eddy and
Lorenson, Prentice-Hall, 0-13-630054-5

Reference Object Oriented Software Engineering:

A wuse case approach by Ivar Jacobsen,
Addison-Wesley 1994

Reference UML Distilled by Martin Fowler,
Addison-Wesley, 1997

Background Object-Oriented Software
Construction by Bertrand Meyer,
Prentice-Hall, ISBN 0-13-629049-3

Background Object Oriented Programming by
Coad and Nicola, Yourdon Press

Background Principles of Object oriented
Software Development by Anton Eliéns,

Addison-Wesley, ISBN 0-201-62444-3

15

