
Software Engineering Large Practical:

Design document and Material Design

Stephen Gilmore

School of Informatics

October 27, 2017



Contents

1. Design document

2. Material design

1



Design document



Design document

• Four weeks ago you were given a specification of an

Android-based mobile phone game to implement.

• This described the game in general terms of what was

required, but left many design decisions for you to make

about how things would be done.

• Part 2 of the practical requires you to submit a design

document reporting on your decisions so far.

• Your design document should state abstract implementation

decisions and show concrete user interface designs.

2



Design document recap [from the coursework specification]

• Your design document should record your design decisions for

your app including a definitive list of the bonus features which

are offered by your app.

• Your design document should represent the visual layout of

your app by being illustrated with screenshots of the views

which you have designed for the activities in your app.

• You should aim to show a typical play of the game including

at least the user viewing a map, guessing which song this is,

and being informed whether or not they are correct.

• The expected length of this design document is between 6

and 10 pages.

3



Typical questions for the design document to answer (1/2)

• How is the song that the player has to identify chosen?

• What does a player have to do to collect a word? Does

anything happen to the placemark when the word is collected?

• After a player has collected several words can they review

them? If so, how do they do that? What does the “review

screen” look like?

• When a player thinks that they can guess the song how do
they enter their guess?

– What happens if their guess is correct?

– What happens if their guess is incorrect?

• When a player thinks that they can’t guess the song how do

they indicate that they give up? What happens then?

4



Typical questions for the design document to answer (2/2)

• What determines which of the five versions of the map is

shown?

• Can the player set the “level of difficulty” of the game? If so,

how?

• After a player has identified a song, could that song be chosen

again as the puzzle to solve?

• After a player has identified several songs, can they review

their list of solved puzzles? What does that “review screen”

look like?

• What does the game do if a data connection (4G) is not

available? Can it be played at all?

5



Including screenshots

• The requirement to include some screenshots of views of your

app in your design document means that, if you have not

done so already, you should begin implementation of your app

now and focus on designing your user interface.

• A set of design guidelines for Android apps have been

developed with the aim that apps should have a consistent

look-and-feel and use the same visual language.

• The design concepts and ideas which encourage this are

expressed in the design guidance called Material design —

http://material.io.

• You might choose not to follow these design guidelines, but it

seems at least worthwhile to know of their existence.

6

http://material.io


Material design



Key features of material design

• Material design is a three-dimensional environment containing

light, material, and shadows. All material objects have x, y,

and z dimensions.

• Material objects have varying x and y dimensions (measured

in dp — “dp” is device-independent pixel, pronounced “dip”)

https://material.io/guidelines/material-design/environment.html

7

https://material.io/guidelines/material-design/environment.html


3D space with x, y, and z axes

https://material.io/guidelines/material-design/environment.html

8

https://material.io/guidelines/material-design/environment.html


Key features of material design

• All material objects are 1dp thick and have a single z-axis

position.

• Key lights create directional shadows, and ambient light

creates soft shadows.

• Shadows are created by the elevation difference between

overlapping material.

https://material.io/guidelines/material-design/environment.html

9

https://material.io/guidelines/material-design/environment.html


Co-ordinates and shadows

https://material.io/guidelines/material-design/environment.html

10

https://material.io/guidelines/material-design/environment.html


Material properties

• Material is solid.

• Input events cannot pass through material.

– Input events only affect the foreground material.

• Multiple material elements cannot occupy the same point in

space simultaneously.

• Material cannot pass through other material.

– For example, one sheet of material cannot pass through

another sheet of material when changing elevation.

https://material.io/guidelines/material-design/material-properties.html

11

https://material.io/guidelines/material-design/material-properties.html


Object elevation — resting elevation

• All material objects, regardless of size, have a resting

elevation, or default elevation that does not change.

• Components maintain consistent resting elevations across
apps.

– For example, the floating action button’s elevation does not

vary from one app to another.

• Components may have different resting elevations across

platforms and devices, depending on the depth of the

environment.

https://material.io/guidelines/material-design/elevation-shadows.html

12

https://material.io/guidelines/material-design/elevation-shadows.html


Object elevation — responsive elevation

• Some component types have responsive elevation, meaning
they change elevation in response to user input (e.g., normal,
focused, and pressed) or system events.

– If an object changes elevation, it should return to its resting

elevation as soon as possible.

