Software Testing

Stuart Anderson
Room 1610, JCMB, KB
0131 650 5191, soa@inf.ed.ac.uk

SEOC1 - 2003-4

Reading/Activity

= Please read pages 69—86 Of the SWEBOK
for an overview of Software Testing.

» Please read the article: What is Software
Testing? And Why is it so Hard?, James A.
Whittaker, IEEE Software Jan/Feb 2000,
70—-79.

* Acknowledgement: these slides were
originated by Karine Arnout at ETH - I am
responsible for any bugs introduced.

SEOC1 - 2003-4

What is software testing?

» [Software testing] is the design and
implementation of a special kind of software
system: one that exercises another
software system with the intent of finding
bugs.

Robert V. Binder, Testing Object-Oriented
Systems: Models, Patterns, and Tools (1999)

SEOC1 - 2003-4

What is software testing?

» Testing sof tware typically involves:
+ Executing software with inputs representative of
actual operation conditions
+ Comparing produced / expected outputs

« Comparing resulting / expected states

* Measuring execution characteristics (memory
used, time consumed, etfc.

SEOC1 - 2003-4

Terminology

= Fault:

¢ An imperfection that may lead to failure. e.g.
;ni_slsing / incorrect code that may result ina
ailure

= Error:

o Where the system state is incorrect but it may
not have been observe

= Failure:

e Some failure to deliver the expected service that
is observable to the user

= Bug:
* Another name for a fault in code
SEOC1 - 2003-4

A few more definitions

= Test case: Set of inputs, execution conditions, and
expected results developed for a particular
objective.

= Test suite: Collection of test cases, typically
related by a testing goal or an implementation
dependency.

= Test driver: Class or utility program that applies
test cases to an IUT.

= Test harness: System of test drivers and other
tools that supportsskest eaeaution.




A few more definitions (cont’d)

» Test strategy: Algorithm or heuristic to
create test cases from a representation,
implementation, or a test model.

* Oracle: Means to check the output from a
program is correct for the given input.

» Stub: Partial femporary implementation of a
component (usually required for a component

to operate).
SEOC1 - 2003-4

Effectiveness vs. Efficiency

= Test effectiveness:

* Relative ability of testing strategy to find bugs in
the software.

= Test efficiency:

¢ Relative cost of finding a bug in the software
under fest.

SEOC1 - 2003-4

What is a successful test?

= Pass:

¢ Status of a completed test case whose actual
results are the same as the expected results

* No pass:

e Status of a completed test case whose actual
results differ from the expected ones

o “Successful” test (I.e. we want this to happen)

SEOC1 - 2003-4

What software testing is
NOT...
* Model verification (e.g. by simulation)
» Tool-based static code analysis
* Human documentation/code scrutiny
* Debugging:

+ Testing is NOT debugging, and debugging is NOT
testing.

SEOC1 - 2003-4

Summary

= The scope of testing:

+ The different levels of the system that testing
addresses

» Test techniques:
+ Some of the approaches to building and applying
tests

= Test management

+ How we manage the testing process to maximise
the effectiveness and efficiency of the process
for a given product.

SEOC1 - 2003-4

Testing scope

» "Testing in the small” (unit test):

+ Exercising the smallest executable units of the
system.

» "Testing the build" (integration fest):

+ Finding problems in the interaction between
components.

» "Testing in the large” (system test):
« Putting the entire system fo the fest.

SEOC1 - 2003-4




Testing “in the small”
= Unit Testing:

+ Exercising the smallest individually executable
code units.

+ Objectives:
- Find faults in the units.

- Assure correct functional behavior of units.

+ Usually performed by programmers.

SEOC1 - 2003-4

Testing the build

= Integration Testing:

* Exercising two or more units or components.
+ Objectives:

+ Detect interface errors.

- Assure the functionality of combined units.
* Performed by programmers or testing group.
+ Issues:

+ Strategy for combining units?

+ Compatibility with third-party components?

+ Correctness of third-party components?

