
Software Engineering Large Practical:

Testing Android applications

Stephen Gilmore

School of Informatics

Wednesday 1st November, 2017



Contents

1. Software testing

2. Recording user interface tests

3. Running tests

1



Software testing



Software testing

• In practice, software is produced to tight product deadlines.

Changes to product requirements are frequent, often because

our software is interacting with other software that is

changing.

• The principal method of improving software quality is through

automated testing, with test frameworks being used to encode

tests which can be re-run every time that the code is updated.

• We will only be introducing the very important topic of

software testing here, and only specifically for Android

applications. For an in-depth look at the subject see the

Software Testing course next semester.

2



Expectations of software testing

Program testing can be used to show the presence of

bugs, but never to show their absence!

— Edsger W. Dijkstra, 1970.

• In 2017, very few people expect to be able to prove that their

code has no bugs. Perfection in software development is not

widely viewed as an attainable goal.

• However, user-visible errors in software cause reputational

damage and can cause your app to be uninstalled or receive

negative user reviews.

• Pragmatically, the goal of software testing is to reduce the

number of bugs in code which is shipped to the user.

3



Needs more testing

4



Android testing

• Android supports two types of testing: unit tests and

instrumented tests.

• Unit tests are located under src/test/java, run on the

JVM, and do not have access to Android APIs.

• Instrumented tests go under src/androidTest/java, run on

a hardware device or the emulator, and can invoke methods

and modify fields in your application.

• Both types of tests are valuable, but here we will focus on

instrumented tests, in particular user interface tests using the

Espresso test framework.

https://developer.android.com/training/testing/fundamentals.html

5

https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/training/testing/fundamentals.html


Unit tests and instrumented tests

http://developer.android.com/training/testing/start/

6

http://developer.android.com/training/testing/start/


Recording user interface tests



Recording user interface tests

• Android Studio provides the Espresso Test Recorder which

tracks our interactions with our app while it is being used, and

generates an Espresso test to replay these interactions in

automated testing later.

7



Starting the Espresso test recorder

8



The Espresso test recorder taking notes

9



The Espresso test recorder taking notes

10



The Espresso test recorder taking notes

11



The Espresso test recorder taking notes

12



The Espresso test recorder taking notes

13



The code generated by the test recorder (1/2)

@RunWith(AndroidJUnit4.class)

public class MapsActivityTest {

@Rule

public ActivityTestRule<MapsActivity> mActivityTestRule = new

ActivityTestRule<>(MapsActivity.class);

@Test

public void mapsActivityTest() {
// Added a sleep statement to match the app’s execution delay.

try { Thread.sleep(5000); }
catch (InterruptedException e) { ... }

// First button click

ViewInteraction floatingActionButton = onView(

allOf(withId(R.id.fab), isDisplayed()));

floatingActionButton.perform(click());
14



The code generated by the test recorder (2/2)

// Second button click

ViewInteraction floatingActionButton2 = onView(

allOf(withId(R.id.fab), isDisplayed()));

floatingActionButton2.perform(click());

// Added a sleep statement to match the app’s execution delay.

try { Thread.sleep(5000); }
catch (InterruptedException e) { ... }

// Clicked on the overflow menu
` ...

˘

in the app bar

openActionBarOverflowOrOptionsMenu(

getInstrumentation().getTargetContext());

}
}

15



Adding unit tests

• We can then edit this test to add in JUnit assertions of the

form assertTrue, assertFalse, assertNotNull, assertEquals,

assertArrayEquals, and others.

F 8 f

import android.location.Location;

import static org.junit.Assert.∗;
...

Location loc = mActivityTestRule.getActivity().getLocation();

assertTrue(”Location is not null”, loc != null);

16



Making our app testable [in MapActivity]

• We may need to add some methods to our Activity to make

values visible for testing.

• We can annotate these to show that they are used for testing.

The annotation @VisibleForTesting prevents us from actually

calling this method from production code.

F 8 f

import android.support.annotation.VisibleForTesting;

...

private Location mLastLocation;

...

@VisibleForTesting

public Location getLocation() {
return mLastLocation;

}
17



Running tests



Running tests

• Classes which contain tests are annotated with the annotation

@RunWith(AndroidJUnit4.class) which means that they will

be executed under the supervision of a test runner.

• This specifies the AndroidJUnitRunner class provided in the

Android Testing Support Library as the default test runner.

• The emulator will start up as usual, but it will receive input

events (such as button clicks) from our @Test methods.

18



Running tests . . .

19



Running tests . . . [Success]

20



Running tests . . .

21



Running tests . . .

22



Running tests . . .

23



Running tests . . . [Failure]

24



When tests fail

• Tests (especially tests generated by the Espresso test recorder)

can fail for reasons other than an error in our application

logic. It is important to look at the reason why the test failed;

it might be a poorly-specified test.

• False positive failures can be caused by timing issues where

the app under test does not respond within the delay

anticipated by the sleep pause in the test.

• Work is underway to improve the Android testing framework.

25



Links

• https://developer.android.com/training/testing/index.html

• https://developer.android.com/training/testing/fundamentals.html

• https://developer.android.com/training/testing/junit-rules.html

• https://developer.android.com/training/testing/espresso/index.html

• https://developer.android.com/studio/write/annotations.html

26

https://developer.android.com/training/testing/index.html
https://developer.android.com/training/testing/fundamentals.html
https://developer.android.com/training/testing/junit-rules.html
https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/studio/write/annotations.html

	Software testing
	Recording user interface tests
	Running tests