• These elevation changes are consistently implemented using

dynamic elevation offsets.

https://material.io/guidelines/material-design/elevation-shadows.html

13

https://material.io/guidelines/material-design/elevation-shadows.html


Components and elevations

Elevation Component(s)

24 dp Dialog (a pop-up), Picker (e.g. date picker, time picker)

16 dp Nav drawer, Right drawer, Modal bottom sheet

12 dp Floating action button (FAB — pressed)

9 dp Sub menu (+1dp for each sub menu)

8 dp
Bottom navigation bar, Menu, Card (when picked up),

Raised button (pressed state)

6 dp
Floating action button (FAB — resting elevation),

Snackbar

4 dp App Bar

3 dp Refresh indicator, Quick entry / Search bar (scrolled state)

2 dp
Card (resting elevation), Raised button (resting elevation),

Quick entry / Search bar (resting elevation)

1 dp Switch

https://material.io/components/android/
14

https://material.io/guidelines/components/dialogs.html
https://material.io/guidelines/components/pickers.html
https://material.io/components/android/catalog/navigation-view/
https://material.io/components/android/catalog/navigation-view/
https://material.io/components/android/catalog/bottom-sheet-dialog-fragment/
https://material.io/components/android/catalog/floating-action-button/
https://material.io/guidelines/components/menus.html
https://material.io/components/android/catalog/bottom-navigation-view/
https://material.io/guidelines/components/menus.html
https://material.io/guidelines/components/cards.html
https://material.io/guidelines/components/buttons.html
https://material.io/components/android/catalog/floating-action-button/
https://material.io/components/android/catalog/snackbar/
https://material.io/components/android/catalog/app-bar-layout/
https://material.io/guidelines/patterns/swipe-to-refresh.html
https://material.io/guidelines/components/cards.html
https://material.io/guidelines/components/buttons.html
https://material.io/guidelines/components/selection-controls.html#selection-controls-switch
https://material.io/components/android/


Components and elevations examples

material.google.com/material-design/elevation-shadows.html

15



Adding material design to Android applications

Your build.gradle file should list the dependency on the Material

Design support library.

dependencies {
compile fileTree(dir: ’libs’, include: [’∗.jar’])

androidTestCompile(’com.android.support.test.espresso:espresso´core:2.2.2’,

{
exclude group: ’com.android.support’, module: ’support´annotations’

})
compile ’com.android.support:appcompat´v7:26.+’

compile ’com.android.support.constraint:constraint-layout:1.0.0-alpha9’

compile ’com.android.support:design:26.+’

testCompile ’junit:junit:4.12’

}

https://material.io/components/android/docs/

16

https://material.io/components/android/docs/


Errors in gradle.build files — look for typos

17



Typos fixed — try again

18



Missing components should be installed

19



Adding material design to Android applications

In order to add material design to our Android app we first need to

specify that we are using the Material style in our app’s styles

definition file and customise the theme as necessary.

<!´´ res/values/styles.xml ´´>

<resources>

<!´´ your theme inherits from the material theme ´´>

<style name=”AppTheme” parent=”android:Theme.Material”>

<!´´ theme customizations ´´>

</style>

</resources>

https://developer.android.com/training/material/get-started.html

20

https://developer.android.com/training/material/get-started.html


Customisation options for the material theme

https://developer.android.com/training/material/theme.html

21

https://developer.android.com/training/material/theme.html


Material design colour palette generator

https://www.materialpalette.com/

22

https://www.materialpalette.com/


XML download offered

<?xml version=”1.0” encoding=”utf´8”?>

<!´´ Palette generated by Material Palette ´

materialpalette.com/blue/yellow ´´>

<resources>

<color name=”primary”>#2196F3</color>

<color name=”primary dark”>#1976D2</color>

<color name=”primary light”>#BBDEFB</color>

<color name=”accent”>#FFEB3B</color>

<color name=”primary text”>#212121</color>

<color name=”secondary text”>#757575</color>

<color name=”icons”>#FFFFFF</color>

<color name=”divider”>#BDBDBD</color>

</resources>

https://www.materialpalette.com/

23

https://www.materialpalette.com/


Setting elevations of views

The elevation of a particular view in our app is set by specifying its

android:evelation attribute.

<TextView

android:id=”@+id/my textview”

android:layout width=”wrap content”

android:layout height=”wrap content”

android:text=”@string/next”

android:background=”@color/primary light”

android:elevation=”5dp” />

developer.android.com/training/material/get-started.html

24

developer.android.com/training/material/get-started.html


Setting up the App Bar at the top of the screen

public class MyActivity extends AppCompatActivity {
// ...