SEOC1 - 2003-4

Testing “in the large”: System
= System Testing:

+ Exercising the func‘rionali'r¥ performance,
reliability, and security of the entire system.

+ Objectives:
- Find errors in the overall system behavior.
- Establish confidence in system functionality.
- Validate non-functional system requirements.

+ Usually performed by a separate test group.

SEOC1 - 2003-4

Testing “in the large”: accept
= Acceptance Testing:

+ Operating the system in the user environment with
standard user input scenarios.

+ Objectives:
- Evaluate whether the system meets the customer
criteria.
- Determine whether the customer will accept the system.

+ Usually performed by the end user.

SEOC1 - 2003-4

Testing “in the large”: operation
= Regression Testing:

+ Testing modified versions of a previously validated
system.

+ Objective: Assur'ing that changes to the system
have not introduced new errors.

+ Performed by the system itself or by a regression
Test group.

+ Capture / Replay (CR) tools

SEOC1 - 2003-4

Testing categorization

* Fault-directed testing:

+ Unit testing
+ Integration testing

» Conformance-directed festing:

+ System testing
+ Acceptance testing

SEOC1 - 2003-4




Test generation methods

* Black-box testing:
* No knowledge of the software structure
+ Also called specification-based or functional testing.

* White-box festing:
+ Knowledge of the software structure and implementation.

* Fault-based testing:
+ Objective is to find faults in the software.
+ eg. Unit testing

* Model-based testing:

+ Use of a data or behavioral model of the software.
- eg. Finite state machine

* Random testing

SEOC1 - 2003-4

White-box Testing

= White-box methods can be used for:

+ Test generation
+ Test adequacy analysis

» Usually used as adequacy criteria (after
generation by a black-box method).

SEOC1 - 2003-4

White-box Testing (cont’d)

= Methods based on internal code structure:

+ Statement coverage
* Branch coverage

+ Path coverage

+ Data-flow coverage

SEOC1 - 2003-4

Branch Coverage

O Statement

—— Branch

2 test cases: 12467; 1358

SEOC1 - 2003-4

Path Coverage

O Statement

—— Branch

SEOC1 - 2003-4

Path Coverage

4 test cases: 12467; 1358; 1248; 13567

SEOC1 - 2003-4




Data-flow Coverage (All-uses)

Red path covers the definitions y :=2; r :=4; x :=1
Blue path covers the definitions y :=2; r := 4; x :=3

SEOC1 - 2003-4

White-box Testing (cont’d)

= Issues:

+ Is code coverage effective at detecting faults?
+ How much coverage is enough?
+ Is one coverage criterion better than another?

+ Is coverage ‘resﬂng)mor'e effective than random
test case’selection:

SEOC1 - 2003-4

Experimental studies

= Black-box generation followed by white-box
coverage-based tests.

* Results:

High coverage alone does not guarantee fault detection.
Fault detection increases significantly as coverage goes
above 95%.

No significant difference between Branch and Data-flow
coverage.

Both Branch and Data-flow coverage are significantly more
effective than random test cases.

Hutchins et al. "Experiments on the Effectiveness of Dataflow- and
Controlflow-Based Test Adequacy Criteria”. ICST, May 1994.

SEOC1 - 2003-4

Test Management

= Management concerns

+ Attitude to testing.

« Effective documentation and control of the whole
test process

« Documentation of tests and control of the test
codebase

+ Independence of test activities.

« Costing and estimation of test activities
+ Termination: deciding when to stop.

* Managing effective reuse

SEOC1 - 2003-4

Test Management (ctd)

= Test Activities

Test Planning

+ Test case generation - can involve massive amounts
of data for some systems.

+ Test environment development
+ Execution of fests

+ Evaluating test results

+ Problem reporting

+ Defect tracking

SEOC1 - 2003-4

Summary

= Testing is a critical part of the development
of any system.

» Testing can be carried out at a number of
levels and is planned as an integral part of
the development process.

* There is a wide range of approaches to fest
case generation and evaluation of the
adequacy of a test suite.

» Test needs to be managed effectively if it is
to be efficient.

SEOC1 - 2003-4