}

<!´´ In AndroidManifest.xml ´´>

<application

android:theme=”@style/Theme.AppCompat.Light.NoActionBar”/>

<!´´ In res/layout/activity my.xml ´´>

<android.support.v7.widget.Toolbar

android:id=”@+id/my toolbar”

android:layout width=”match parent”

android:layout height=”?attr/actionBarSize”

android:background=”@color/primary”

android:elevation=”4dp”

android:theme=”@style/ThemeOverlay.AppCompat.ActionBar”

app:popupTheme=”@style/ThemeOverlay.AppCompat.Light”/>

http://developer.android.com/training/appbar/setting-up.html 25

http://developer.android.com/training/appbar/setting-up.html


Methods onCreate and onCreateOptionsMenu

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity my);

Toolbar myToolbar = (Toolbar) findViewById(R.id.my toolbar);

setSupportActionBar(myToolbar);

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.menu main, menu);

return true;

}

http://developer.android.com/training/appbar/setting-up.html

26

http://developer.android.com/training/appbar/setting-up.html


Adding action buttons to the App Bar

<!´´ res/menu/menu main.xml ´´>

<menu xmlns:android=”http://schemas.android.com/apk/res/android”

xmlns:app=”http://schemas.android.com/apk/res´auto”>

<!´´ ‘‘Mark Favourite’’, as action button if possible. Download

icon from https://material.io/icons/ and add to project ´´>

<item android:id=”@+id/action favourite”

android:icon=”@drawable/ic favourite black 48dp”

android:title=”@string/action favourite”

app:showAsAction=”ifRoom”/>

<!´´ Settings, should always be in the overflow ´´>

<item android:id=”@+id/action settings”

android:title=”@string/action settings”

app:showAsAction=”never”/>

</menu>

https://developer.android.com/training/appbar/actions.html
27

https://material.io/icons/
https://developer.android.com/training/appbar/actions.html


Responding to actions

@Override

public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {

case R.id.action settings:

// User chose the ”Settings” item, show the app settings UI

return true;

case R.id.action favourite:

// User chose the ”Favourite” action, mark the current item

// as a favourite...

return true;

default:

// If we got here, the user’s action was not recognised.

// Invoke the superclass to handle it.

return super.onOptionsItemSelected(item);

}
}

https://developer.android.com/training/appbar/actions.html
28

https://developer.android.com/training/appbar/actions.html


Building and displaying a message

• You can use a Snackbar to display a brief message to the user,

shown for a time LENGTH SHORT, LENGTH LONG, or

LENGTH INDEFINITE.

• A snackbar is ideal for brief messages that the user doesn’t

necessarily need to act on.

• For example, an email app could use a snackbar to tell the

user that the app successfully archived an email message, or

that there is no internet connection.

29

https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/support/design/widget/Snackbar.html#LENGTH_SHORT
https://developer.android.com/reference/android/support/design/widget/Snackbar.html#LENGTH_LONG
https://developer.android.com/reference/android/support/design/widget/Snackbar.html#LENGTH_INDEFINITE


Attaching a SnackBar to a CoordinatorLayout

<android.support.design.widget.CoordinatorLayout

android:id=”@+id/myCoordinatorLayout”

xmlns:android=”http://schemas.android.com/apk/res/android”

xmlns:app=”http://schemas.android.com/apk/res´auto”

android:layout width=”match parent”

android:layout height=”match parent”>

<!´´ Here are the existing layout elements, now wrapped in

a CoordinatorLayout ´´>

<LinearLayout

android:layout width=”match parent”

android:layout height=”match parent”

android:orientation=”vertical”>

<!´´...Toolbar, other layouts, other elements...´´>

</LinearLayout>

</android.support.design.widget.CoordinatorLayout>

https://developer.android.com/training/snackbar/showing.html
30

https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/support/design/widget/CoordinatorLayout.html
https://developer.android.com/training/snackbar/showing.html


Showing an “email archived” message to the user

Snackbar.make(findViewById(R.id.myCoordinatorLayout),

R.string.email archived,

Snackbar.LENGTH SHORT)

.show();

https://developer.android.com/training/snackbar/showing.html

31

https://developer.android.com/training/snackbar/showing.html


Adding an action to a message

public class MyUndoListener implements View.OnClickListener{

@Override

public void onClick(View v) {
// Code to undo the user’s last action

}

}

Snackbar mySnackbar =

Snackbar.make(findViewById(R.id.myCoordinatorLayout),

R.string.email archived,

Snackbar.LENGTH SHORT);

mySnackbar.setAction(R.string.undo string, new MyUndoListener());

mySnackbar.show();

https://developer.android.com/training/snackbar/action.html

32

https://developer.android.com/training/snackbar/action.html


Concluding remarks

• Material Design attempts to standardise user interface

elements across apps and across platforms.

• There are many aspects which we have not covered here:

fonts, text layout, animations, transitions, and others.

33



Links

• https://material.io/components/android/

• https://material.io/icons/

• https://material.io/guidelines/

• https://developer.android.com/training/best-ui.html

34

https://material.io/components/android/
https://material.io/icons/
https://material.io/guidelines/
https://developer.android.com/training/best-ui.html

	Design document
	Material design

